Bioactive Compounds and Sensory Analysis of Freeze-Dried Prickly Pear Fruits from an Inter-Andean Valley in Peru
Abstract
:1. Introduction
2. Results and Discussions
2.1. Determination of Physicochemical Parameters
2.2. Color
2.3. Bioactive Compounds
2.4. FTIR Analysis
2.5. Mineral Content
2.6. Sensory Analysis
2.7. PCA Study
3. Materials and Methods
3.1. Raw Materials
3.2. Freeze-Drying
3.3. Determination of Physicochemical Parameters
3.4. Water Activity (aw)
3.5. Fruit Color
- If IC* −40 to −20, colors range from blue-violet to deep green.
- If IC* −20 to −2, colors range from deep green to yellowish-green.
- If IC* −2 to +2, colors are greenish-yellow.
- If IC* +2 to +20, colors range from pale yellow to deep orange.
- If IC* +20 to +40, colors range from deep orange to deep red.
3.6. Total Polyphenol Content (TPC)
3.7. Antioxidant Capacity
3.8. Vitamin C
3.9. IR Analysis
3.10. Mineral Determination
3.11. Sensory Analysis
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Arba, M. The potential of cactus pear (Opuntia ficus-indica (L.) Mill.) as food and forage crop. In Emerging Research in Alternative Crops; Hirich, A., Choukr-Allah, R., Ragab, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 335–357. [Google Scholar]
- El-Samahy, S.K.; Youssef, K.M.; Moussa-Ayoub, T.E. Producing ice cream with concentrated cactus pear pulp: A preliminary study. J. Prof. Assoc. Cactus Dev. 2009, 11, 1–12. [Google Scholar]
- Albergamo, A.; Bartolomeo, G.; Messina, L.; Rando, R.; Di Bella, G. Traceability of Opuntia spp. In Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Ramadan, M.F., Ayoub, T.E.M., Rohn, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 457–482. [Google Scholar]
- Mouas, N.T.; Kabouche, Z.; Bellel, N.; Chertout, L.K. Opuntia ficus-indica a Mediterranean diet product. In Proceedings of the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, Online, 15–31 March 2021; Volume 68. [Google Scholar]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., cv. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Identification and quantification of flavonol aglycons in cactus pear (Opuntia ficus indica) fruit using a commercial pectinase and cellulase preparation. Food Chem. 2011, 124, 1177–1184. [Google Scholar] [CrossRef]
- Albergamo, A.; Potortí, A.G.; Di Bella, G.; Amor, N.B.; Lo Vecchio, G.; Nava, V.; Rando, R.; Ben Mansour, H.; Lo Turco, V. Chemical characterization of different products fromthe Tunisian Opuntia ficus-indica (L.) Mill. Foods 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Chbani, M.; Matthäus, B.; Charrouf, Z.; El Monfalouti, H.; Kartah, B.; Gharby, S.; Willenberg, I. Characterization of phenolic compounds extracted from cold pressed cactus (Opuntia ficus-indica L.) seed oil and the effect of roasting on their composition. Foods 2020, 9, 1098. [Google Scholar] [CrossRef]
- Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 2015, 187, 174–181. [Google Scholar] [CrossRef]
- Valdez-Cepeda, R.D.; Blanco-Macías, F.; Magallanes-Quintanar, R.; Vázquez-Alvarado, R.; de Jesús Méndez-Gallegos, S. Fruit weight and number of fruits per cladode depend on fruiting cladode fresh and dry weight in Opuntia ficus-indica (L.) Miller variety ‘Rojo Pelón’. Sci. Hortic. 2013, 161, 165–169. [Google Scholar] [CrossRef]
- De Wit, M.; Du Toit, A.; Osthoff, G.; Hugo, A. Antioxidant content, capacity and retention in fresh and processed cactus pear (Opuntia ficus-indica and O. robusta) fruit peels from different fruit-colored cultivars. Front. Sustain. Food Syst. 2020, 4, 133. [Google Scholar] [CrossRef]
- Patel, S. Reviewing the prospects of Opuntia pears as low cost functional foods. Rev. Environ. Sci. Biotechnol. 2013, 12, 223–234. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; Youssef, K.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Flavonol profile of cactus fruits (Opuntia ficus-indica) enriched cereal-based extrudates: Authenticity and impact of extrusion. Food Res. Int. 2015, 78, 442–447. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; Abd El-Hady, E.S.A.A.; Omran, H.T.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Food Res. Int. 2014, 64, 864–872. [Google Scholar] [CrossRef]
- Zeghad, N.; Ahmed, E.; Belkhiri, A.; Vander, Y.; Demeyer, K. Antioxidant activity of Vitis vinifera, Punica granatum, Citrus aurantium and Opuntia ficus indica fruits cultivated in Algeria. Heliyon 2019, 5, e01575. [Google Scholar] [CrossRef]
- Arrizon, J.; Calderón, C.; Sandoval, G. Effect of different fermentation onditions on the kinetic parameters and production of volatile compounds during the elaboration of a prickly pear distilled beverage. J. Ind. Microbiol. Biotechnol. 2006, 33, 921–928. [Google Scholar] [CrossRef]
- Patil, K.V.; Dagadkhair, A.C. Physicochemical characteristics and antioxidant potential of Opuntia fruit: A review. Phar. Innov. 2019, 8, 376–380. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutri. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Herbach, K.M.; Mosshamer, M.R.; Carle, R.; Sellapan, S.; Akoh, C.C. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agri. Food Chem. 2005, 53, 442–452. [Google Scholar] [CrossRef]
- Cerezal, P.; Duarte, G. Use of skin in the elaboration of concentrated products of cactus pear (Opuntia ficus-indica (L.) Miller). J. Prof. Ass. Cactus Dev. 2005, 7, 61–83. [Google Scholar]
- Ishurd, O.; Zgheel, F.; Elghazoun, M.; Elmabruk, M.; Kermagi, A.; Kennedy, J.F.; Knill, C.J. A novel (1→4)-α-d-glucan isolated from the fruits of Opuntia ficus indica (L.) Miller. Carbohydr. Polym. 2010, 82, 848–853. [Google Scholar] [CrossRef]
- Galati, E.; Mondello, M.; Giuffrida, D.; Dugo, G.; Miceli, N.; Pergolizzi, S.; Taviano, M.F. Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) mill. Fruit juice: Antioxidant and antiulcerogenic activity. J. Agric. Food Chem. 2003, 51, 4903–4908. [Google Scholar] [CrossRef]
- Bakar, B.; Çakmak, M.; Ibrahim, M.S.; Özer, D.; Saydam, S.; Karatas, F. Investigation of amounts of vitamins, lycopene, and elements in the fruits of Opuntia ficus-indica subjected to different pretreatments. Biol. Trace Elem. Res. 2020, 198, 315–323. [Google Scholar] [CrossRef]
- Touil, A.; Chemkhi, S.; Zagrouba, F. Moisture diffusivity and shrinkage of fruit and cladode of Opuntia ficus-indica during infrared drying. J. Food Process. 2014, 2014, 175402. [Google Scholar] [CrossRef]
- Ahmed, N.; Singh, J.; Chauhan, H.; Anisa-Anjum, P.G.; Kour, H. Different drying methods: Their applications and recent advances. Int. J. Food Nutr. Saf. 2013, 4, 34–42. [Google Scholar]
- Barba, F.J.; Garcia, C.; Fessard, A.; Munekata, P.E.; Lorenzo, J.M.; Aboudia, A.; Abdelouahab, O.; Remize, F. Opuntia ficus indica edible parts: A food and nutritional security perspective. Food Rev. Int. 2022, 38, 930–952. [Google Scholar] [CrossRef]
- Gouws, C.A.; D’Cunha, N.M.; Georgousopoulou, E.N.; Mellor, D.D.; Naumovski, N. The effect of different drying techniques on phytochemical content and in vitro antioxidant properties of Australian-grown prickly pears (Opuntia ficus indica). J. Food Process. Preserv. 2019, 43, e13900. [Google Scholar] [CrossRef]
- Hung, P.V.; Duy, T.L. Effects of drying methods on bioactive compounds of vegetables and correlation between bioactive compounds and their antioxidants. Int. Food Res. J. 2012, 19, 327–332. [Google Scholar]
- Silva, M.A.; Albuquerque, T.G.; Pereira, P.; Ramalho, R.; Vicente, F.; Oliveira, M.B.P.P.; Costa, H.S. Opuntia ficus-indica (L.) Mill.: A multi-benefit potential to be exploited. Molecules 2021, 26, 951. [Google Scholar] [CrossRef]
- Cenobio-Galindo, A.D.J.; Ocampo-López, J.; Reyes-Munguía, A.; Carrillo-Inungaray, M.L.; Cawood, M.; Medina-Pérez, G.; Campos-Montiel, R.G. Influence of bioactive compounds incorporated in a nanoemulsion as coating on avocado fruits (Persea americana) during postharvest storage: Antioxidant activity, physicochemical changes and structural evaluation. Antioxidants 2019, 8, 500. [Google Scholar] [CrossRef]
- Botía-Niño, Y.; Almanza-Merchán, P.; Balaguera-López, H. Efecto de la temperatura sobre la maduración complementaria en curuba (Passiflora mollissima Bailey). Rev. Actual. Divulg. Científica 2008, 11, 187–196. [Google Scholar] [CrossRef]
- Kader, A. Increasing food availability by reducing potharvest losses of fresh produce. Int. Postharvest Symp. 2004, 682, 2169–2176. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Hurtado, N.; Mosquera, N.; Heredia, F.J. Potential use of new Colombian sources of betalains. Color stability of ulluco (Ulluco tuberosus) extracts under different pH and thermal conditions. Food Res. Int. 2014, 64, 465–471. [Google Scholar] [CrossRef]
- Bodart, M.; de Peñaranda, R.; Deneyer, A.; Flamant, G. Photometry and colorimetry characterization of materials in daylighting evaluation tools. Build. Environ. 2008, 43, 2046–2058. [Google Scholar] [CrossRef]
- Ali, H.; Asghari, M.; Sharifi, A. Effect of carrier agents on physicochemical properties of foam-mat freeze-dried Echium amoenum powder. Innov. Food Technol. 2022, 9, 149–165. [Google Scholar]
- Franco, T.S.; Perussello, C.A.; Ellendersen, L.N.; Masson, M.L. Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWT Food Sci. Technol. 2016, 66, 503–513. [Google Scholar] [CrossRef]
- Seerangurayar, T.; Manickavasagan, A.; Al-Ismaili, A.M.; Al-Mulla, Y.A. Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Dry. Technol. 2018, 36, 1292–1303. [Google Scholar] [CrossRef]
- Domin, M.; Dziki, D.; Kłapsia, S.; Blicharz-Kania, A.; Biernacka, B.; Krzykowski, A. Influence of the freeze-drying conditions on the physicochemical properties and grinding characteristics of kiwi. Int. J. Food Eng. 2020, 16, 20180315. [Google Scholar] [CrossRef]
- Smeriglio, A.; Bonasera, S.; Germanò, M.P.; D’Angelo, V.; Barreca, D.; Denaro, M.; Monforte, M.T.; Galati, E.M.; Trombetta, D. Opuntia ficus-indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti-angiogenic properties. Phytotherapy Res. 2019, 33, 1526–1537. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: A comparative study. J. Food Compost. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Henry, A.D.; Noble, K.; Michael, S.; Raphael, J.; Akuffo, O.F.W.; Philomena, E.; Francis, A.; Kwabena, O.K. Investigation of the physicochemical properties of freeze-dried fruit pulp of Telfairia occidentalis and its potential use as suspending agent. Heliyon 2022, 8, e09997. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Camacho, M.D.M.; Martínez-Navarrete, N. The impact of freeze-drying conditions on the physico-chemical properties and bioactive compounds of a freeze-dried orange puree. Foods 2019, 9, 32. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Thangavel, K.; Dev, S.; Delfiya, D.A.; Nambi, E.; Orsat, V.; Raghavan, G. Physicochemical characteristics of date powder produced in a pilot-scale spray dryer. Dry. Technol. 2015, 33, 1114–1123. [Google Scholar] [CrossRef]
- Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). J. Funct. Foods. 2014, 7, 269–277. [Google Scholar] [CrossRef]
- Liaotrakoon, W.; De Clercq, N.; Lewille, B.; Dewettinck, K. Physicochemical properties, glass transition state diagram and colour stability of pulp and peel of two dragon fruit varieties (Hylocereus spp.) as affected by freeze-drying. Int. Food Res. J. 2012, 19, 743–750. [Google Scholar]
- Różyło, R. Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends Food Sci. Technol. 2020, 102, 39–50. [Google Scholar] [CrossRef]
- Valentina, V.; Pratiwi, R.A.; Hsiao, P.; Tseng, H.; Hsieh, J.; Chen, C.C. Sensorial characterization of foods before and after freeze-drying. Austin Food Sci. 2016, 1, 1027. [Google Scholar]
- Serna-Cock, L.; Vargas-Muñoz, D.P.; Aponte, A.A. Structural, physical, functional and nutraceutical changes of freeze-dried fruit. Afr. J. Biotechnol. 2015, 14, 442–450. [Google Scholar]
- Guiné, R.P.; Barroca, M.J.J.F. Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod. Process. 2012, 90, 58–63. [Google Scholar] [CrossRef]
- Ceballos, A.M.; Giraldo, G.I.; Orrego, C.E. Effect of freezing rate on quality parameters of freeze-dried soursop fruit pulp. J. Food Eng. 2012, 111, 360–365. [Google Scholar] [CrossRef]
- Reyes, A.; Bubnovich, V.; Bustos, R.; Vásquez, M.; Vega, R.; Scheuermann, E. Comparative study of different process conditions of freeze drying of ‘Murtilla’ berry. Dry. Technol. 2010, 28, 1416–1425. [Google Scholar] [CrossRef]
- Reyes, A.; Evseev, A.; Mahn, A.; Bubnovich, V.; Bustos, R.; Scheuermann, E. Effect of operating conditions in freeze-drying on the nutritional properties of blueberries. Int. J. Food Sci. Nutr. 2011, 62, 303–306. [Google Scholar] [CrossRef]
- Divya, P.J.; Jamuna, P.; Jyothi, L.A. Antioxidant properties of fresh and processed Citrus aurantium fruit. Cogent Food Sci. Technol. 2016, 2, 1184119. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; García-Martínez, E.; Martínez-Navarrete, N. Protective capacity of gum Arabic, maltodextrin, different starches, and fibers on the bioactive compounds and antioxidant activity of an orange puree (Citrus sinensis (L.) Osbeck) against freeze-drying and in vitro digestion. Food Chem. 2021, 357, 129724. [Google Scholar] [CrossRef]
- Gomes, W.F.; França, F.R.M.; Denadai, M.; Andrade, J.K.S.; da Silva Oliveira, E.M.; de Brito, E.S.; Rodrigues, S.; Narain, N. Technology. Effect of freeze-and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. J. Food Sci. Technol. 2018, 55, 2095–2102. [Google Scholar] [CrossRef]
- Faccim de Braum, T.; Zadra, M.; Piana, M.; Boligon, A.A.; Frohlich, J.K.; Borba de Freitas, R.; Stefanello, S.T.; Frobrig Froeder, A.L.; Belke, B.V.; Teixeira Nune, L.; et al. HPLC analysis of phenolics compounds and antioxidant capacity of leaves of Vitex megapotamica (Sprengel) Moldenke. Molecules 2013, 18, 8342–8357. [Google Scholar] [CrossRef]
- Bhouri, A.; Harzallah, A.; Amri, Z.; Dhaou Aguir, S.; Hammami, M. Phytochemical content, antioxidant properties, and phenolic profile of Tunisian raisin varieties (Vitis vinifera L). Int. J. Food Prop. 2016, 19, e578–e590. [Google Scholar] [CrossRef]
- Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr. Polym. 2018, 206, 565–572. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. Microencapsulation of Morinda citrifolia L. extract by spray-drying. Chem. Eng. Res. Des. 2012, 90, 622–632. [Google Scholar] [CrossRef]
- Sousa, C.M.d.M.; Silva, H.R.; Ayres, M.C.C.; Costa, C.L.S.d.; Araújo, D.S.; Cavalcante, L.C.D.; Barros, E.D.S.; Araújo, P.B.d.M.; Brandão, M.S.; Chaves, M.H. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quím. Nova 2007, 30, 351–355. [Google Scholar] [CrossRef]
- Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Martín-Ramos, P.; Ruíz Potosme, N.M.; Fernández Coppel, I.A.; Martín Gil, J. Potential of ATR-FTIR Spectroscopy for the Classification of Natural Resins; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Cardoso, E.O.; Conti, B.J.; Santiago, K.B.; Conte, F.L.; Oliveira, L.P.G.; Hernandes, R.T.; Golim, M.d.A.; Sforcin, J.M. Phenolic compounds alone or in combination may be involved in propolis effects on human monocytes. J. Pharm. Pharmacol. 2017, 69, 99–108. [Google Scholar] [CrossRef]
- Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nóbrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta B Spectrosc. 2005, 60, 749–753. [Google Scholar] [CrossRef]
- Kivrak, S.; Kivrak, I.; Karababa, E. Analytical evaluation of phenolic compounds and minerals of Opuntia robusta J.C. Wendl. and Opuntia ficus-barbarica A. Berger. Int. J. Food Prop. 2018, 21, 229–241. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Aregahegn, A.; Chandravanshi, B.S.; Atlabachew, M.; Ababa, A. Mineral contents of fruits of cactus pear (Opuntia ficus indica) grown in Ethiopia. Acta Hortic. 2013, 979, 117–126. [Google Scholar] [CrossRef]
- Thomson, C.D. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur. J. Clin. Nutr. 2004, 58, 391–402. [Google Scholar] [CrossRef]
- Goldhaber, S.B. Trace element risk assessment: Essentiality vs. toxicity. Regul. Toxicol. Pharmacol. 2003, 38, 232–242. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Stefanidou, M.E. Zinc and human health: An update. Arch Toxicol. 2012, 86, 521–534. [Google Scholar] [CrossRef]
- Chiteva, R.; Wairagu, N. Chemical and nutritional content of Opuntia ficus-indica (L.). Afr. J. Biotechnol. 2013, 12, 3309–3312. [Google Scholar]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in health and disease. Met. Ions. Life Sci. 2013, 13, 199–227. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Salim, N.; Abdelwaheb, C.; Rabah, C.; Ahcene, B. Chemical composition of Opuntia ficus-indica (L.) fruit. Afr. J. Biotechnol. 2009, 8, 1623–1624. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2016; ISBN 0935584870. [Google Scholar]
- Choque-Quispe, D.; Ramos-Pacheco, B.S.; Solano-Reynoso, A.M.; Ligarda-Samanez, C.A.; Choque-Quispe, Y.; Peralta-Guevara, D.E.; Quispe-Quispe, Y. Drying and color in punamuña leaves (Satureja boliviana). DYNA 2021, 88, 31–37. [Google Scholar] [CrossRef]
- Hadimani, L.; Mittal, N. Development of a computer vision system to estimate the colour indices of Kinnow mandarins. J. Food Sci. Technol. 2019, 56, 2305–2311. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Moscoso-Moscoso, E.; Huamán-Carrión, M.L.; Ramos-Pacheco, B.S.; Peralta-Guevara, D.E.; De la Cruz, G.; Martínez-Huamán, E.L.; Arévalo-Quijano, J.C.; Muñoz-Saenz, J.C. Obtaining and characterizing andean multi-floral propolis nanoencapsulates in polymeric matrices. Foods 2022, 11, 3153. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; MojoQuisani, A.; Ligarda-Samanez, C.A.; Calla-Florez, M.; Ramos-Pacheco, B.S.; Zamalloa-Puma, L.M.; Peralta-Guevara, D.E.; Solano-Reynoso, A.M.; Choque-Quispe, Y.; Zamalloa-Puma, A.; et al. Preliminary characterization of a spray-dried hydrocolloid from a high Andean algae (Nostoc sphaericum). Foods 2022, 11, 1640. [Google Scholar] [CrossRef]
Morada | Anaranjada | Blanca | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
±SD | CV | * | ±SD | CV | * | ±SD | CV | * | ||||
Fresh | ||||||||||||
Moisture | 82.72 | 0.60 | 0.72 | a | 82.06 | 0.75 | 0.91 | a | 78.47 | 0.62 | 0.79 | b |
pH | 5.98 | 0.60 | 10.01 | a | 6.21 | 0.75 | 12.05 | b | 5.91 | 0.62 | 10.48 | c |
Acidity (%) | 0.06 | 0.01 | 9.12 | a | 0.06 | 0.01 | 9.12 | a | 0.06 | 0.00 | 0.00 | a |
Soluble solids (°Brix) | 10.03 | 0.05 | 0.46 | a | 14.16 | 0.17 | 1.23 | b | 13.02 | 0.03 | 0.22 | c |
Maturity index | 159.11 | 13.09 | 8.22 | a | 224.60 | 16.85 | 7.50 | b | 216.94 | 0.48 | 0.22 | b |
aw | 0.927 | 0.002 | 0.165 | a | 0.931 | 0.001 | 0.107 | b | 0.915 | 0.001 | 0.109 | c |
Freeze-dried | ||||||||||||
Moisture | 5.67 | 0.02 | 0.35 | a | 5.74 | 0.05 | 0.89 | a | 5.17 | 0.03 | 0.55 | b |
pH | 6.04 | 0.02 | 0.33 | a | 6.23 | 0.05 | 0.82 | b | 6.10 | 0.03 | 0.46 | c |
Acidity (%) | 0.07 | 0.01 | 8.66 | a | 0.09 | 0.01 | 11.11 | b | 0.08 | 0.01 | 6.93 | a, b |
Soluble solids (°Brix) | 9.80 | 0.17 | 1.70 | a | 11.55 | 0.16 | 1.39 | b | 11.58 | 0.24 | 2.04 | b |
Maturity index | 147.63 | 10.87 | 7.36 | a | 129.28 | 12.79 | 9.89 | a | 139.31 | 6.64 | 4.77 | a |
aw | 0.324 | 0.001 | 0.309 | a | 0.443 | 0.000 | 0.000 | b | 0.416 | 0.002 | 0.556 | c |
Ecotype | L* | a* | b* | IC* | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
±SD | CV | ** | ±SD | CV | ** | ±SD | CV | ** | ±SD | CV | ** | |||||||
Morada | Fresh | 42.17 | 0.40 | 0.96 | <0.05 | 67.67 | 0.57 | 0.84 | <0.05 | 20.73 | 0.40 | 1.95 | <0.05 | 77.42 | 1.50 | 1.94 | <0.05 | |
Freeze dried | 28.77 | 0.31 | 1.06 | 51.47 | 0.38 | 0.74 | 13.87 | 0.21 | 1.50 | 129.04 | 1.24 | 0.96 | ||||||
Anaranjada | Fresh | 75.87 | 0.46 | 0.60 | <0.05 | 19.93 | 0.20 | 1.00 | <0.05 | 78.07 | 0.25 | 0.32 | <0.05 | 7.84 | 0.14 | 1.74 | <0.05 | |
Freeze dried | 60.60 | 0.59 | 0.97 | 32.10 | 0.32 | 1.00 | 67.53 | 0.25 | 0.37 | 3.37 | 0.05 | 1.41 | ||||||
Blanca | Fresh | 93.57 | 0.32 | 0.34 | <0.05 | -29.27 | 0.50 | 1.72 | <0.05 | 25.10 | 0.20 | 0.80 | <0.05 | -12.46 | 0.16 | 1.27 | <0.05 | |
Freeze dried | 86.73 | 0.42 | 0.48 | -38.07 | 0.45 | 1.18 | 27.33 | 0.25 | 0.92 | -16.06 | 0.25 | 1.58 |
Ecotype | TPC (mg EAG/100 g d.b.) | AA (µmol TE/100 g d.b.) | Vitamin C (mg /100 g d.b.) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
±SD | CV | * | ±SD | CV | * | ±SD | CV | * | |||||
Morada | Fresh | 1221.33 | 1.26 | 0.10 | >0.05 | 3.04 | 0.01 | 0.20 | <0.05 | 27.23 | 0.64 | 2.36 | <0.05 |
Freeze-dried | 1247.91 | 17.58 | 1.41 | 3.41 | 0.08 | 2.30 | 30.14 | 0.59 | 1.97 | ||||
Anaranjada | Fresh | 1163.29 | 0.61 | 0.05 | <0.05 | 3.25 | 0.10 | 3.12 | <0.05 | 39.29 | 0.67 | 1.72 | <0.05 |
Freeze-dried | 1323.67 | 13.19 | 1.00 | 1.62 | 0.01 | 0.48 | 47.01 | 0.45 | 0.96 | ||||
Blanca | Fresh | 1026.74 | 4.38 | 0.43 | <0.05 | 1.12 | 0.02 | 2.07 | >0.05 | 50.01 | 0.82 | 1.64 | <0.05 |
Freeze-dried | 1320.58 | 17.30 | 1.31 | 1.11 | 0.07 | 6.11 | 52.33 | 1.00 | 1.90 |
Mineral (mg/100 g d.b.) | Wavelength, nm | Morada | Anaranjada | Blanca | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
±SD | CV | * | ±SD | CV | * | ±SD | CV | * | |||||
Al | 396.15 | 0.57 | 0.05 | 9.12 | a | 0.19 | 0.05 | 24.12 | b | 0.30 | 0.03 | 8.30 | c |
Ba | 455.40 | 0.44 | 0.01 | 1.14 | a | ND | 0.36 | 0.01 | 1.40 | b | |||
Ca | 183.80 | 119.13 | 0.06 | 0.05 | a | 95.13 | 1.00 | 1.05 | b | 102.80 | 0.61 | 0.59 | c |
Cu | 324.75 | 0.10 | 0.02 | 20.15 | a | 0.08 | 0.02 | 27.15 | a | 0.08 | 0.01 | 12.50 | a |
Fe | 259.94 | 3.00 | 0.01 | 0.19 | a | 4.39 | 0.02 | 0.47 | b | 3.48 | 0.04 | 1.16 | c |
K | 766.49 | 409.04 | 4.58 | 1.12 | a | 498.37 | 2.35 | 0.47 | b | 562.04 | 2.09 | 0.37 | c |
Mg | 285.21 | 34.13 | 0.26 | 0.76 | a | 37.06 | 0.20 | 0.55 | b | 36.33 | 0.20 | 0.54 | c |
Na | 588.99 | 0.53 | 0.04 | 6.88 | a | 0.77 | 0.03 | 4.45 | b | 2.74 | 0.00 | 0.02 | c |
Pb | 220.35 | 0.05 | 0.01 | 20.00 | a | 0.04 | 0.01 | 13.32 | a | 0.06 | 0.01 | 10.19 | a |
Se | 196.09 | 4.90 | 0.26 | 5.40 | a | 3.83 | 0.21 | 5.43 | b | 5.10 | 0.17 | 3.40 | a |
Zn | 202.55 | 4.81 | 0.01 | 0.12 | a | 4.48 | 0.02 | 0.34 | b | 4.92 | 0.01 | 0.20 | c |
Si | 212.41 | 3.47 | 0.12 | 3.43 | a | 2.94 | 0.12 | 4.01 | b | 3.31 | 0.12 | 3.61 | a |
Mn | 257.61 | 3.45 | 0.03 | 0.93 | a | 2.06 | 0.02 | 0.74 | b | 3.49 | 0.01 | 0.17 | a |
Attribute | Morada | Anaranjada | Blanca | ||||||
---|---|---|---|---|---|---|---|---|---|
Color | 7.5 | a | Like very much | 7.4 | a | Like very much | 6.6 | b | like moderately |
Flavor | 7.7 | a | Like very much | 7.7 | a | Like very much | 7.8 | a | Like very much |
Smell | 6.1 | a | Like slightly | 6.9 | b | like moderately | 6.2 | a | Like slightly |
Texture | 4.8 | a | Indifferent | 4.8 | a | Indifferent | 4.7 | a | Indifferent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choque-Quispe, D.; Ligarda-Samanez, C.A.; Huamán-Rosales, E.R.; Aguirre Landa, J.P.; Agreda Cerna, H.W.; Zamalloa-Puma, M.M.; Álvarez-López, G.J.; Barboza-Palomino, G.I.; Alzamora-Flores, H.; Gamarra-Villanueva, W. Bioactive Compounds and Sensory Analysis of Freeze-Dried Prickly Pear Fruits from an Inter-Andean Valley in Peru. Molecules 2023, 28, 3862. https://doi.org/10.3390/molecules28093862
Choque-Quispe D, Ligarda-Samanez CA, Huamán-Rosales ER, Aguirre Landa JP, Agreda Cerna HW, Zamalloa-Puma MM, Álvarez-López GJ, Barboza-Palomino GI, Alzamora-Flores H, Gamarra-Villanueva W. Bioactive Compounds and Sensory Analysis of Freeze-Dried Prickly Pear Fruits from an Inter-Andean Valley in Peru. Molecules. 2023; 28(9):3862. https://doi.org/10.3390/molecules28093862
Chicago/Turabian StyleChoque-Quispe, David, Carlos A. Ligarda-Samanez, Edith R. Huamán-Rosales, John Peter Aguirre Landa, Henrry W. Agreda Cerna, Miluska M. Zamalloa-Puma, Genaro Julio Álvarez-López, Gloria I. Barboza-Palomino, Humberto Alzamora-Flores, and Wilfredo Gamarra-Villanueva. 2023. "Bioactive Compounds and Sensory Analysis of Freeze-Dried Prickly Pear Fruits from an Inter-Andean Valley in Peru" Molecules 28, no. 9: 3862. https://doi.org/10.3390/molecules28093862
APA StyleChoque-Quispe, D., Ligarda-Samanez, C. A., Huamán-Rosales, E. R., Aguirre Landa, J. P., Agreda Cerna, H. W., Zamalloa-Puma, M. M., Álvarez-López, G. J., Barboza-Palomino, G. I., Alzamora-Flores, H., & Gamarra-Villanueva, W. (2023). Bioactive Compounds and Sensory Analysis of Freeze-Dried Prickly Pear Fruits from an Inter-Andean Valley in Peru. Molecules, 28(9), 3862. https://doi.org/10.3390/molecules28093862