Construction of Ni2P-MoC/Coal-Based Carbon Fiber Self-Supporting Catalysts for Enhanced Hydrogen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Characterization
2.2. Electrochemical Properties
3. Materials and Methods
3.1. Materials
3.2. Acidification Treatment of Coal
3.3. Synthesis of Precursor
3.4. Synthesis of Independent Self-Supporting Catalyst
3.5. Synthesis Method of Comparison Samples
3.6. Characterizations
3.7. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, J.; Kopp, R.J.; Portney, P.R. Energy resources and global development. Science 2003, 302, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2019, 120, 851–918. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Patil, S.A.; Seok, J.H.; Salunke, A.S.; Cho, S.; Inamdar, A.I.; Park, Y.; Lee, S.U.; Kim, H.; Im, H. Cerium guided site-selective crystal disorder engineering of MIL-88B(Ni) frameworks for electrocatalysis offering high-performance water oxidation. Mater. Today Phys. 2023, 38, 101252. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, L.; Liu, H.; Deng, Y.; Zhou, Z.; Yu, J.; Liu, H.; Zhou, W. Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Appl. Catal. B 2019, 249, 98–105. [Google Scholar] [CrossRef]
- Patil, S.A.; Khot, A.C.; Chavan, V.D.; Rabani, I.; Kim, D.-K.; Jung, J.; Im, H.; Shrestha, N.K. Electrostatically robust CoFeOF nanosheet against chloride for green-H2 production in alkaline seawater electrolysis. Chem. Eng. J. 2023. [Google Scholar] [CrossRef]
- Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Ma, T.; Cao, H.; Li, S.; Cao, S.; Zhao, Z.; Wu, Z.; Yan, R.; Yang, C.; Wang, Y.; van Aken, P.A.; et al. Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv. Mater. 2022, 34, 2206368. [Google Scholar] [CrossRef]
- Ngo, Y.-L.T.; Bhamu, K.C.; Voronova, A.; Jana, J.; Kang, S.G.; Chung, J.S.; Choi, W.M.; Jang, J.H.; Hur, S.H.; Seo, B. Carbide-directed enhancement of electrochemical hydrogen evolution reaction on tungsten carbide–oxide heterostructure. Chem. Eng. J. 2022, 450, 137915. [Google Scholar] [CrossRef]
- Gu, Y.; Wei, B.; Legut, D.; Fu, Z.; Du, S.; Zhang, H.; Francisco, J.S.; Zhang, R. Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts. Adv. Funct. Mater. 2021, 31, 2104285. [Google Scholar] [CrossRef]
- Yan, M.; Zhao, Z.; Wang, T.; Chen, R.; Zhou, C.; Qin, Y.; Yang, S.; Zhang, M.; Yang, Y. Synergistic effects in ultrafine molybdenum-tungsten bimetallic carbide hollow carbon architecture boost hydrogen evolution catalysis and lithium-ion storage. Small 2022, 18, 2203630. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Gao, Y.; Chen, Z.; Zhao, Y.; Wu, Z.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Wang, J.-J.; Meng, Y.; Sun, J. Recent advances in amorphous metal phosphide electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 36084–36097. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Shiraz, H.G.; Crispin, X.; Berggren, M. Transition metal sulfides for electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 24060–24077. [Google Scholar] [CrossRef]
- Mei, J.; Deng, Y.; Cheng, X.; Wang, X.; Wu, Q. Recent advances in iron-based sulfides electrocatalysts for oxygen and hydrogen evolution reaction. Chin. Chem. Lett. 2024, 35, 108900. [Google Scholar] [CrossRef]
- Tong, Y.; Hou, Y.; Zhang, Z.; Yan, L.; Chen, X.; Zhang, H.; Wang, X.; Li, Y. Current progress of metal sulfides derived from MOFs for photocatalytic hydrogen evolution. Appl. Catal. A 2023, 665, 119387. [Google Scholar] [CrossRef]
- Bian, H.; Chen, Z.; Chen, T.; Humayun, M.; Zhou, B.; Liao, W.; Li, Z.; Zhang, Z.; Wang, C.; Liu, C. Anodically designing of refreshable bi-metallic oxides for highly-efficient hydrogen evolution. Chem. Eng. J. 2023, 466, 143045. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Chen, Y.; Wen, X.; Long, M.; Wu, X.; Hu, Z.; Guan, D.; Wang, X.; Zhou, C.; et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 2022, 13, 1189. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Q.; Zhong, Y.; Tahini, H.A.; Shao, Z.; Wang, H. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392. [Google Scholar] [CrossRef]
- Dong, S.; Zhou, H.; Hu, X.; Zhang, J.; Li, Y.; Shang, W.; Liu, Z.; Wan, L.; Zhao, H. Application of transition metal high entropy boride in electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 18233–18244. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Ji, Y.; Li, Y. Theoretical understanding of two-dimensional boridenes M4/3B2 for hydrogen evolution. Mater. Today Energy 2023, 37, 101373. [Google Scholar] [CrossRef]
- Chen, H.; Zou, X. Intermetallic borides: Structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248–2264. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Xu, Y.; Song, H.; Min, X.; Tang, Z.; Pi, C.; Li, J.; Gao, B.; Zheng, Y.; et al. Heterojunction Mo-based binary and ternary nitride catalysts with Pt-like activity for the hydrogen evolution reaction. Chem. Eng. J. 2023, 470, 144370. [Google Scholar] [CrossRef]
- Jian, C.; Hong, W.; Cai, Q.; Liu, W. The local electronic structure modulation of the molybdenum selenide–nitride heterojunction for efficient hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 26113–26118. [Google Scholar] [CrossRef]
- Do, V.-H.; Prabhu, P.; Li, Y.; Xie, W.; Kidkhunthod, P.; Wang, G.; Wang, X.; Lee, J.-M. Surface activation of atomically thin metal nitride by confined nanoclusters to trigger pH-universal hydrogen evolution. Joule 2023, 7, 2118–2134. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Ding, Y.; Yu, P.; Huang, F.; Zhou, W.; Wang, L.; Jiang, Y.; Li, H.; Cai, H.; et al. Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 2023, 16, 12186–12195. [Google Scholar] [CrossRef]
- Xu, C.; Yang, X.; Feng, K.; Zhang, M.; Yang, L.; Yin, S. Carbon-encapsulated multimetallic hybrid electrocatalyst for overall water splitting and urea oxidation. ACS Appl. Energy Mater. 2023, 6, 1404–1412. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Yu, J.; Guan, D.; She, S.; Zhou, W.; Shao, Z. Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution. Carbon Energy 2021, 4, 77–87. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Y.; Wang, S.; Lu, H.; Zheng, L.; Fan, X.; Yang, X.; Zhang, W.; Wang, Y.; Zhang, Y.; et al. Moc nanodots toward efficient electrocatalytic hydrogen evolution: An interlayer-confined strategy with a 2D-zeolite precursor. J. Mater. Chem. A 2021, 9, 4724–4733. [Google Scholar] [CrossRef]
- Fan, X.; Liu, C.; Wu, M.; Gao, B.; Zheng, L.; Zhang, Y.; Zhang, H.; Gao, Q.; Cao, X.; Tang, Y. Synergistic effect of dual active sites over Ru/α-MoC for accelerating alkaline hydrogen evolution reaction. Appl. Catal. B 2022, 318, 121867. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, X.; Yan, F.; Zhu, C.; Chen, Y. Self-supported tripod-like nickel phosphide nanowire arrays for hydrogen evolution. J. Mater. Chem. A 2019, 7, 22412–22419. [Google Scholar] [CrossRef]
- Ray, A.; Sultana, S.; Paramanik, L.; Parida, K.M. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. J. Mater. Chem. A 2020, 8, 19196–19245. [Google Scholar] [CrossRef]
- Putri, L.K.; Ng, B.-J.; Yeo, R.Y.Z.; Ong, W.-J.; Mohamed, A.R.; Chai, S.-P. Engineering nickel phosphides for electrocatalytic hydrogen evolution: A doping perspective. Chem. Eng. J. 2023, 461, 141845. [Google Scholar] [CrossRef]
- Banerjee, S.; Kakekhani, A.; Wexler, R.B.; Rappe, A.M. Relationship between the surface reconstruction of nickel phosphides and their activity toward the hydrogen evolution reaction. ACS Catal. 2023, 13, 4611–4621. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, W.; Gai, H.; Song, H.; Xiao, M.; Zhu, Q.; Liang, J.; Huang, T. Fabrication of 3D ordered mesoporous nickel phosphide for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 3013–3025. [Google Scholar] [CrossRef]
- Singh, S.; Nguyen, D.C.; Kim, N.H.; Lee, J.H. Interface engineering induced electrocatalytic behavior in core-shelled CNTs@NiP2/NbP heterostructure for highly efficient overall water splitting. Chem. Eng. J. 2022, 442, 136120. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Bo, L.; Shi, W.; Guan, X.; Wang, Y.; Lei, Z.; Tong, J. Electrospinning preparation of N, P dual-doped molybdenum carbide/porous carbon fibers with highly improved electrocatalytic activity for hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 13051–13060. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, K.; Ma, J.; Wang, J.; Liu, Z.; Xing, R.; Jiao, T. Coupled Sn/Mo2C nanoparticles wrapped in carbon nanofibers by electrospinning as high-performance electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2021, 566, 150754. [Google Scholar] [CrossRef]
- Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 2021, 4, 850–859. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Huang, Z.; Tong, X.; Yang, N. Size effect of rhodium nanoparticles supported on carbon black on the performance of hydrogen evolution reaction. Carbon 2022, 194, 303–309. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Yin, D.; Zhang, H.; Liu, D.; Yang, Y.; Yu, W.; Dong, X. CoN/MoC embedded in nitrogen-doped multi-channel carbon nanofibers as an efficient acidic and alkaline hydrogen evolution reaction electrocatalysts. Renew. Sustain. Energ. Rev. 2023, 181, 113354. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, W.; Kong, L.; Guo, S.; Cheng, Y. Ditungsten carbide nanoparticles homogeneously embedded in carbon nanofibers for efficient hydrogen production. Chem. Eng. J. 2021, 420, 130480. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Jia, D.; Xia, W.; Li, J.; Guo, Z. Coal based activated carbon nanofibers prepared by electrospinning. J. Mater. Chem. A 2014, 2, 9338–9344. [Google Scholar] [CrossRef]
- Guo, M.; Guo, J.; Jia, D.; Zhao, H.; Sun, Z.; Song, X.; Li, Y. Coal derived porous carbon fibers with tunable internal channels for flexible electrodes and organic matter absorption. J. Mater. Chem. A 2015, 3, 21178–21184. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Lu, X.; Chao, C.; Liang, Y.; Gao, P.; Sun, Y.; Liu, A.; Huang, Y. Coal-based hierarchically porous carbon nanofibers as high-performance anode for sodium-ion batteries. ChemElectroChem 2022, 9, e202200496. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Lu, Z.; Wang, T.; Zhu, Y.; Cheng, J.; Wang, Y.; Wu, D.; Sun, Z.; Robertson, A.W.; et al. Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc–air batteries. Nanoscale 2020, 12, 9628–9639. [Google Scholar] [CrossRef]
- Lou, M.; Wang, R.; Zhang, J.; Tang, X.; Wang, L.; Guo, Y.; Jia, D.; Shi, H.; Yang, L.; Wang, X.; et al. Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 6431–6441. [Google Scholar] [CrossRef]
- Ge, R.; Zhao, J.; Huo, J.; Qu, J.; Yang, J.; Li, Y.; Zhu, M.; Cairney, J.M.; Zheng, R.; Li, S.; et al. Multi-interfacial Ni/Mo2C ultrafine hybrids anchored on nitrogen-doped carbon nanosheets as a highly efficient electrocatalyst for water splitting. Mater. Today Nano 2022, 20, 100248. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, L.; Huang, J.; Feng, Z.; Xiong, Q.; Ye, Z.; Chen, Z.; Li, X.; Yu, Z. Self-supported nickel-doped molybdenum carbide nanoflower clusters on carbon fiber paper for an efficient hydrogen evolution reaction. Nanoscale 2021, 13, 8264–8274. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Qu, J.; Liu, X.; Zhang, Z.; Guo, Y.; Yin, H.; Wang, D. Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Appl. Catal. B 2022, 307, 121201. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Wang, H.; Wang, C.; Pinna, N.; Lu, X. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 2019, 9, 1803185. [Google Scholar] [CrossRef]
- Xiong, K.; Li, L.; Zhang, L.; Ding, W.; Peng, L.; Wang, Y.; Chen, S.; Tan, S.; Wei, Z. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. J. Mater. Chem. A 2015, 3, 1863–1867. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Yang, G.; Song, W.; Zhong, W.; Wang, X.; Wang, M.; Sun, T.; Tang, Y. Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting. Adv. Funct. Mater. 2021, 31, 2101532. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, W.; Guo, B.; Li, X.; Guan, J.; Wang, L.; Zhang, M. Ni2P@MoS2/CC catalysts with heterogeneous structure are used for highly efficient electrolysis of water for hydrogen evolution. J. Alloys Compd. 2022, 905, 164157. [Google Scholar] [CrossRef]
- Ni, J.; Ruan, Z.; Xu, J.; Yan, J.; Ma, J.; Ma, H.; Qi, J.; Zhu, S.; Lu, L. Regulating surface wettability and electronic state of molybdenum carbide for improved hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 17478–17488. [Google Scholar] [CrossRef]
- Yang, W.; Li, H.; Li, P.; Xie, L.; Liu, Y.; Cao, Z.; Tian, C.; Wang, C.-A.; Xie, Z. Facile synthesis of co nanoparticles embedded in N-doped carbon nanotubes/graphitic nanosheets as bifunctional electrocatalysts for electrocatalytic water splitting. Molecules 2023, 28, 6709. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhu, M.; Bao, X.; Xiao, B.; Su, D.; Li, H.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: A highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15753–15759. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Guo, T.; Mu, Z.; Hu, X.; He, K.; Chen, X.; Dravid, V.P.; Wu, Z.; Wang, D. High-performance MoC electrocatalyst for hydrogen evolution reaction enabled by surface sulfur substitution. ACS Appl. Mater. Interfaces 2021, 13, 40705–40712. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhou, J.; Han, L.; Sun, C.; Wang, Q.; Su, Z. Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. J. Mater. Chem. A 2018, 6, 5789–5796. [Google Scholar] [CrossRef]
- Roy, S.; Bagchi, D.; Dheer, L.; Sarma, S.C.; Rajaji, V.; Narayana, C.; Waghmare, U.V.; Peter, S.C. Mechanistic insights into the promotional effect of Ni substitution in non-noble metal carbides for highly enhanced water splitting. Appl. Catal. B 2021, 298. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, R.; Shen, D.; Liu, G.; Hong Luo, K.; Wu, C.; Gu, S. One-pot synthesis of Mo2C&MoS2 loaded on N/S co-doped carbon materials as the electrocatalyts for hydrogen evolution reaction. Fuel 2022, 318, 123615. [Google Scholar] [CrossRef]
- Gong, Y.; Xu, L.-H.; Li, J.; Shan, D. Confinement of transition metal phosphides in N,P-doped electrospun carbon fibers for enhanced electrocatalytic hydrogen evolution. J. Alloys Compd. 2021, 875, 159934. [Google Scholar] [CrossRef]
- Bang, J.; Moon, I.K.; Choi, K.; Oh, J. Phase-engineering terraced structure of edge-rich α-Mo2C for efficient hydrogen evolution reaction. Mater. Today Energy 2022, 26, 100981. [Google Scholar] [CrossRef]
- He, H.; Zhang, Y.; Zhang, W.; Li, Y.; Zhu, X.; Wang, P.; Hu, D. Porous carbon nanofibers derived from silk fibroin through electrospinning as N-doped metal-free catalysts for hydrogen evolution reaction in acidic and alkaline solutions. ACS Appl. Mater. Interfaces 2021, 14, 834–849. [Google Scholar] [CrossRef]
- Wu, L.; Wu, H.; Wang, X.; Zhong, H.; Wang, Z.; Cai, G.; Jiang, C.; Ren, F. A general method for large-scale fabrication of metal nanoparticles embedded N-doped carbon fiber cloth with highly efficient hydrogen production in all ph range. Electrochim. Acta 2020, 353, 136475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Lou, M.; Wang, Y.; Wang, R. Construction of Ni2P-MoC/Coal-Based Carbon Fiber Self-Supporting Catalysts for Enhanced Hydrogen Evolution. Molecules 2024, 29, 116. https://doi.org/10.3390/molecules29010116
Jia X, Lou M, Wang Y, Wang R. Construction of Ni2P-MoC/Coal-Based Carbon Fiber Self-Supporting Catalysts for Enhanced Hydrogen Evolution. Molecules. 2024; 29(1):116. https://doi.org/10.3390/molecules29010116
Chicago/Turabian StyleJia, Xinyue, Mengran Lou, Yang Wang, and Ruiying Wang. 2024. "Construction of Ni2P-MoC/Coal-Based Carbon Fiber Self-Supporting Catalysts for Enhanced Hydrogen Evolution" Molecules 29, no. 1: 116. https://doi.org/10.3390/molecules29010116
APA StyleJia, X., Lou, M., Wang, Y., & Wang, R. (2024). Construction of Ni2P-MoC/Coal-Based Carbon Fiber Self-Supporting Catalysts for Enhanced Hydrogen Evolution. Molecules, 29(1), 116. https://doi.org/10.3390/molecules29010116