Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening Scale Biotransformations
2.2. The Influence of Carbon and Nitrogen Source on Biotransformation
2.3. Preparative Biotransformations of Isosafrole (1a) to Piperonal (1b)
2.4. Species Identification
3. Materials and Methods
3.1. Materials
3.2. Microorganisms
3.3. Fungi Isolation Methods
3.4. Molecular Identification of Fungal Strains
3.5. Screening Scale Biotransformations
3.6. Modification of Culture Media Composition
3.7. Extraction Procedure
3.8. Preparative Biotransformations
3.9. Analysis Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rachwalik, R. Technologie Wybranych Związków Zapachowych; Wydawnictwo PK: Krakow, Poland, 2018; ISBN 9788365991263. [Google Scholar]
- Santos, A.S.; Pereira, N.; da Silva, I.M.; Sarquis, M.I.M.; Antunes, O.A.C. Peroxidase Catalyzed Microbiological Oxidation of Isosafrol into Piperonal. Process Biochem. 2004, 39, 2269–2275. [Google Scholar] [CrossRef]
- Lucarelli, C.; Lolli, A.; Giugni, A.; Grazia, L.; Albonetti, S.; Monticelli, D.; Vaccari, A. Efficient and Ecofriendly Route for the Solvent-Free Synthesis of Piperonal and Aromatic Aldehydes Using Au/CeO2 Catalyst. Appl. Catal. B 2017, 203, 314–323. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Barbosa, D.P.; Fricks, A.T.; Aranda, D.A.G.; Valdés, R.H.; Antunes, O.A.C. Production of Piperonal, Vanillin, and p-Anisaldehyde via Solventless Supported Iodobenzene Diacetate Oxidation of Isosafrol, Isoeugenol, and Anethol under Microwave Irradiation. Org. Process. Res. Dev. 2006, 10, 941–943. [Google Scholar] [CrossRef]
- Borzatta, V.; Capparella, E.; Chiappino, R.; Impalà, D.; Poluzzi, E.; Vaccari, A. Oppenauer’s Oxidation by Paraformaldehyde of Piperonyl Alcohol to Heliotropine. Catal. Today 2009, 140, 112–116. [Google Scholar] [CrossRef]
- Santos, A.S.; Pereira, N.J.; da Silva, I.I.; Sarquis, M.I.; Antunes, O.A.C. Microbiologic Oxidation of Isosafrole into Piperonal. Appl. Biochem. Biotechnol. 2003, 107, 649–658. [Google Scholar] [CrossRef]
- Zhao, M.; Zheng, P.; Chen, P.; Liu, S. Biosynthesis of Heliotropin by a Novel Strain of Serratia liquefaciens. Appl. Biochem. Biotechnol. 2017, 183, 1282–1294. [Google Scholar] [CrossRef]
- Lara, M.; Mutti, F.G.; Glueck, S.M.; Kroutil, W. Biocatalytic Cleavage of Alkenes with O2 and Trametes hirsuta G FCC 047. Eur. J. Org. Chem. 2008, 2008, 3668–3672. [Google Scholar] [CrossRef]
- Tentori, F.; Brenna, E.; Ferrari, C.; Gatti, F.G.; Ghezzi, M.C.; Parmeggiani, F. Chemo-Enzymatic Oxidative Cleavage of Isosafrole for the Synthesis of Piperonal. React. Chem. Eng. 2021, 6, 1591–1600. [Google Scholar] [CrossRef]
- Schwendenwein, D.; Fiume, G.; Weber, H.; Rudroff, F.; Winkler, M. Selective Enzymatic Transformation to Aldehydes in Vivo by Fungal Carboxylate Reductase from Neurospora crassa. Adv. Synth. Catal. 2016, 358, 3414–3421. [Google Scholar] [CrossRef]
- Jankowski, N.; Koschorreck, K.; Urlacher, V.B. Aryl-Alcohol-Oxidase-Mediated Synthesis of Piperonal and Other Valuable Aldehydes. Adv. Synth. Catal. 2022, 364, 2364–2372. [Google Scholar] [CrossRef]
- Mang, H.; Gross, J.; Lara, M.; Goessler, C.; Schoemaker, H.E.; Guebitz, G.M.; Kroutil, W. Optimization of a Biocatalytic Single-Step Alkene Cleavage of Aryl Alkenes. Tetrahedron 2007, 63, 3350–3354. [Google Scholar] [CrossRef]
- Kurlemann, N.; Lara, M.; Pohl, M.; Kroutil, W.; Liese, A. Asymmetric Synthesis of Chiral 2-Hydroxy Ketones by Coupled Biocatalytic Alkene Oxidation and C–C Bond Formation. J. Mol. Catal. B Enzym. 2009, 61, 111–116. [Google Scholar] [CrossRef]
- Rajagopalan, A.; Schober, M.; Emmerstorfer, A.; Hammerer, L.; Migglautsch, A.; Seisser, B.; Glueck, S.M.; Niehaus, F.; Eck, J.; Pichler, H.; et al. Enzymatic Aerobic Alkene Cleavage Catalyzed by a Mn3+-Dependent Proteinase A Homologue. ChemBioChem 2013, 14, 2427–2430. [Google Scholar] [CrossRef]
- Lara, M.; Mutti, F.G.; Glueck, S.M.; Kroutil, W. Oxidative Enzymatic Alkene Cleavage: Indications for a Nonclassical Enzyme Mechanism. J. Am. Chem. Soc. 2009, 131, 5368–5369. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, A.; Seisser, B.; Mutti, F.G.; Schober, M.; Kroutil, W. Alkene Cleavage by White-Rot Trametes hirsuta: Inducing Enzyme Activity by a Fungicide. J. Mol. Catal. B Enzym. 2013, 90, 118–122. [Google Scholar] [CrossRef]
- Milovanovic, J.; Gündüz, M.G.; Zerva, A.; Petkovic, M.; Beskoski, V.; Thomaidis, N.S.; Topakas, E.; Nikodinovic-Runic, J. Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives. Catalysts 2021, 11, 727. [Google Scholar] [CrossRef]
- Conceição, J.C.S.; Dias, H.J.; Peralva, C.M.S.; Crotti, A.E.M.; da Rocha Pita, S.S.; de Oliveira Silva, E. Phenolic Compound Biotransformation by Trametes Versicolor ATCC 200801 and Molecular Docking Studies. Appl. Biochem. Biotechnol. 2020, 190, 1498–1511. [Google Scholar] [CrossRef]
- del Álamo, A.C.; Pariente, M.I.; Molina, R.; Martínez, F. Advanced Bio-Oxidation of Fungal Mixed Cultures Immobilized on Rotating Biological Contactors for the Removal of Pharmaceutical Micropollutants in a Real Hospital Wastewater. J. Hazard. Mater. 2022, 425, 128002. [Google Scholar] [CrossRef]
- Hidayat, A.; Yanto, D.H.Y. Biodegradation and Metabolic Pathway of Phenanthrene by a New Tropical Fungus, Trametes hirsuta D7. J. Environ. Chem. Eng. 2018, 6, 2454–2460. [Google Scholar] [CrossRef]
- del Álamo, A.C.; Pariente, M.I.; Vasiliadou, I.; Padrino, B.; Puyol, D.; Molina, R.; Martínez, F. Removal of Pharmaceutical Compounds from Urban Wastewater by an Advanced Bio-Oxidation Process Based on Fungi Trametes Versicolor Immobilized in a Continuous RBC System. Environ. Sci. Pollut. Res. 2018, 25, 34884–34892. [Google Scholar] [CrossRef]
- Wen, P.; Wu, D.; Zheng, P.; Chen, P.; Liu, S.; Fu, Y. Highly Efficient Biosynthesis of Heliotropin by Engineered Escherichia coli Coexpressing Trans-Anethole Oxygenase and Formate Dehydrogenase. J. Agric. Food Chem. 2019, 67, 14121–14128. [Google Scholar] [CrossRef]
- Arhipova, N.; Jansons, A.; Zaluma, A.; Gaitnieks, T.; Vasaitis, R. Bark Stripping of Pinus Contorta Caused by Moose and Deer: Wounding Patterns, Discoloration of Wood, and Associated Fungi. Can. J. For. Res. 2015, 45, 1434–1438. [Google Scholar] [CrossRef]
- Hall, T. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Justo, A.; Hibbett, D.S. Phylogenetic Classification of Trametes (Basidiomycota, Polyporales) Based on a Five-Marker Dataset. Taxon 2011, 60, 1567–1583. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, M.; Gascuel, O. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef] [PubMed]
Strain | Time (Days) | Substrate (%) 1a | Products (%) | |
---|---|---|---|---|
1b | 1c | |||
Laetiporus sulphurens AM515 | 7 | 0 | 0 | 100 |
14 | 0 | 0 | 100 | |
Mortierella isabelina AM212 | 7 | 100 | 0 | 0 |
14 | 87 | 13 | 0 | |
Piptoporus betulinus AM40 | 7 | 23 | 0 | 77 |
14 | 17 | 0 | 83 | |
Trametes versicolor AM536 | 7 | 63 | 10 | 27 |
14 | 36 | 14 | 50 | |
Trametes hirsuta d28 | 7 | 79 | 8 | 13 |
14 | 42 | 10 | 48 |
Source | Time (Days) | Substrate (%) 1a | Products (%) | ||
---|---|---|---|---|---|
Carbon | Nitrogen | 1b | 1c | ||
Fructose | Peptone | 7 | 44 | 3 | 53 |
14 | 31 | 3 | 66 | ||
Mannose | 7 | 38 | 3 | 59 | |
14 | 29 | 3 | 68 | ||
Ribose | 7 | 33 | 14 | 53 | |
14 | 18 | 18 | 64 | ||
Starch | 7 | 52 | 2 | 46 | |
14 | 34 | 4 | 62 | ||
Galactose | 7 | 62 | 0 | 38 | |
14 | 14 | 0 | 86 | ||
Glucose | Casein hydrolysate | 7 | 19 | 33 | 48 |
14 | 7 | 28 | 65 | ||
Lactalbumin hydrolysate | 7 | 17 | 10 | 73 | |
14 | 17 | 10 | 73 | ||
Meat peptone | 7 | 51 | 15 | 34 | |
14 | 61 | 14 | 25 | ||
Potatoes peptone | 7 | 83 | 3 | 14 | |
14 | 65 | 4 | 31 | ||
Soy peptone | 7 | 51 | 3 | 46 | |
14 | 32 | 4 | 64 |
Strain | Source | Time (Days) | Substrate (%) 1a | Products (%) | ||
---|---|---|---|---|---|---|
Carbon | Nitrogen | 1b | 1c | |||
Trametes versicolor AM536 | Glucose | Peptone | 7 | 40 | 20 | 40 |
14 | 34 | 24 | 42 | |||
Ribose | Peptone | 7 | 72 | 0 | 28 | |
14 | 53 | 16 | 31 | |||
Ribose | Casein hydrolysate | 7 | 57 | 5 | 38 | |
14 | 45 | 16 | 39 | |||
Glucose | Casein hydrolysate | 7 | 47 | 13 | 40 | |
14 | 32 | 20 | 48 | |||
Trametes hirsuta d28 | Glucose | Peptone | 7 | 33 | 35 | 32 |
14 | 11 | 43 | 46 | |||
Ribose | Peptone | 7 | 100 | 0 | 0 | |
14 | 100 | 0 | 0 | |||
Ribose | Casein hydrolysate | 7 | 100 | 0 | 0 | |
14 | 100 | 0 | 0 | |||
Glucose | Casein hydrolysate | 7 | 17 | 32 | 51 | |
14 | 10 | 33 | 57 |
Strain | Time (Days) | Substrate (%) 1a | Products (%) | |
---|---|---|---|---|
1b | 1c | |||
T. hirsuta Th1_1 | 7 | 68 | 0 | 32 |
14 | 66 | 0 | 34 | |
T. hirsuta Th2_2 | 7 | 24 | 23 | 53 |
14 | 8 | 38 | 54 | |
T. hirsuta Th5_2 | 7 | 36 | 0 | 64 |
14 | 22 | 0 | 78 | |
T. hirsuta Th5_3 | 7 | 33 | 0 | 67 |
14 | 34 | 0 | 66 |
Strain | Substrate (%) 1a | Products (%) | Isolation Yield of 1b (%) | Amount of 1b Obtained (mg) | |
---|---|---|---|---|---|
1b | 1c | ||||
T. hirsuta Th2_2 | 11 | 82 | 7 | 62 | 124 |
T. hirsuta d28 | 25 | 69 | 6 | 50.5 | 101 |
Biotransformation Approach | Biocatalysts | Substrate | Conversion (%) | Obtained Amount | Ref. |
---|---|---|---|---|---|
Whole cells | Trametes hirsuta | Isosafrole | 4 | np * | [8] |
Whole cells | Cladosporium sphaerospermum | Isosafrole | 9.8 | np * | [6] |
Post-culture medium | Paecilomyces variotii | Isosafrole | 20 | np * | [2] |
Whole cells | Serratia liquefaciens | Isosafrole | 38.5 | 282.32 mg/L ** | [7] |
GMO co-expressing system | Escherichia coli (FDH and TAO3G2) | Isosafrole | 96.02 | 19.45 g/L | [22] |
Purified enzyme | POAA2 from Pleurotus eryngii P34 | Piperonylic alcohol | 95 | 244.6 mg | [11] |
GMO co-expressing system | E. coli (CAR from Neurospora crassa) | Piperonylic acid | 100 | 1.66 g *** | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernik, D.; Szczepańska, E.; Brenna, E.; Patejuk, K.; Olejniczak, T.; Strzała, T.; Boratyński, F. Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal. Molecules 2023, 28, 3643. https://doi.org/10.3390/molecules28083643
Hernik D, Szczepańska E, Brenna E, Patejuk K, Olejniczak T, Strzała T, Boratyński F. Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal. Molecules. 2023; 28(8):3643. https://doi.org/10.3390/molecules28083643
Chicago/Turabian StyleHernik, Dawid, Ewa Szczepańska, Elisabetta Brenna, Katarzyna Patejuk, Teresa Olejniczak, Tomasz Strzała, and Filip Boratyński. 2023. "Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal" Molecules 28, no. 8: 3643. https://doi.org/10.3390/molecules28083643
APA StyleHernik, D., Szczepańska, E., Brenna, E., Patejuk, K., Olejniczak, T., Strzała, T., & Boratyński, F. (2023). Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal. Molecules, 28(8), 3643. https://doi.org/10.3390/molecules28083643