Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Reducing Sugars, Alcoholic Content, and Sulfur Dioxide on β-Glucosidase Activity
2.2. Effect of Glycosidase Enzyme Treatment on Wine Composition and Aroma
3. Materials and Methods
3.1. Chemical Reagents and Standards
3.2. Winemaking Procedure
3.3. Assay of β-Glucosidase Activity under Different Enological Conditions
3.4. Analytical Procedure of Volatile Organic Compounds
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pogorzelski, E.; Wilkowska, A. Flavour Enhancement through the Enzymatic Hydrolysis of Glycosidic Aroma Precursors in Juices and Wine Beverages: A Review. Flavour Fragance J. 2007, 22, 251–254. [Google Scholar] [CrossRef]
- Cabaroglu, T.; Selli, S.; Canbas, A.; Leproutre, J.P.; Günata, Z. Wine Flavor Enhancement through the Use of Exogenous Fungal Glycosidases. Enzym. Microb. Technol. 2003, 33, 581–587. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jiménez, M. Monoterpenes in Grape Juice and Wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.B.; Zhu, X.L.; Ullah, N.; Tao, Y.S. Aroma Glycosides in Grapes and Wine. J. Food Sci. 2017, 82, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Mateo, J.J. Hydrolysis of Terpenyl Glycosides in Grape Juice and Other Fruit Juices: A Review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Pogorzelski, E. Aroma Enhancement of Cherry Juice and Wine Using Exogenous Glycosidases from Mould, Yeast and Lactic Acid Bacteria. Food Chem. 2017, 237, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M.; Bartowsky, E.J.; McCarthy, J.; Moio, L.; Henschke, P.A. Hydrolysis and Transformation of Grape Glycosidically Bound Volatile Compounds during Fermentation with Three Saccharomyces Yeast Strains. J. Agric. Food Chem. 2006, 54, 6322–6331. [Google Scholar] [CrossRef]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically Bound Aroma Precursors in Fruits: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef]
- de Morais Souto, B.; Florentino Barbosa, M.; Marinsek Sales, R.; Conessa Moura, S.; de Rezende Bastos Araújo, A.; Ferraz Quirino, B. The Potential of β-Glucosidases for Aroma and Flavor Improvement in the Food Industry. Microbe 2023, 1, 100004. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Li, J.; Xu, Y. Different Influences of β-Glucosidases on Volatile Compounds and Anthocyanins of Cabernet Gernischt and Possible Reason. Food Chem. 2013, 140, 245–254. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-Glucosidase Activity of Wine Yeasts and Its Impacts on Wine Volatiles and Phenolics: A Mini-Review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.V.; Manzanares, P.; Genovés, S.; Vallés, S.; González-Candelas, L. Over-Production of the Major Exoglucanase of Saccharomyces cerevisiae Leads to an Increase in the Aroma of Wine. Int. J. Food Microbiol. 2005, 103, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Baffi, M.A.; Tobal, T.; Ghilardi Lago, J.H.; Boscolo, M.; Gomes, E.; Da-Silva, R. Wine Aroma Improvement Using a β-Glucosidase Preparation from Aureobasidium pullulans. Appl. Biochem. Biotechnol. 2013, 169, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Baffi, M.A.; Tobal, T.; Lago, J.H.G.; Leite, R.S.R.; Boscolo, M.; Gomes, E.; Da-Silva, R. A Novel β-Glucosidase from Sporidiobolus pararoseus: Characterization and Application in Winemaking. J. Food Sci. 2011, 76, C997–C1002. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-M.; Du, B.; Li, J. Aroma Enhancement and Enzymolysis Regulation of Grape Wine Using β-Glycosidase. Food Sci. Nutr. 2014, 2, 139–145. [Google Scholar] [CrossRef]
- Gao, P.; Sam, F.E.; Zhang, B.; Peng, S.; Li, M.; Wang, J. Enzymatic Characterization of Purified β-Glucosidase from Non-Saccharomyces Yeasts and Application on Chardonnay Aging. Foods 2022, 11, 852. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, W.; Qin, T.; Liao, J.; Zhang, X. Effects of Purified β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Typicality of Wines. J. Fungi 2022, 8, 1057. [Google Scholar] [CrossRef]
- Fia, G.; Olivier, V.; Cavaglioni, A.; Canuti, V.; Zanoni, B. Side Activities of Commercial Enzyme Preparations and Their Influence on the Hydroxycinnamic Acids, Volatile Compounds and Nitrogenous Components of White Wine. Aust. J. Grape Wine Res. 2016, 22, 366–375. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Diaz-Maroto, M.; González-Viñas, M.; Pérez-Coello, M. Aroma Enhancement in Wines from Different Grape Varieties Using Exogenous Glycosidases. Food Chem. 2005, 92, 627–635. [Google Scholar] [CrossRef]
- Palmeri, R.; Spagna, G. β-Glucosidase in Cellular and Acellular Form for Winemaking Application. Enzym. Microb. Technol. 2007, 40, 382–389. [Google Scholar] [CrossRef]
- Bezus, B.; de Ovalle, S.; González-Pombo, P.; Cavalitto, S.; Cavello, I. Production and Characterization of a Novel Cold-Active β-Glucosidase and Its Influence on Aromatic Precursors of Muscat Wine. Food Biosci. 2023, 53, 102572. [Google Scholar] [CrossRef]
- da Silva, R.R.; da Conceição, P.J.P.; de Menezes, C.L.A.; de Oliveira Nascimento, C.E.; Machado Bertelli, M.; Pessoa Júnior, A.; de Souza, G.M.; da Silva, R.; Gomes, E. Biochemical Characteristics and Potential Application of a Novel Ethanol and Glucose-Tolerant β-Glucosidase Secreted by Pichia guilliermondii G1.2. J. Biotechnol. 2019, 294, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, K.H.; Guyot, D.; Westad, F.; Houmoller, L.P. Multivariate Data Analysis: In Practice: An Introduction to Multivariate Data Analysis and Experimental Design; Multivariate Data Analysis; CAMO Process AS: Oslo, Norway, 2002; ISBN 8299333032. [Google Scholar]
- Bosque-Sendra, J.M.; Pescarolo, S.; Cuadros-Rodríguez, L.; García-Campaña, A.M.; Almansa-López, E.M. Optimizing Analytical Methods Using Sequential Response Surface Methodology: Application to the Pararosaniline Determination of Formaldehyde. Fresenius J. Anal. Chem. 2001, 369, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Ketudat Cairns, J.; Esen, A. β-Glucosidases. Cell Mol. Life Sci. 2010, 67, 3389–3405. [Google Scholar] [CrossRef] [PubMed]
- Mangas-Sánchez, J.; Adlercreutz, P. Enzymatic Preparation of Oligosaccharides by Transglycosylation: A Comparative Study of Glucosidases. J. Mol. Catal. B Enzym. 2015, 122, 51–55. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Spagna, G.; Palmeri, R.; Restuccia, C.; Giudici, P. Selection, Characterization and Comparison of β-Glucosidase from Mould and Yeasts Employable for Enological Applications. Enzym. Microb. Technol. 2004, 35, 58–66. [Google Scholar] [CrossRef]
- Scutarașu, E.C.; Luchian, C.E.; Vlase, L.; Nagy, K.; Colibaba, L.C.; Trinca, L.C.; Cotea, V.V. Influence Evaluation of Enzyme Treatments on Aroma Profile of White Wines. Agronomy 2022, 12, 2897. [Google Scholar] [CrossRef]
- Martino, A.; Schiraldi, C.; Di Lazzaro, A.; Fiume, I.; Spagna, G.; Pifferi, P.G.; De Rosa, M. Improvement of the Flavour of Falanghina White Wine Using a Purified Glycosidase Preparation from Aspergillus niger. Process Biochem. 2000, 36, 93–102. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the Efficiency of Sulphur Dioxide Replacements in Wine: A Parameter Review. Trends Food Sci. Technol. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- OIV. SO2 and Wine: A Review; International Organisation of Vine and Wine: Paris, France, 2021; ISBN 978-2-85038-022-8. [Google Scholar]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. J. Agric. Food Chem. 2018, 66, 2281–2286. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Camara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.-S.; Li, H. Active Volatiles of Cabernet Sauvignon Wine from Changli County. Health 2009, 1, 176–182. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M. Aroma Compounds in Oregon Pinot Noir Wine Determined by Aroma Extract Dilution Analysis (AEDA). Flavour Fragance J. 2005, 20, 22–29. [Google Scholar] [CrossRef]
- Yuan, F.; Cheng, K.; Gao, J.; Pan, S. Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods. Molecules 2018, 23, 2376. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H.; Nishida, R. Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination. J. Insect Sci. 2012, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Dong, R.; Abdelkerim-Ouba, D.; Liu, D.; Ma, X.; Wang, S. Impacts of Partial Substitution of Chemical Fertilizer with Organic Manure on the Kinetic and Thermodynamic Characteristics of Soil β-Glucosidase. Agronomy 2023, 13, 1065. [Google Scholar] [CrossRef]
- Diéguez, S.C.; de la Peña, M.L.G.; Gómez, E.F. Approaches to Spirit Aroma: Contribution of Some Aromatic Compounds to the Primary Aroma in Samples of Orujo Spirits. J. Agric. Food Chem. 2003, 51, 7385–7390. [Google Scholar] [CrossRef]
Box-Behnken Design | β-Glucosidase Activity (U) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Trial Nº | FS | RS | AG | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 |
1 | 12 | 1.8 | 12.5 | 33.231 | 29.296 | 3.810 | 68.004 | 15.411 | 38.813 | 29.598 | 26.562 |
2 | 60 | 1.8 | 12.5 | 33.288 | 28.178 | 3.845 | 70.898 | 13.565 | 37.606 | 26.313 | 27.414 |
3 | 12 | 10.0 | 12.5 | 33.469 | 30.362 | 4.030 | 68.199 | 13.565 | 39.169 | 26.935 | 28.267 |
4 | 60 | 10.0 | 12.5 | 33.483 | 31.001 | 3.636 | 72.993 | 12.109 | 39.399 | 26.473 | 29.687 |
5 | 12 | 5.9 | 10.0 | 33.409 | 30.770 | 4.076 | 68.359 | 13.458 | 40.181 | 25.816 | 27.397 |
6 | 60 | 5.9 | 10.0 | 33.554 | 29.847 | 4.186 | 69.584 | 14.825 | 38.352 | 25.088 | 25.994 |
7 | 12 | 5.9 | 15.0 | 33.551 | 31.711 | 4.296 | 71.289 | 14.293 | 39.488 | 26.509 | 25.870 |
8 | 12 | 5.9 | 15.0 | 33.522 | 31.001 | 3.987 | 68.359 | 13.370 | 40.092 | 27.982 | 27.112 |
9 | 60 | 1.8 | 10.0 | 33.320 | 30.539 | 3.952 | 70.720 | 13.654 | 36.381 | 25.337 | 25.230 |
10 | 36 | 10.0 | 10.0 | 33.398 | 31.480 | 4.037 | 68.696 | 12.180 | 38.955 | 25.337 | 24.240 |
11 | 36 | 1.8 | 15.0 | 33.373 | 31.818 | 3.945 | 68.199 | 12.624 | 37.464 | 26.935 | 25.337 |
12 | 36 | 10.0 | 15.0 | 33.377 | 32.972 | 4.169 | 72.567 | 14.275 | 38.121 | 30.291 | 29.616 |
13 | 36 | 5.9 | 12.5 | 33.153 | 30.308 | 4.364 | 65.345 | 15.500 | 38.227 | 33.771 | 28.196 |
14 | 36 | 5.9 | 12.5 | 33.242 | 28.125 | 4.520 | 66.299 | 16.335 | 39.950 | 32.759 | 30.415 |
15 | 36 | 5.9 | 12.5 | 33.323 | 27.858 | 4.538 | 67.791 | 15.749 | 41.779 | 33.043 | 29.687 |
33.380 ± 0.122 e | 30.351 ± 1.475 d | 4.093 ± 0.256 a | 69.153 ± 2.167 g | 14.061 ± 1.296 b | 38.932 ± 1.324 f | 28.146 ± 3.000 c | 27.402 ± 1.888 c |
Wine | FS | TS | pH | TA | VA | RS |
---|---|---|---|---|---|---|
E1 | 34 ± 3 a | 110 ± 10 | 3.40 ± 0.21 | 5.4 ± 0.1 | 0.26 ± 0.03 | 2.9 ± 0.1 c |
E2 | 32 ± 1 a | 108 ± 9 | 3.32 ± 0.19 | 5.3 ± 0.2 | 0.26 ± 0.02 | 3.2 ± 0.2 c |
E3 | 36 ± 3 a | 123 ± 5 | 3.35 ± 0.16 | 5.3 ± 0.1 | 0.28 ± 0.02 | 3.0 ± 0.2 c |
E4 | 31 ± 1 a | 124 ± 6 | 3.38 ± 0.22 | 5.4 ± 0.2 | 0.27 ± 0.01 | 3.0 ± 0.2 c |
E5 | 30 ± 2 a | 129 ± 7 | 3.36 ± 0.20 | 5.3 ± 0.1 | 0.27 ± 0.02 | 3.1 ± 0.2 c |
E6 | 31 ± 1 a | 132 ± 8 | 3.30 ± 0.12 | 5.5 ± 0.2 | 0.25 ± 0.02 | 2.8 ± 0.1 c |
E7 | 30 ± 2 a | 118 ± 7 | 3.33 ± 0.11 | 5.4 ± 0.1 | 0.26 ± 0.02 | 2.8 ± 0.1 c |
E8 | 29 ± 1 a | 116 ± 11 | 3.29 ± 0.18 | 5.4 ± 0.1 | 0.25 ± 0.02 | 2.7 ± 0.0 b |
C | 40 ± 2 b | 126 ± 9 | 3.25 ± 0.20 | 5.4 ± 0.1 | 0.26 ± 0.03 | 1.3 ± 0.2 a |
Code | Compounds | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | C |
---|---|---|---|---|---|---|---|---|---|---|
Terpenes | ||||||||||
T1 | α-Terpineol | 6.14 ± 1.12 b | 17.31 ± 0.43 e | 11.05 ± 0.91 c | 15.88 ± 0.82 de | 15.46 ± 0.53 de | 10.70 ± 0.25 c | 15.41 ± 0.87 de | 14.83 ± 1.11 d | 2.47 ± 0.17 a |
T2 | Eucalyptol | 9.17 ± 0.72 c | 6.76 ± 0.14 ab | 7.13 ± 0.86 b | 5.89 ± 0.69 ab | 6.57 ± 0.79 ab | 6.85 ± 0.62 ab | 6.93 ± 0.85 ab | 8.94 ± 0.18 c | 5.64 ± 0.11 a |
T3 | Terpinen-4-ol | 29.94 ± 8.82 c | 14.78 ± 1.59 b | 13.81 ± 0.62 b | 14.16 ± 2.03 b | 12.75 ± 1.68 b | 9.13 ± 0.35 b | 8.51 ± 0.97 b | 13.19 ± 3.17 b | 5.84 ± 0.36 a |
T4 | Citronellal | 0.03 ± 0.02 a | 0.04 ± 0.02 a | 0.07 ± 0.04 a | 0.08 ± 0.00 a | 0.07 ± 0.00 a | 0.42 ± 0.02 b | 0.42 ± 0.00 b | 0.44 ± 0.02 b | nd |
T5 | Geraniol | 0.03 ± 0.02 | 0.09 ± 0.06 | 0.08 ± 0.01 | 0.08 ± 0.06 | 0.08 ± 0.06 | 0.05 ± 0.04 | 0.08 ± 0.06 | 0.07 ± 0.05 | 0.02 ± 0.00 |
T6 | Nerol | 11.91 ± 7.73 | 8.10 ± 2.83 | 7.85 ± 2.60 | 7.94 ± 2.74 | 6.38 ± 2.21 | 6.6 ± 1.72 | 6.44 ± 1.63 | 7.68 ± 2.69 | 6.52 ± 0.18 |
T7 | α-Pinene | 23.60 ± 0.24 b | 23.77 ± 0.2 b | 23.73 ± 0.15 b | 23.62 ± 0.08 b | 23.62 ± 0.05 b | 23.74 ± 0.23 b | 23.53 ± 0.26 b | 23.46 ± 0.12 b | 12.81 ± 0.35 a |
T8 | Citronellol | 9.55 ± 2.19 abc | 8.32 ± 0.96 ab | 13.19 ± 0.59 bc | 15.81 ± 1.07 c | nd | 12.44 ± 2.73 abc | 10.41 ± 4.65 abc | 14.85 ± 1.18 c | 6.99 ± 0.91 a |
T9 | Linalool | 22.63 ± 1.17 d | 10.98 ± 6.50 bc | 12.09 ± 2.10 bc | 12.88 ± 3.20 c | 4.28 ± 0.59 a | 8.08 ± 2.58 abc | 8.11 ± 0.26 abc | 10.98 ± 0.52 bc | 6.76 ± 2.36 ab |
T10 | Limonene | 0.06 ± 0.00 c | 0.04 ± 0.01 b | 0.04 ± 0.00 b | 0.02 ± 0.01 a | nd | 0.02 ± 0.01 a | 0.02 ± 0.01 a | nd | nd |
T11 | β-Pinene | 45.24 ± 0.23 | 19.47 ± 10.53 | 22.27 ± 0.21 | 25.97 ± 0.27 | 14.67 ± 1.80 | 13.52 ± 0.94 | 21.19 ± 15.09 | 18.85 ± 0.79 | 14.23 ± 1.86 |
C13-Norisoprenoids | ||||||||||
N1 | Theaspirane | 0.06 ± 0.02 | 0.04 ± 0.00 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.02 | 0.05 ± 0.01 | 0.03 ± 0.00 |
N2 | α-Ionone | 0.17 ± 0.02 | 0.18 ± 0.08 | 0.08 ± 0.02 | 0.10 ± 0.00 | 0.10 ± 0.02 | 0.08 ± 0.02 | 0.09 ± 0.02 | 0.08 ± 0.01 | 0.08 ± 0.01 |
N3 | β-Ionone | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.00 | 0.02 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.01 |
Phenols and derivates | ||||||||||
P1 | 2-Phenylethanol | 0.05 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.01 | 0.05 ± 0.01 | nd |
P2 | Benzyl alcohol | 17.63 ± 0.64 b | 20.79 ± 1.59 bc | 20.53 ± 1.68 bc | 20.88 ± 2.17 bc | 18.39 ± 5.31 b | 21.74 ± 1.34 bc | 28.20 ± 2.68 c | 26.61 ± 3.95 c | 2.49 ± 0.39 a |
P3 | Eugenol | 42.52 ± 14.62 c | 23.4 ± 4.12 b | 26.39 ± 2.65 b | 13.15 ± 3.53 a | 10.28 ± 1.87 a | 21.52 ± 1.50 b | 16.9 ± 3.02 b | 18.15 ± 0.37 b | 11.03 ± 0.37 a |
P4 | Methyl eugenol | 9.52 ± 1.08 a | 6.97 ± 0.58 a | 6.00 ± 1.73 a | 12.55 ± 6.61 a | 6.86 ± 1.75 a | 8.22 ± 2.88 a | 19.63 ± 0.11 b | 22.53 ± 1.86 b | 8.25 ± 0.83 a |
Code | Commercial Name | Declared Enzyme Activities | Dose |
---|---|---|---|
E1 | Scottzyme® βG (Scott Laboratories, Petaluma, CA, USA) | Pectinases and β-glucosidase | 5 g/hL |
E2 | Lallzyme BetaTM (Lallemand, Montreal, QC, Canada) | Polygalacturonase and β-glucosidase | 5 g/hL |
E3 | Endozyme® β split (AEB Group, Barcelona, Spain) | Cellulases, pectinases, and β-glucosidase | 5 g/hL |
E4 | Rapidase® Revelation Aroma (AR2000) (DSM Food, AX Delft, The Netherlands) | Pectinase and β-glucosidase | 3 g/hL |
E5 | Depectil AR (Martin Vialatte, Magenta, France) | Pectinase and β-glucosidase | 10 g/hL |
E6 | Novarom® Blanc (Novozymes, Bagsværd, Denmark) | Polygalacturonase and β-glucosidase | 10 g/hL |
E7 | Enovin Varietal (Agrovin, Alcázar de San Juan, Spain) | Pectinases and glycosidases | 10 g/hL |
E8 | Lafazym® Arom (Laffort, Bordeaux, France) | Pectinase and β-glucosidase | 10 g/hL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; Ruipérez, V.; Vila-Crespo, J. Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors. Molecules 2024, 29, 16. https://doi.org/10.3390/molecules29010016
Rodríguez-Nogales JM, Fernández-Fernández E, Ruipérez V, Vila-Crespo J. Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors. Molecules. 2024; 29(1):16. https://doi.org/10.3390/molecules29010016
Chicago/Turabian StyleRodríguez-Nogales, José Manuel, Encarnación Fernández-Fernández, Violeta Ruipérez, and Josefina Vila-Crespo. 2024. "Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors" Molecules 29, no. 1: 16. https://doi.org/10.3390/molecules29010016
APA StyleRodríguez-Nogales, J. M., Fernández-Fernández, E., Ruipérez, V., & Vila-Crespo, J. (2024). Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors. Molecules, 29(1), 16. https://doi.org/10.3390/molecules29010016