Purity Assessment of Dinotefuran Using Mass Balance and Quantitative Nuclear Magnetic Resonance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Characterization
2.2. Quantitative Analysis by Mass Balance
2.2.1. Contents of Structurally Related Impurities
2.2.2. Mass Fraction of Residual Organic Solvent
2.2.3. Mass Fraction of Water
2.2.4. Determination of the Mass Fraction of Inorganic Impurities
2.2.5. Mass Fraction by MB
2.3. Quantitative Analysis by qNMR
2.4. Value Assignment
2.5. Uncertainty Evaluation
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Instruments
3.3. Qualitative Characterization
3.3.1. IR Spectrometry
3.3.2. LC-MS/MS Analysis
3.3.3. NMR Analysis
3.4. Quantitative Analysis by Mass Balance
3.4.1. Determination of Structurally Related Impurities
3.4.2. Residual Organic Solvent Determination
3.4.3. Water Determination
3.4.4. Inorganic Impurity Determination
3.5. Quantitative Analysis by qNMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability Statement
References
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-a tool for resistance management. Pestic. Biochem. Phys. 2020, 167, 104587. [Google Scholar] [CrossRef]
- Wakita, T.; Kinoshita, K.; Yamada, E.; Yasui, N.; Kawahara, N.; Naoi, A.; Nakaya, M.; Ebihara, K.; Matsuno, H.; Kodaka, K. The discovery of dinotefuran: A novel neonicotinoid. Pest Manag. Sci. 2003, 59, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R. Neonicotinoids—From zero to hero in insecticide chemistry. Pest Manag. Sci. 2008, 64, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, R.; Zheng, M.; Wang, Z.; Yu, S.; Zhou, Y.; Zhou, Z.; Diao, J. From the First to Third Generation of Neonicotinoids: Implication for Saving the Loss of Fruit Quality and Flavor by Pesticide Applications. J. Agric. Food. Chem. 2022, 70, 15415–15429. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Park, J.-H.; Abd El-Aty, A.M.; Choi, J.-H.; Yang, A.; Park, K.H.; Nashir Uddin Al Mahmud, M.; Im, G.-J.; Shim, J.-H. Feasibility and application of an HPLC/UVD to determine dinotefuran and its shorter wavelength metabolites residues in melon with tandem mass confirmation. Food Chem. 2013, 136, 1038–1046. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, K.; Chen, L.; Liu, B.; Zhang, Q.; Zhang, H.; Sun, C.; Hu, D. Determination of Dinotefuran and Its Metabolites in Orange Pulp, Orange Peel, and Whole Orange Using Liquid Chromatography-Tandem Mass Spectrometry. J. AOAC Int. 2017, 100, 1551–1558. [Google Scholar] [CrossRef]
- Yang, B.; Ma, W.; Wang, S.; Shi, L.; Li, X.; Ma, Z.; Zhang, Q.; Li, H. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 387, 132935. [Google Scholar] [CrossRef]
- Mitchell, E.A.D.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef]
- Chen, M.; Tao, L.; McLean, J.; Lu, C. Quantitative Analysis of Neonicotinoid Insecticide Residues in Foods: Implication for Dietary Exposures. J. Agric. Food. Chem. 2014, 62, 6082–6090. [Google Scholar] [CrossRef]
- Ma, W.; Yang, B.; Li, J.; Li, X. Amino-functional metal-organic framework as a general applicable adsorbent for simultaneous enrichment of nine neonicotinoids. Chem. Eng. J. 2022, 434, 134629. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, B.; Zhang, Z.; Chen, X.; Huang, Y.; Liu, Q.; Zhang, H. Occurrence of neonicotinoid insecticides and their metabolites in tooth samples collected from south China: Associations with periodontitis. Chemosphere 2021, 264, 128498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Song, S.; Bai, X.; He, Y.; Zhang, B.; Gui, M.; Kannan, K.; Lu, S.; Huang, Y.; Sun, H. A nationwide survey of urinary concentrations of neonicotinoid insecticides in China. Environ. Int. 2019, 132, 105114. [Google Scholar] [CrossRef] [PubMed]
- Yamamuro, T.; Ohta, H.; Aoyama, M.; Watanabe, D. Simultaneous determination of neonicotinoid insecticides in human serum and urine using diatomaceous earth-assisted extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2014, 969, 85–94. [Google Scholar] [CrossRef] [PubMed]
- France Bans All Uses of Neonicotinoid Pesticides. Available online: https://cen.acs.org/environment/pesticides/France-bans-uses-neonicotinoid-pesticides/96/i36 (accessed on 1 April 2023).
- Cimino, A.M.; Boyles, A.L.; Thayer, K.A.; Perry, M.J. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ. Health Persp. 2017, 125, 155–162. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; Zeng, X.; Wang, X.; Wang, D.; Jia, H.; Xu, W.; Gao, Y. Exposure to neonicotinoid insecticides and their characteristic metabolites: Association with human liver cancer. Environ. Res. 2022, 208, 112703. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Dinotefuran; United States Environmental Protection Agency: Washington, DC, USA, 2004.
- Carbonell-Rozas, L.; Lara, F.J.; del Olmo Iruela, M.; Garcia-Campana, A.M. Capillary liquid chromatography as an effective method for the determination of seven neonicotinoid residues in honey samples. J. Sep. Sci. 2020, 43, 3847–3855. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, X.; Yang, C.; Wang, Y.; Cheng, J.; Zhao, J.; Dong, X.; Zhang, Q. Eco-friendly and acid-resistant magnetic porous carbon derived from ZIF-67 and corn stalk waste for effective removal of imidacloprid and thiamethoxam from water. Chem. Eng. J. 2022, 430, 132999. [Google Scholar] [CrossRef]
- Zuo, J.; Cai, R.; An, Y.; Tang, H. Simultaneous Quantification of Five Stereoisomeric Hexoses in Nine Biological Matrices Using Ultrahigh Performance Liquid Chromatography with Tandem Mass Spectrometry. J. Anal. Test. 2020, 4, 249–256. [Google Scholar] [CrossRef]
- Yang, B.; Wang, S.; Ma, W.; Li, G.; Tu, M.; Ma, Z.; Zhang, Q.; Li, H.; Li, X. Simultaneous Determination of Neonicotinoid and Carbamate Pesticides in Freeze-Dried Cabbage by Modified QuEChERS and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods 2023, 12, 699. [Google Scholar] [CrossRef]
- Juhász, E. The role of certified reference materials in metrology. Measurement 1986, 4, 104–110. [Google Scholar] [CrossRef]
- Westwood, S.; Choteau, T.; Daireaux, A.; Josephs, R.D.; Wielgosz, R.I. Mass Balance Method for the SI Value Assignment of the Purity of Organic Compounds. Anal. Chem. 2013, 85, 3118–3126. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Singh, I.P. Determining and reporting purity of organic molecules: Why qNMR. Magn. Reson. Chem. 2013, 51, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, X.; Wang, X.; Zhang, Y. Insecticedes. In Pesticides Analysis Manual, 1st ed.; Chemical Industry Press: Beijing, China, 2012; pp. 205–207. [Google Scholar]
- Dinotefuran; LC-ESI-QFT.; MS2; CE: 15; R=35000; [M+H]+. MassBank: Swiss Federal Institute of Aquatic Science and Technology. 2015. Available online: https://massbank.eu/MassBank/RecordDisplay?id=MSBNK-Eawag_Additional_Specs-ET220203 (accessed on 1 April 2023).
- Chen, J.-B.; Zhao, X.; Zhang, Z.; Chen, Y.; Fu, X.; Liu, Y. Separation and characterization of the impurities in 3,3-diamino-4,4-azoxyfurazan by ultrahigh-performance liquid chromatography combined with Qorbitrap mass spectrometry. Microchem. J. 2021, 170, 106647. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Yang, B.; Tu, M.; Zhang, Q.; Li, H. Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool. Molecules 2022, 27, 5251. [Google Scholar] [CrossRef] [PubMed]
- Lippa, K.A.; Duewer, D.L.; Nelson, M.A.; Davies, S.R.; Mackay, L.G. The role of the CCQM OAWG in providing SI traceable calibrators for organic chemical measurements. Accredit. Qual. Assur. 2019, 24, 407–415. [Google Scholar] [CrossRef]
- Li, X.; Yang, B.; Ma, W.; Tu, M.; Zhang, Y.; Ma, Z.; Zhang, Q.; Li, H. Impurity identification in thiamethoxam by high resolution mass spectrometry and computer assisted elucidation. Anal. Bioanal. Chem. 2022, 414, 7203–7210. [Google Scholar] [CrossRef]
- JJF 1855–2020; Metrological Technical Specification for Purity Assessment of Certified Reference Materials-Organic Purity Certified Reference Materials. Standards Press of China: Beijing, China, 2020.
- Li, X.; Li, H.; Zhang, W.; Li, X.; Zhang, Q.; Guo, Z.; Li, X.; Song, S.; Zhao, G. Development of patulin certified reference material using mass balance and quantitative NMR. World Mycotoxin J. 2021, 15, 135–142. [Google Scholar] [CrossRef]
Subitem | Value | u(xi) | |
---|---|---|---|
MB | PHPLC (%) | 99.82 | 0.004 |
PW (mg/g) | 0.33 | 0.190 | |
POS (mg/g) | 0 | 0 | |
PNV (mg/g) | 0.01 | 0.005 | |
PMB (mg/g) | 997.9 | 0.2 | |
qNMR | Mstd (g/mol) | 124.1368 | 0.00411 |
MTMX (g/mol) | 202.2115 | 0.00435 | |
mTMX(mg) | 7.4559 | 0.00029 | |
mstd (mg) | 3.1701 | 0.00029 | |
Pstd (mg/g) | 999.9 | 0.09 | |
ITMX/Istd | 1.3387 | 0.00036 | |
PqNMR (mg/g) | 992.9 | 0.3 | |
Pchar | 995 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, W.; Li, X.; Zhou, S.; Tu, M.; Zhu, Y.; Li, H. Purity Assessment of Dinotefuran Using Mass Balance and Quantitative Nuclear Magnetic Resonance. Molecules 2023, 28, 3884. https://doi.org/10.3390/molecules28093884
Li X, Zhang W, Li X, Zhou S, Tu M, Zhu Y, Li H. Purity Assessment of Dinotefuran Using Mass Balance and Quantitative Nuclear Magnetic Resonance. Molecules. 2023; 28(9):3884. https://doi.org/10.3390/molecules28093884
Chicago/Turabian StyleLi, Xianjiang, Wei Zhang, Xiao Li, Shukun Zhou, Mengling Tu, Yunxiao Zhu, and Hongmei Li. 2023. "Purity Assessment of Dinotefuran Using Mass Balance and Quantitative Nuclear Magnetic Resonance" Molecules 28, no. 9: 3884. https://doi.org/10.3390/molecules28093884
APA StyleLi, X., Zhang, W., Li, X., Zhou, S., Tu, M., Zhu, Y., & Li, H. (2023). Purity Assessment of Dinotefuran Using Mass Balance and Quantitative Nuclear Magnetic Resonance. Molecules, 28(9), 3884. https://doi.org/10.3390/molecules28093884