Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Yield
2.2. Quantification of Phenolic Acids and Flavonoid by RP-HPLC
2.3. TPC, TFC and Antioxidant Activity
2.4. Acute Inflammatory Model
2.4.1. Suppression of Biochemical Inflammatory Biomarkers
2.4.2. Histopathology Study
2.5. Analgesic Activity
3. Materials and Methods
3.1. Collection, Pretreatment and Storage of Samples
3.2. Chemical and Reagents
3.3. Extract Preparation
3.4. Quantification of Phenolic and Flavonoids Compounds by RP-HPLC
3.4.1. Sample Preparation
3.4.2. Chromatographic Conditions
3.5. In Vitro Antioxidant Potential
3.5.1. Total Phenolic Contents
3.5.2. Total Flavonoid Contents
3.5.3. DPPH Radical Scavenging Assay
3.5.4. Reducing Power
3.6. In Vivo Anti-Inflammatory and Analgesic Potentials
3.6.1. Acute Inflammatory Model
Animal Grouping
Study Design
Suppression of Biochemical Inflammatory Biomarkers
Histopathology Study
3.6.2. Analgesic Activity
Animal Grouping
Study Design
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, A.K.; Parasar, D.; Sagar, A.; Choudhary, V.; Chopra, B.S.; Garg, R.; Khatri, N. Analgesic and anti-inflammatory properties of gelsolin in acetic acid induced writhing, tail immersion and carrageenan induced paw edema in mice. PLoS ONE 2015, 10, e0135558. [Google Scholar] [CrossRef] [PubMed]
- Semwal, B.C.; Singh, N.; Pathak, S. Ethanol extract of Brassica rapa attenuate the complete freund’s adjuvant-induced inflammation in rats. Biomed. Pharmacol. J. 2021, 14, 2337–2346. [Google Scholar] [CrossRef]
- Ansar, W.; Ghosh, S. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. In Biology of C Reactive Protein in Health and Disease; Springer: New Delhi, India, 2016; Volume 23, pp. 67–107. [Google Scholar]
- Li, L.S.; Chiroma, S.M.; Hashim, T.; Adam, S.K.; Moklas, M.A.M.; Yusuf, Z.; Rahman, S.A. Antioxidant and anti-inflammatory properties of Erythroxylum cuneatum alkaloid leaf extract. Heliyon 2020, 6, e04141. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.R.; Gelaleti, G.B.; Moschetta, M.G.; Maschio-Signorini, L.B.; Zuccari, D.A.P.D.C. Proinflammatory and anti-inflammatory cytokines mediated by NF-κB factor as prognostic markers in mammary tumors. Mediat. Inflamm. 2016, 2016, 9512743. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015, 4, 27–30. [Google Scholar]
- Nunes, C.D.R.; Arantes, M.B.; Pereira, S.M.D.F.; Cruz, L.L.D.; Passos, M.D.S.; Pereira-de-Moraes, L.P.D.; Oliveira, D.B.D. Plants as sources of anti-inflammatory agents. Molecules 2020, 25, 3726. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; ud din Ahmad, F.; Ahmad, A.; Johns, E.J. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind. Crops Prod. 2013, 45, 416–422. [Google Scholar] [CrossRef]
- Iftikhar, N.; Hussain, A.I.; Kamal, G.M.; Manzoor, S.; Fatima, T.; Alswaimi, F.K.; Ahmad, A.; Alsuwayt, B.; Alnaseer, S.M.A. Antioxidant, anti-obesity, and hypolipidemic effects of polyphenol rich star anise (Illicum verum) tea in High-Fat-Sugar-Induced obesity rat model. Antioxidants 2022, 11, 2240. [Google Scholar] [CrossRef] [PubMed]
- Morales, G.; Paredes, A.; Olivares, A.; Bravo, J. Acute oral toxicity and anti-inflammatory activity of hydroalcoholic extract from Lampaya medicinalis Phil in rats. Biol. Res. 2014, 47, 6. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.K.; Anjum, S.; Ahmad, I.; Nisa, A.; Ali, S.; Zia, A.; Ali, S. Nutritional facts and free radical scavenging activity of turnip (Brassica rapa) from Pakistan. World Appl. Sci. J. 2012, 19, 370–375. [Google Scholar]
- Javed, A.; Ahmad, A.; Nouman, M.; Hameed, A.; Tahir, A.; Shabbir, U. Turnip (Brassica Rapus L.): A natural health tonic. Braz. J. Food Technol. 2019, 22, 1–9. [Google Scholar] [CrossRef]
- 17 Belyakova, T.; Morozova, O.; Antonceva, E.; Zabodalova, L. Perspective processing of turnip root (Brassica rapa) as a source of sulforafan. E3S Web Conf. 2020, 164, 06028. [Google Scholar] [CrossRef]
- Paul, S.; Geng, C.A.; Yang, T.H.; Yang, Y.P.; Chen, J.J. Phytochemical and health-beneficial progress of turnip (Brassica rapa). J. Food Sci. 2019, 84, 19–30. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Zahiri, S.; Aqababa, H. Effect of alcoholic extract of Brassica rapa root on formalin test pain in adult male rats. Quart. Horiz. Med. Sci. 2013, 19, 161–166. [Google Scholar]
- Sultana, B.; Anwar, F.; Iqbal, S. Effect of different cooking methods on the antioxidant activity of some vegetables from Pakistan. Int. J. Food Sci. Technol. 2008, 43, 560–567. [Google Scholar] [CrossRef]
- Majeed, M.; Chatha, S.A.S.; Hussain, A.I.; Asi, M.R.; Muhammad, S.; Yasin, M. Intervarietal variation in proximate composition and antioxidant potential of dry peas (Pisum sativum L.). J. Chem. Chem. Eng. 2010, 4, 7–15. [Google Scholar]
- Romani, A.; Vignolini, P.; Isolani, L.; Ieri, F.; Heimler, D. HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. subsp. sylvestris L.). J. Agric. Food Chem. 2006, 54, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Valentao, P.; Sousa, C.; Pereira, J.A.; Seabra, R.M.; Andrade, P.B. Chemical and antioxidative assessment of dietary turnip (Brassica rapa var. rapa L.). Food Chem. 2007, 105, 1003–1010. [Google Scholar] [CrossRef]
- Francisco, M.; Moreno, D.A.; Cartea, M.E.; Ferreres, F.; Garcia-Viguera, C.; Velasco, P. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. J. Chromatogr. A 2009, 1216, 6611–6619. [Google Scholar] [CrossRef] [PubMed]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Lin, L.Z.; Harnly, J.M. Phenolic component profiles of mustard greens, yu choy, and 15 other Brassica vegetables. J. Agric. Food Chem. 2010, 58, 6850–6857. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS n. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, G.; Peng, Y. A Critical Review on Phytochemical Profile and Biological Effects of Turnip (Brassica rapa L.). Front. Nutr. 2021, 8, 721733. [Google Scholar] [CrossRef]
- Berdja, S.; Smail, L.; Saka, B.; Neggazi, S.; Haffaf, E.M.; Benazzoug, Y.; Kacimi, G.; Boudarene, L.; Bouguerra, S.A. Glucotoxicity induced oxidative stress and inflammation in vivo and in vitro in Psammomys obesus: Involvement of aqueous extract of Brassica rapa rapifera. Evid. Based Complement. Altern. Med. 2016, 2016, 3689208. [Google Scholar] [CrossRef]
- Yucetepe, A. Valorization of peel wastes of purple turnip (Brassica rapa L.): Extraction of phenolics through ultrasonic-assisted extraction and investigation of changes in total phenolic content, total monomeric anthocyanin content and total antioxidant capacity during in vitro gastro-intestinal digestion. Eur. J. Sci. Technol. 2021, 27, 152–157. [Google Scholar] [CrossRef]
- Karagoz, A.; Artun, F.T.; Ozcan, G.; Melikoglu, G.; Anıl, S.; Kultur, Ş.; Sutlupınar, N. In vitro evaluation of antioxidant activity of some plant methanol extracts. Biotechnol. Biotechnol. Equip. 2015, 29, 1184–1189. [Google Scholar] [CrossRef]
- Beltagy, A.M. Investigation of new antimicrobial and antioxidant activities of Brassica rapa L. Int. J. Pharm. Sci. 2014, 6, 84–88. [Google Scholar]
- Mehmood, T.; Bashir, S.; Siddique, F.; Iqbal, M.; Jabeen, Z.; Arshad, H. Evaluation of climatic and geographical effects on bioactive compounds and minerals profile of two selected samples of white turnip. Pure Appl. Biol. 2017, 6, 317–327. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Zhou, J.; Liu, Y.; Wei, Y.I.; Zhao, J.; Deng, J.; Dong, B.; Zhu, L.; Wu, A.; Yang, Y.; et al. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Exp. Ther. Med. 2016, 11, 2054–2060. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015, 99, 1–10. [Google Scholar] [CrossRef]
- Yun, K.J.; Kim, J.Y.; Kim, J.B.; Lee, K.W.; Jeong, S.Y.; Park, H.J.; Jung, H.J.; Cho, Y.W.; Yun, J.; Lee, K.T. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κB inactivation in RAW 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. Int. Immunopharmacol. 2008, 8, 431–441. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, X.; Witschi, H.; Pinkerton, K.E. The role of interleukin-6 in pulmonary inflammation and injury induced by exposure to environmental air pollutants. Toxicol. Sci. 2002, 68, 488–497. [Google Scholar] [CrossRef]
- El-Makawy, A.I.; Ibrahim, F.M.; Mabrouk, D.M.; Abdel-Aziem, S.H.; Sharaf, H.A.; Ramadan, M.F. Efficiency of turnip bioactive lipids in treating osteoporosis through activation of Osterix and suppression of Cathepsin K and TNF-α signaling in rats. Environ. Sci. Pollut. Res. 2020, 27, 20950–20961. [Google Scholar] [CrossRef]
- Cai, D.; Huff, T.W.; Liu, J.; Yuan, T.; Wei, Z.; Qin, J. Alleviation of cartilage destruction by sinapic acid in experimental osteoarthritis. BioMed Res. Int 2019, 2019, 5689613. [Google Scholar] [CrossRef]
- Fan, S.H.; Ali, N.A.; Basri, D.F. Evaluation of analgesic activity of the methanol extract from the galls of Quercus infectoria (Olivier) in rats. Evid. Based Complement. Altern. Med. 2014, 2014, 976764. [Google Scholar] [CrossRef]
- Rjeibi, I.; Hentati, F.; Feriani, A.; Hfaiedh, N.; Delattre, C.; Michaud, P.; Pierre, G. Novel Antioxidant, Anti-α-Amylase, Anti-Inflammatory and Antinociceptive Water-Soluble Polysaccharides from the Aerial Part of Nitraria retusa. Foods 2019, 9, 28. [Google Scholar] [CrossRef]
- Ganguly, A.; Al Mahmud, Z.; Saha, S.K.; Abdur-Rahman, S.M. Evaluation of antinociceptive and antidiarrhoeal properties of Manilkara zapota leaves in Swiss albino mice. Pharm. Biol. 2016, 54, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.W.; Filho, V.C.; Olinger, L.; De-Souza, M.M. Quercetin: Further investigation of its antinociceptive properties and mechanisms of action. Arch. Pharm. Res. 2008, 31, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.H.; Zhang, L.; Wu, S.J.; Chen, S.Z.; Zhu, X.B.; Pan, J.C. Analgesic effect of ferulic acid on CCI mice: Behavior and neurobiological analysis. China J. Chin. Mater. Med. 2013, 38, 3736–3741. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Shabbir, A.; Batool, S.A.; Basheer, M.I.; Shahzad, M.; Sultana, K.; Tareen, R.B.; Iqbal, J. Ziziphora clinopodioides ameliorated rheumatoid arthritis and inflammatory paw edema in different models of acute and chronic inflammation. Biomed. Pharmacother. 2018, 97, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Iftikhar, A.; Asif, M.; Hussain, K.; Shah, P.A.; Saleem, A.; Yaseen, H.S. Asphodelus tenuifolius extracts arrested inflammation and arthritis through modulation of TNF-α, NF-κB, ILs, and COX-2 activities in in vivo models. Inflammopharmacology 2021, 29, 483–497. [Google Scholar] [CrossRef] [PubMed]
Extracts | Yield (g/100 g) | TPC (mg GAE/g) | TFC (mg QE/g) | DPPH, IC50 (µg/mL) |
---|---|---|---|---|
BRYR peel | 8.25 ± 0.41 b | 5.01 ± 0.25 d | 3.95 ± 0.20 d | 3.85 ± 0.19 b |
BRWR peel | 6.72 ± 0.34 a | 3.21 ± 0.16 c | 2.28 ± 0.11 c | 4.64 ± 0.23 c |
BRYR pulp | 13.35 ± 0.67 d | 2.16 ± 0.11 b | 1.30 ± 0.07 b | 5.08 ± 0.25 c |
BRWR pulp | 10.63 ± 0.53 c | 1.21 ± 0.06 a | 0.90 ± 0.08 a | 5.76 ± 0.29 d |
BHA | -------- | -------- | -------- | 1.24 ± 0.06 a |
Peak No. | Compounds | Concentration (mg/100 g of Dry Plant Material) | |||
---|---|---|---|---|---|
BRYR Peel | BRWR Peel | BRYR Pulp | BRWR Pulp | ||
1 | Gallic acid | 642.3 ± 32.1 a | 174.6 ± 8.7 d | 228.1 ± 11.4 c | 330.5 ± 16.5 b |
2 | p-hydroxyl benzoic acid | 43.25 ± 2.16 bc | 26.20 ± 1.31 c | 46.51 ± 2.33 b | 65.33 ± 3.27 a |
3 | Chlorogenic acid | 84.3 ± 4.2 d | 196.3 ± 9.8 c | 237.2 ± 11.9 b | 267.1 ± 13.3 a |
4 | Vanillic acid | - | - | 9.31 ± 0.47 | - |
5 | Syringic acid | 104.0 ± 5.2 | - | - | - |
6 | p-coumaric acid | 186.3 ± 9.3 b | 108.4 ± 5.4 c | - | 207.3 ± 10.3 a |
7 | Sinapic acid | 1.43 ± 0.07 c | 0.41 ± 0.02 c | 19.03 ± 0.95 a | 3.43 ± 0.17 b |
8 | Ferulic acid | 18.60 ± 0.93 a | 3.13 ± 0.16 b | 0.99 ± 0.05 bc | 0.39 ± 0.02 c |
9 | Rutin | - | - | 4.63 ± 0.23 | - |
10 | Cinnamic acid | 78.77 ± 3.94 a | 21.24 ± 1.06 b | 8.15 ± 0.41 b | 3.23 ± 0.16 b |
11 | Benzoic acid | 1.10 ± 0.06 b | 3.05 ± 0.15 a | - | - |
12 | Catechin | 358.5 ± 17.9 a | 138.0 ± 6.9 c | 34.45 ± 1.72 d | 196.8 ± 9.83 b |
13 | Quercetin | 7.24 ± 0.36 b | 11.38 ± 0.57 a | 5.74 ± 0.29 b | 7.24 ± 0.36 b |
14 | Kaempferol | 16.39 ± 0.82 c | 34.04 ± 1.72 a | 31.5 ± 1.57 b | - |
Groups | % Inhibition of Inflammation | ||||
---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | |
BRYR-Peel | 57.82 ± 2.89 # | 59.83 ± 2.99 # | 71.83 ± 5.59 | 70.86 ± 3.54 | 68.49 ± 3.42 # |
BRWR-Peel | 41.69 ± 2.08 # | 47.84 ± 2.39 # | 44.32 ± 2.22 # | 54.17 ± 1.71 # | 48.37 ± 1.42 # |
BRYR-Pulp | 35.47 ± 1.77 # | 38.83 ± 1.94 # | 55.63 ± 2.78 # | 48.41 ± 2.42 # | 37.66 ± 1.88 # |
BRWR-Pulp | 30.57 ± 1.53 # | 35.60 ± 1.78 # | 43.65 ± 2.18 # | 37.93 ± 1.90 # | 30.04 ± 1.50 # |
PC | 73.93 ± 3.70 | 68.30 ± 3.42 | 63.26 ± 3.16 | 66.37 ± 3.32 | 80.57 ± 4.03 |
Groups | CRP (mg/L) | RF (IU/mL) |
---|---|---|
NC | 6.91 ± 0.35 # | 16.21 ± 0.81 # |
BRYR-Peel | 2.93 ± 0.15 * | 10.93 ± 0.55 * |
BRWR-Peel | 3.96 ± 0.20 * | 12.36 ± 0.62 * |
BRYR-Pulp | 4.52 ± 0.23 *# | 13.97 ± 0.70 *# |
BRWR-Pulp | 5.61 ± 0.28 *# | 14.32 ± 0.72 *# |
PC | 3.14 ± 0.16 * | 10.80 ± 0.61 * |
Groups | Reaction Time (min) | ||||
---|---|---|---|---|---|
Start Time | 30 | 60 | 90 | 120 | |
NC | 3.50 ± 0.20 | 3.52 ± 0.21 # | 3.53 ± 0.22 # | 3.51 ± 0.20 # | 3.55 ± 0.22 # |
BRYR-Peel | 3.60 ± 0.27 | 6.19 ± 0.31 *# | 6.53 ± 0.33 * | 6.93 ± 0.35 * | 6.29 ± 0.31 *# |
BRWR-Peel | 3.58 ± 0.23 | 5.81 ± 0.29 *# | 6.17 ± 0.31 *# | 6.76 ± 0.34 * | 6.14 ± 0.31 * |
BRYR-Pulp | 3.57 ± 0.22 | 5.63 ± 0.41 * | 6.11 ± 0.31 *# | 6.46 ± 0.32 * | 5.93 ± 0.30 * |
BRWR-Pulp | 3.55 ± 0.21 | 5.43 ± 0.28 * | 5.47 ± 0.27 *# | 5.89 ± 0.29 *# | 5.43 ± 0.27 * |
PC | 3.52 ± 0.25 | 6.41 ± 0.32 * | 6.91 ± 0.35 * | 6.83 ± 0.34 * | 5.79 ± 0.29 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazar, N.; Hussain, A.I.; Rathore, H.A. Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators. Molecules 2024, 29, 117. https://doi.org/10.3390/molecules29010117
Nazar N, Hussain AI, Rathore HA. Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators. Molecules. 2024; 29(1):117. https://doi.org/10.3390/molecules29010117
Chicago/Turabian StyleNazar, Nida, Abdullah Ijaz Hussain, and Hassaan Anwer Rathore. 2024. "Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators" Molecules 29, no. 1: 117. https://doi.org/10.3390/molecules29010117
APA StyleNazar, N., Hussain, A. I., & Rathore, H. A. (2024). Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators. Molecules, 29(1), 117. https://doi.org/10.3390/molecules29010117