Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity
Abstract
:1. Introduction
2. Results
2.1. Compounds Found in Tabebuia rosea Ethanolic Extract by UPLC Analysis
2.2. Anti-Obesogenic Effect in Wistar Rats
2.3. Glucose and Insulin Levels and Lipid Profile Analyses
2.4. Adipose Tissue Morphology
2.5. Effect of Ethanolic Extract from Tabebuia rosea, Quercetin, and Anti-Obesity Drugs on mRNA Expression of Pro-Inflammatory and Anti-Inflammatory Cytokines
3. Discussion
4. Materials and Methods
4.1. Plant Material and Preparation of the Ethanolic Extract
4.2. Ultra Performance Liquid Chromatography (UPLC) Analysis
4.3. Animals
4.4. High-Fat Diet-Induced Obese Wistar Rats Treatments
4.5. Biochemical and Histopathological Analysis
4.6. RNA Extraction
4.7. Real-Time PCR (qPCR)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, E.M.; Ryder, J.R.; Brundage, R.C.; Straka, R.J.; Fox, C.K.; Gross, A.C.; Oberle, M.M.; Bramante, C.T.; Sibley, S.D.; Kelly, A.S. Precision Medicine in Adult and Pediatric Obesity: A Clinical Perspective. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819863022. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Taskforce, I.N.P.S.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Brinsden, H.; Neveux, M. World Obesity Atlas 2022; The World Obesity Federation: London, UK, 2022; p. 284. [Google Scholar]
- WHO. World Health Organization Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 28 February 2023).
- WHO. World Health Organization Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 28 February 2023).
- Hall, M.E.; Cohen, J.B.; Ard, J.D.; Egan, B.M.; Hall, J.E.; Lavie, C.J.; Ma, J.; Ndumele, C.E.; Schauer, P.R.; Shimbo, D. Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement from the American Heart Association. Hypertension 2021, 78, e38–e50. [Google Scholar] [CrossRef]
- WHO. World Health Organization Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 28 February 2023).
- Osundolire, S. The Prevalence of Overweight and Its Association with Heart Disease in the US Population. Cogent Med. 2021, 8, 1923614. [Google Scholar] [CrossRef]
- Koyama, J.; Morita, I.; Tagahara, K.; Hirai, K.-I. Cyclopentene Dialdehydes from Tabebuia impetiginosa. Phytochemistry 2000, 53, 869–872. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Taher, M.A.; Amin, E.; Fekry AbouZid, S.; Mohammed, R. Genus Tabebuia: A Comprehensive Review Journey from Past Achievements to Future Perspectives. Arab. J. Chem. 2021, 14, 103046. [Google Scholar] [CrossRef]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef]
- Perdicaro, D.J.; Rodriguez Lanzi, C.; Gambarte Tudela, J.; Miatello, R.M.; Oteiza, P.I.; Vazquez Prieto, M.A. Quercetin Attenuates Adipose Hypertrophy, in Part through Activation of Adipogenesis in Rats Fed a High-Fat Diet. J. Nutr. Biochem. 2020, 79, 108352. [Google Scholar] [CrossRef]
- Ting, Y.; Chang, W.-T.; Shiau, D.-K.; Chou, P.-H.; Wu, M.-F.; Hsu, C.-L. Antiobesity Efficacy of Quercetin-Rich Supplement on Diet-Induced Obese Rats: Effects on Body Composition, Serum Lipid Profile, and Gene Expression. J. Agric. Food Chem. 2018, 66, 70–80. [Google Scholar] [CrossRef]
- Dias, S.; Paredes, S.; Ribeiro, L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int. J. Endocrinol. 2018, 2018, 2637418. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and Nonalcoholic Fatty Liver Disease: From Pathophysiology to Therapeutics. Metabolism 2019, 92, 82–97. [Google Scholar] [CrossRef]
- Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and Potential Pharmacotherapeutics and Targets. Pharmacol. Ther. 2017, 170, 116–147. [Google Scholar] [CrossRef]
- Rodriguez-Ayala, E.; Gallegos-Cabrales, E.C.; Gonzalez-Lopez, L.; Laviada-Molina, H.A.; Salinas-Osornio, R.A.; Nava-Gonzalez, E.J.; Leal-Berumen, I.; Escudero-Lourdes, C.; Escalante-Araiza, F.; Buenfil-Rello, F.A.; et al. Towards Precision Medicine: Defining and Characterizing Adipose Tissue Dysfunction to Identify Early Immunometabolic Risk in Symptom-Free Adults from the GEMM Family Study. Adipocyte 2020, 9, 153–169. [Google Scholar] [CrossRef]
- Rakotoarivelo, V.; Lacraz, G.; Mayhue, M.; Brown, C.; Rottembourg, D.; Fradette, J.; Ilangumaran, S.; Menendez, A.; Langlois, M.-F.; Ramanathan, S. Inflammatory Cytokine Profiles in Visceral and Subcutaneous Adipose Tissues of Obese Patients Undergoing Bariatric Surgery Reveal Lack of Correlation with Obesity or Diabetes. EBioMedicine 2018, 30, 237–247. [Google Scholar] [CrossRef]
- De Leon Rodriguez, M.P.; Linseisen, J.; Peters, A.; Linkohr, B.; Heier, M.; Grallert, H.; Schöttker, B.; Trares, K.; Bhardwaj, M.; Gào, X. Novel Associations between Inflammation-Related Proteins and Adiposity: A Targeted Proteomics Approach across Four Population-Based Studies. Transl. Res. 2021, 242, 93–104. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of Quercetin as an Alternative for Obesity Treatment: You Are What You Eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and Metabolic Syndrome: A Review. Phytother. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef]
- Pagaza-Straffon, E.C.; Mezo-González, C.E.; Chavaro-Pérez, D.A.; Cornejo-Garrido, J.; Marchat, L.A.; Benítez-Cardoza, C.G.; Anaya-Reyes, M.; Ordaz-Pichardo, C. Tabebuia Rosea (Bertol.) DC. Ethanol Extract Attenuates Body Weight Gain by Activation of Molecular Mediators Associated with Browning. J. Funct. Foods 2021, 86, 104740. [Google Scholar] [CrossRef]
- Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin Ameliorates Metabolic Syndrome and Improves the Inflammatory Status in Obese Zucker Rats. Obesity 2008, 16, 2081–2087. [Google Scholar] [CrossRef]
- Gedikli, S.; Ozkanlar, S.; Gür, C.; Sengul, E.; Gelen, V. Preventive Effects of Quercetin on Liver Damages in High-Fat Diet-Induced Obesity. J. Histol. Histopathol. 2017, 4, 7. [Google Scholar] [CrossRef]
- Meli, R.; Mattace Raso, G.; Irace, C.; Simeoli, R.; di Pascale, A.; Paciello, O.; Pagano, T.B.; Calignano, A.; Colonna, A.; Santamaria, R. High Fat Diet Induces Liver Steatosis and Early Dysregulation of Iron Metabolism in Rats. PLoS ONE 2013, 8, e66570. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, M.; Qiao, J.-H.; Hyman, R.; Ruddle, D.; Laughton, C.; Lusis, A.J. Influence of the ApoA-II Gene Locus on HDL Levels and Fatty Streak Development in Mice. Arterioscler. Thromb. A J. Vasc. Biol. 1993, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-F.; Wang, W.-J.; Yin, Z.-P.; Zheng, G.-D.; Chen, J.-G.; Li, J.-E.; Chen, L.-L.; Zhang, Q.-F. Quercetin Is a Promising Pancreatic Lipase Inhibitor in Reducing Fat Absorption in Vivo. Food Biosci. 2021, 43, 101248. [Google Scholar] [CrossRef]
- Cerk, I.K.; Wechselberger, L.; Oberer, M. Adipose Triglyceride Lipase Regulation: An Overview. Curr. Protein Pept. Sci. 2018, 19, 221–233. [Google Scholar] [CrossRef]
- Gatto, M.T.; Falcocchio, S.; Grippa, E.; Mazzanti, G.; Battinelli, L.; Nicolosi, G.; Lambusta, D.; Saso, L. Antimicrobial and Anti-Lipase Activity of Quercetin and Its C2-C16 3-O-Acyl-Esters. Bioorganic Med. Chem. 2002, 10, 269–272. [Google Scholar] [CrossRef]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef]
- Zhang, J.-M.; An, J. Cytokines, Inflammation, and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Nogueira Silva Lima, M.T.; Howsam, M.; Anton, P.M.; Delayre-Orthez, C.; Tessier, F.J. Effect of Advanced Glycation End-Products and Excessive Calorie Intake on Diet-Induced Chronic Low-Grade Inflammation Biomarkers in Murine Models. Nutrients 2021, 13, 3091. [Google Scholar] [CrossRef]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef]
- Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT Signaling in Hepatocellular Carcinoma. Hepatic Oncol. 2020, 7, HEP18. [Google Scholar] [CrossRef]
- Ryan, R.; Fernandez, A.; Wong, Y.; Miles, J.; Cock, I. The Medicinal Plant Tabebuia Impetiginosa Potently Reduces Pro-Inflammatory Cytokine Responses in Primary Human Lymphocytes. Sci. Rep. 2021, 11, 5519. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, Z.; Yin, J.; Long, H.; Zheng, X. Anti-Obesity Effects of Artificial Planting Blueberry (Vaccinium ashei) Anthocyanin in High-Fat Diet-Treated Mice. Int. J. Food Sci. Nutr. 2016, 67, 257–264. [Google Scholar] [CrossRef]
- Muthian, G.; Bright, J.J. Quercetin, a Flavonoid Phytoestrogen, Ameliorates Experimental Allergic Encephalomyelitis by Blocking IL-12 Signaling through JAK-STAT Pathway in T Lymphocyte. J. Clin. Immunol. 2004, 24, 542–552. [Google Scholar] [CrossRef]
- Lim, H.; Park, H.; Kim, H.P. Effects of Flavonoids on Matrix Metalloproteinase-13 Expression of Interleukin-1β–Treated Articular Chondrocytes and Their Cellular Mechanisms: Inhibition of c-Fos/AP-1 and JAK/STAT Signaling Pathways. J. Pharmacol. Sci. 2011, 116, 221–231. [Google Scholar] [CrossRef]
- Kalaivani, A.; Uddandrao, V.V.S.; Parim, B.; Ganapathy, S.; Sushma, N.; Kancharla, C.; Rameshreddy, P.; Swapna, K.; Sasikumar, V. Reversal of High Fat Diet-Induced Obesity through Modulating Lipid Metabolic Enzymes and Inflammatory Markers Expressions in Rats. Arch. Physiol. Biochem. 2018, 124, 1–7. [Google Scholar]
- Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The Anti-Obesity Effect of Green Tea Polysaccharides, Polyphenols and Caffeine in Rats Fed with a High-Fat Diet. Food Funct. 2015, 6, 296–303. [Google Scholar] [CrossRef]
- Park, H.; Lee, C.-M.; Jung, I.D.; Lee, J.S.; Jeong, Y.; Chang, J.H.; Chun, S.-H.; Kim, M.-J.; Choi, I.-W.; Ahn, S.-C.; et al. Quercetin Regulates Th1/Th2 Balance in a Murine Model of Asthma. Int. Immunopharmacol. 2009, 9, 261–267. [Google Scholar] [CrossRef]
- Hou, D.-D.; Zhang, W.; Gao, Y.-L.; Sun, Y.; Wang, H.-X.; Qi, R.-Q.; Chen, H.-D.; Gao, X.-H. Anti-Inflammatory Effects of Quercetin in a Mouse Model of MC903-Induced Atopic Dermatitis. Int. Immunopharmacol. 2019, 74, 105676. [Google Scholar] [CrossRef]
- Katashima, C.K.; Silva, V.R.; Gomes, T.L.; Pichard, C.; Pimentel, G.D. Ursolic Acid and Mechanisms of Actions on Adipose and Muscle Tissue: A Systematic Review. Obes. Rev. 2017, 18, 700–711. [Google Scholar] [CrossRef]
- Luheshi, G.N.; Gardner, J.D.; Rushforth, D.A.; Loudon, A.S.; Rothwell, N.J. Leptin Actions on Food Intake and Body Temperature Are Mediated by IL-1. Proc. Natl. Acad. Sci. USA 1999, 96, 7047–7052. [Google Scholar] [CrossRef] [PubMed]
- Schöbitz, B.; Pezeshki, G.; Pohl, T.; Hemmann, U.; Heinrich, P.; Holsboer, F.; Reul, J. Soluble Interleukin-6 (IL-6) Receptor Augments Central Effects of IL-6. FASEB J. 1995, 9, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla, E.P.; Sanchez-Alavez, M.; Sugama, S.; Brennan, M.; Fernandez, R.; Bartfai, T.; Conti, B. Interleukin-18 Controls Energy Homeostasis by Suppressing Appetite and Feed Efficiency. Proc. Natl. Acad. Sci. USA 2007, 104, 11097–11102. [Google Scholar] [CrossRef] [PubMed]
- Fantino, M.; Wieteska, L. Evidence for a Direct Central Anorectic Effect of Tumor-Necrosis-Factor-Alpha in the Rat. Physiol. Behav. 1993, 53, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Ma, Y.; Liu, D. High-Fat Diet-Induced Adiposity, Adipose Inflammation, Hepatic Steatosis and Hyperinsulinemia in Outbred CD-1 Mice. PLoS ONE 2015, 10, e0119784. [Google Scholar] [CrossRef]
- Ballak, D.B.; van Diepen, J.A.; Moschen, A.R.; Jansen, H.J.; Hijmans, A.; Groenhof, G.-J.; Leenders, F.; Bufler, P.; Boekschoten, M.V.; Müller, M.; et al. IL-37 Protects against Obesity-Induced Inflammation and Insulin Resistance. Nat. Commun. 2014, 5, 4711. [Google Scholar] [CrossRef]
- Araki, S.; Haneda, M.; Koya, D.; Sugimoto, T.; Isshiki, K.; Chin-Kanasaki, M.; Uzu, T.; Kashiwagi, A. Predictive Impact of Elevated Serum Level of IL-18 for Early Renal Dysfunction in Type 2 Diabetes: An Observational Follow-up Study. Diabetologia 2007, 50, 867–873. [Google Scholar] [CrossRef]
- Lopez, I.P.; Milagro, F.I.; Marti, A.; Moreno-Aliaga, M.J.; Martinez, J.A.; de Miguel, C. High-Fat Feeding Period Affects Gene Expression in Rat White Adipose Tissue. Mol. Cell. Biochem. 2005, 275, 109–115. [Google Scholar] [CrossRef]
- Eleawa, S.; Sakr, H.F. Effect of Exercise and Orlistat Therapy in Rat Model of Obesity Induced with High Fat Diet. Med. J. Cairo Univ. 2013, 81, 59–67. [Google Scholar]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Rameshreddy, P.; Uddandrao, V.V.S.; Brahmanaidu, P.; Vadivukkarasi, S.; Ravindarnaik, R.; Suresh, P.; Swapna, K.; Kalaivani, A.; Parvathi, P.; Tamilmani, P.; et al. Obesity-Alleviating Potential of Asiatic Acid and Its Effects on ACC1, UCP2, and CPT1 MRNA Expression in High Fat Diet-Induced Obese Sprague–Dawley Rats. Mol. Cell. Biochem. 2018, 442, 143–154. [Google Scholar] [CrossRef]
- Sung, Y.-Y.; Kim, D.-S.; Kim, S.-H.; Kim, H.K. Aqueous and Ethanolic Extracts of Welsh Onion, Allium Fistulosum, Attenuate High-Fat Diet-Induced Obesity. BMC Complement. Altern. Med. 2018, 18, 105. [Google Scholar] [CrossRef]
- Lee, C.W.; Seo, J.Y.; Lee, J.; Choi, J.W.; Cho, S.; Bae, J.Y.; Sohng, J.K.; Kim, S.O.; Kim, J.; Park, Y.I. 3-O-Glucosylation of Quercetin Enhances Inhibitory Effects on the Adipocyte Differentiation and Lipogenesis. Biomed. Pharmacother. 2017, 95, 589–598. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Yang, M.-Y.; Chen, S.-C.; Wang, C.-J. Mulberry Leaf Polyphenol Extract Improves Obesity by Inducing Adipocyte Apoptosis and Inhibiting Preadipocyte Differentiation and Hepatic Lipogenesis. J. Funct. Foods 2016, 21, 249–262. [Google Scholar] [CrossRef]
- Choi, W.H.; Um, M.Y.; Ahn, J.; Jung, C.H.; Park, M.K.; Ha, T.Y. Ethanolic Extract of Taheebo Attenuates Increase in Body Weight and Fatty Liver in Mice Fed a High-Fat Diet. Molecules 2014, 19, 16013–16023. [Google Scholar] [CrossRef]
- Lee, M.R.; Kim, J.E.; Choi, J.Y.; Park, J.J.; Kim, H.R.; Song, B.R.; Choi, Y.W.; Kim, K.M.; Song, H.; Hwang, D.Y. Anti-obesity Effect in High-fat-diet-induced Obese C57BL/6 Mice: Study of a Novel Extract from Mulberry (Morus alba) Leaves Fermented with Cordyceps Militaris. Exp. Ther. Med. 2019, 17, 2185–2193. [Google Scholar] [CrossRef]
- Karczewska-Kupczewska, M.; Nikołajuk, A.; Majewski, R.; Filarski, R.; Stefanowicz, M.; Matulewicz, N.; Strączkowski, M. Changes in Adipose Tissue Lipolysis Gene Expression and Insulin Sensitivity after Weight Loss. Endocr. Connect. 2020, 9, 90–100. [Google Scholar] [CrossRef]
- Iglesias, J.; Lamontagne, J.; Erb, H.; Gezzar, S.; Zhao, S.; Joly, E.; Truong, V.L.; Skorey, K.; Crane, S.; Madiraju, S.R.M. Simplified Assays of Lipolysis Enzymes for Drug Discovery and Specificity Assessment of Known Inhibitors. J. Lipid Res. 2016, 57, 131–141. [Google Scholar] [CrossRef]
- Sakai, K.; Igarashi, M.; Yamamuro, D.; Ohshiro, T.; Nagashima, S.; Takahashi, M.; Enkhtuvshin, B.; Sekiya, M.; Okazaki, H.; Osuga, J. Critical Role of Neutral Cholesteryl Ester Hydrolase 1 in Cholesteryl Ester Hydrolysis in Murine Macrophages [S]. J. Lipid Res. 2014, 55, 2033–2040. [Google Scholar] [CrossRef]
- Clifford, G.M.; Londos, C.; Kraemer, F.B.; Vernon, R.G.; Yeaman, S.J. Translocation of Hormone-Sensitive Lipase and Perilipin upon Lipolytic Stimulation of Rat Adipocytes*. J. Biol. Chem. 2000, 275, 5011–5015. [Google Scholar] [CrossRef]
- Yasser, B.; Ala, I.; Mohammad, M.; Mohammad, H.; Khalid, T.; Hatim, A.; Ihab, A.; Bashar, A.-K. Inhibition of Hormone Sensitive Lipase and Pancreatic Lipase by Rosmarinus Officinalis Extract and Selected Phenolic Constituents. J. Med. Plants Res. 2010, 4, 2235–2242. [Google Scholar]
- Jin, B.-R.; Kim, H.-J.; Sim, S.-A.; Lee, M.; An, H.-J. Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-ΚB-Mediated Signaling. Cells 2021, 10, 2060. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Walsh, K. Adiponectin as an Anti-Inflammatory Factor. Clin. Chim. Acta 2007, 380, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kwak, H.-B. Effects of Interventions on Adiponectin and Adiponectin Receptors. J. Exerc. Rehabil. 2014, 10, 60. [Google Scholar] [CrossRef]
- Jiang, C.; Kim, J.-H.; Li, F.; Qu, A.; Gavrilova, O.; Shah, Y.M.; Gonzalez, F.J. Hypoxia-Inducible Factor 1α Regulates a SOCS3-STAT3-Adiponectin Signal Transduction Pathway in Adipocytes. J. Biol. Chem. 2013, 288, 3844–3857. [Google Scholar] [CrossRef]
- Hand, L.E.; Usan, P.; Cooper, G.J.S.; Xu, L.Y.; Ammori, B.; Cunningham, P.S.; Aghamohammadzadeh, R.; Soran, H.; Greenstein, A.; Loudon, A.S.I.; et al. Adiponectin Induces A20 Expression in Adipose Tissue to Confer Metabolic Benefit. Diabetes 2015, 64, 128. [Google Scholar] [CrossRef]
- Emanuelli, B.; Peraldi, P.; Filloux, C.; Chavey, C.; Freidinger, K.; Hilton, D.J.; Hotamisligil, G.S.; van Obberghen, E. SOCS-3 Inhibits Insulin Signaling and Is up-Regulated in Response to Tumor Necrosis Factor-α in the Adipose Tissue of Obese Mice. J. Biol. Chem. 2001, 276, 47944–47949. [Google Scholar] [CrossRef]
- Shi, H.; Tzameli, I.; Bjørbæk, C.; Flier, J.S. Suppressor of Cytokine Signaling 3 Is a Physiological Regulator of Adipocyte Insulin Signaling. J. Biol. Chem. 2004, 279, 34733–34740. [Google Scholar] [CrossRef]
- Bjørbæk, C.; Elmquist, J.K.; Frantz, J.D.; Shoelson, S.E.; Flier, J.S. Identification of SOCS-3 as a Potential Mediator of Central Leptin Resistance. Mol. Cell 1998, 1, 619–625. [Google Scholar] [CrossRef]
- Cho, K.; Ushiki, T.; Ishiguro, H.; Tamura, S.; Araki, M.; Suwabe, T.; Katagiri, T.; Watanabe, M.; Fujimoto, Y.; Ohashi, R.; et al. Altered Microbiota by a High-Fat Diet Accelerates Lethal Myeloid Hematopoiesis Associated with Systemic SOCS3 Deficiency. iScience 2021, 24, 103117. [Google Scholar] [CrossRef]
- Croker, B.A.; Kiu, H.; Nicholson, S.E. SOCS Regulation of the JAK/STAT Signalling Pathway. In Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 19, pp. 414–422. [Google Scholar]
- Sikalidis, A.K.; Maykish, A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines 2020, 8, 8. [Google Scholar] [CrossRef]
- Grasa-López, A.; Miliar-García, Á.; Quevedo-Corona, L.; Paniagua-Castro, N.; Escalona-Cardoso, G.; Reyes-Maldonado, E.; Jaramillo-Flores, M.-E. Undaria Pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity. Mar. Drugs 2016, 14, 148. [Google Scholar] [CrossRef]
SD-Sn | HF-Ob | HF + Orl | HF + F | HF + Tr | HF + Q | |
---|---|---|---|---|---|---|
Total Cholesterol (mg/dL) | 53.2 ± 2.7 a | 77.0 ± 4.3 b | 86.3 ± 3.8 b | 84.4 ± 3.6 b | 81.2 ± 2.0 b | 82.0 ± 3.1 b |
HDL (mg/dL) | 17.4 ± 0.7 a | 15.8 ± 0.7 a | 26.8 ± 1.5 b | 24.6 ± 2.4 b | 16.8 ± 0.7 a | 27.0 ± 0.9 b |
LDL (mg/dL) | 24.5 ± 3.4 ab | 30.6 ± 3.8 c | 26.0 ± 3.0 bc | 18.2 ± 1.7 a | 35.7 ± 4.8 c | 19.9 ± 2.5 a |
VLDL (mg/dL) | 15.5 ± 1.3 a | 30.7 ± 2.0 b | 32.3 ± 2.5 b | 34.4 ± 1.6 b | 33.4 ± 4.4 b | 35.3 ± 1.8 b |
Gene | Forward Primer Sequence | Reverse Primer Sequence |
---|---|---|
Il6 | CCTGGAGTTTGTGAAGAACAACT | GGAAGTTGGGGTAGGAAGGA |
Il1b | TCAAGCAGAGCACAGACCTG | ACTGCCCATTCTCGACAAGG |
Il18 | TCGAAGCTTCCAAATCACTTC | TGAAGTTGACACAAGAGCCTTC |
Tnf | TGAACTTCGGGGTGATCG | GGGCTTGTCACTCGAGTTTT |
Lep | GGTGGCTGGTTTGTTTCTGT | TATGTGGCTGCAGAGGTGAG |
Il4 | TCCTTACGGCAACAAGGAAC | GTGAGTTCAGACCGCTGACA |
Adipoq | TGGTCACAATGGGATACCG | CCCTTAGGACCAAGAACACCT |
Socs1 | GTCGGAGGGAGTGGGTGT | CGAGAGGCGGGATAAGGT |
Socs3 | CGGAACCTTCCTTTGAGGT | TGTAGTAAGCTCTCTTGGGGGTA |
Stat3 | CCTTGGATTGAGAGCCAAGAT | ACCAGAGTGGCGTGTGACT |
Pparg | GGGGGTGATATGTTTGAACTTG | CAGGAAAGACAACAGACAAATCA |
Hif1a | AAGCACTAGACAAAGCTCACCTG | TTGACCATATCGCTGTCCAC |
Nfkb1 | TCATCAACATGAGAAACGATCTG | CTCAGCAAGTCCTCCACCA |
Lipe | TGAGAATGCCGAGGCTGT | AATTACCACATGGGAAGAAAGG |
Β-actin | CTAAGGCCAACCGTGAAAAG | TACATGGCTGGGGTGTTGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios-Nolasco, A.; Domínguez-López, A.; Miliar-García, A.; Cornejo-Garrido, J.; Jaramillo-Flores, M.E. Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules 2023, 28, 3801. https://doi.org/10.3390/molecules28093801
Barrios-Nolasco A, Domínguez-López A, Miliar-García A, Cornejo-Garrido J, Jaramillo-Flores ME. Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules. 2023; 28(9):3801. https://doi.org/10.3390/molecules28093801
Chicago/Turabian StyleBarrios-Nolasco, Alejandro, Aarón Domínguez-López, Angel Miliar-García, Jorge Cornejo-Garrido, and María Eugenia Jaramillo-Flores. 2023. "Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity" Molecules 28, no. 9: 3801. https://doi.org/10.3390/molecules28093801
APA StyleBarrios-Nolasco, A., Domínguez-López, A., Miliar-García, A., Cornejo-Garrido, J., & Jaramillo-Flores, M. E. (2023). Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules, 28(9), 3801. https://doi.org/10.3390/molecules28093801