Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Profiles
2.2. Antioxidant Activity
2.3. Activity against Cholinesterases
2.4. Activity against Amylase and Glucosidase
2.5. Anti-Inflammatory Activity
2.6. Antimicrobial and Antibiofilm Activity
3. Discussion
3.1. Fatty Acid Profiles
3.2. Antioxidant Activity
3.3. Activity against Cholinesterases
3.4. Activity against α-Amylase and α-Glusosidase
3.5. Anti-Inflammatory Activity
3.6. Antibiofilm Activity
4. Materials and Methods
4.1. Plant Material
4.2. Oil Extraction
4.3. Determination of Fatty Acids
4.4. Antioxidant Activity
4.4.1. Extraction
4.4.2. DPPH Test
4.4.3. FRAP Test
4.4.4. ABTS Test
4.5. Activity against Cholinesterases
4.6. Activity against α-Amylase and α-Glucosidase
4.6.1. α-Amylase Inhibition Assay
4.6.2. α-Glucosidase Inhibition Assay
4.7. Anti-Inflammatory Activity
4.8. Antibacterial Activity
4.8.1. Microorganisms and Culture Conditions
4.8.2. Minimal Inhibitory Concentration (MIC)
4.8.3. Inhibition of Mature Biofilm
4.8.4. Inhibition of Bacterial Metabolism
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamal, R.; Kharbach, M.; Van der Heyden, Y.; Doukkali, Z.; Ghchime, R.; Bouklouze, A.; Cherrah, Y.; Alaoui, K. In vivo anti-inflammatory response and bioactive compounds’ profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods. J. Food Biochem. 2019, 43, e13066. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Dixit, M. Role of Polyphenols and Other Phytochemicals on Molecular Signaling. Oxid. Med. Cell Longev. 2015, 2015, 504253. [Google Scholar] [CrossRef] [PubMed]
- Haimeur, A.; Messaouri, H.; Ulmann, L.; Mimouni, V.; Masrar, A.; Chraibi, A.; Tremblin, G.; Meskini, N. Argan oil prevents prothrombotic complications by lowering lipid levels and platelet aggregation, enhancing oxidative status in dyslipidemic patients from the area of Rabat (Morocco). Lipids Health Dis. 2013, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Sour, S.; Belarbi, M.; Sari, N.; Benammar, C.; Baghdad, C.; Visioli, F.; Visioli, F. Argan oil reduces, in rats, the high fat diet-induced metabolic effects of obesity. NMCD 2015, 254, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Abbou, A.; Kadri, N.; Debbache, N.; Dairi, S.; Remini, H.; Dahmoune, F.; Berkani, F.; Adel, K.; Belbahi, A.; Madani, K. Effect of precipitation solvent on some biological activities of polysaccharides from Pinus halepensis Mill. Seeds. Int. J. Biol. Macromol. 2019, 141, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Nasri, N.; Khaldi, A.; Hammami, M.; Triki, S. Fatty acid composition of two tunisian pine seed oils. Biotechnol. Progress. 2005, 21, 998–1001. [Google Scholar] [CrossRef]
- Khouja, M.; Alves, R.C.; Melo, D.; Costa, A.S.G.; Nunes, M.A.; Khaldi, A.; Oliveira, M.B.P.P.; Messaoud, C. Morphological and Chemical Differentiation between Tunisian Populations of Pinus halepensis, Pinus brutia, and Pinus pinaster. Chem. Biodiver. 2021, 18, e2100071. [Google Scholar] [CrossRef]
- Dhibi, M.; Issaoui, M.; Brahmi, F.; Mechri, B.; Mnari, A.; Cheraif, I.; Skhiri, F.; Gazzah, N.; Hammami, M. Nutritional quality of fresh and heated Aleppo pine (Pinus halepensis Mill.) seed oil: Trans-fatty acid isomers profiles and antioxidant properties. J. Food Sci. 2014, 51, 1442–5142. [Google Scholar] [CrossRef]
- Benhassaini, H.; Bendahmane, M.; Benchalgo, N. The chemical composition of fruits of Pistacia atlantica Desf. subsp. atlantica from Algeria. Chem. Nat. Compd. 2007, 43, 121–124. [Google Scholar] [CrossRef]
- McGaw, L.J.; Jäger, A.K.; Van Staden, J. Antibacterial effects of fatty acids and related compounds from plants. S. Afr. J. Bot. 2002, 68, 417–423. [Google Scholar] [CrossRef]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.M.; Bressan, J.; Hermsdorff, H.H. The role of dietary fatty acid intake in inflammatory gene expression: A critical review. Sao Paulo Med. J. 2017, 135, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Garcia Corrales, A.V.; Haidar, M.; Bogie, J.F.J.; Hendriks, J.J.A. Fatty Acid Synthesis in Glial Cells of the CNS. IJMS 2021, 22, 8159. [Google Scholar] [CrossRef] [PubMed]
- Loesche, A.; Wiemann, J.; Al Halabi, Z.; Karasch, J.; Sippl, W.; Csuk, R. Unexpected AChE inhibitory activity of (2E) α,β-unsaturated fatty acids. Bioorganic Med. Chem. Lett. 2018, 28, 3315–3319. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Chen, L. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr. 2017, 57, 3438–3448. [Google Scholar] [CrossRef]
- Moloney, M.G. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol. Sci. 2016, 37, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Ghalib, R.M.; Sasikala, P.; Ahmed, K.K. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013, 7, 121–130. [Google Scholar] [CrossRef]
- Khammassi, M.; Ben Ayed, R.; Loupasaki, S.; Amri, I.; Hanana, M.; Hamrouni, L.; Jamoussi, B.; Khaldi, A. Chemical diversity of wild fennel essential oils (Foeniculum vulgare Mill.): A source of antimicrobial and antioxidant activities. S. Afr. J. Bot. 2023, 153, 136–146. [Google Scholar] [CrossRef]
- Taneva, S.; Mechqoq, H.; Totseva, I.; Nikolova, Y.; Kamenova-Nacheva, M.; Yaagoubi, M.E.; Msanda, F.; Aouad, N.E.; Dimitrov, V.; Momchilova, S. Lipid Composition and Oxidative Stability of Argan and Cactus Opuntia ficus indica Seed Oils from Morocco -Assessment of Two Extraction Methods. J. Chem. Technol. Metall. 2021, 56, 548–560. [Google Scholar]
- Ozcan, M. Characteristics of fruit and oil of terebinth (Pistacia terebinthus L) growing wild in Turkey. J. Sci. Food Agric. 2004, 84, 517–520. [Google Scholar] [CrossRef]
- Hanana, M.; Mezghenni, H.; Ayed, R.B.; Dhiab, A.B.; Jarradi, S.; Jamoussi, B.; Hamrouni, L. Nutraceutical potentialities of Tunisian Argan oil based on its physicochemical properties and fatty acid content as assessed through Bayesian network analyses. Lipids Health Dis. 2018, 17, 138. [Google Scholar] [CrossRef] [PubMed]
- Kadri, N.; Khettal, B.; Aid, Y.; Kherfellah, S.; Sobhi, W.; Barragan-Montero, V. Some physicochemical characteristics of pinus (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) seeds from North Algeria, their lipid profiles and volatile contents. Food Chem. 2015, 188, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Chelghoum, M.; Guenane, H.; Harrat, M.; Yousfi, M. Total tocopherols, carotenoids, and fatty acids contents variation of Pistacia atlantica Desf. different organs crude oils and their antioxidant activity during development stages. Chem. Biodivers. 2020, 17, e2000117. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.M. α-Linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 2014, 70, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Ibrahim, A.; Mbodji, K.; Coeffier, M.; Ziegler, F.; Bounoure, F.; Chardigny, J.M.; Skiba, M.; Savoye, G.; Dechelotte, P.; et al. An alpha-linolenic acid-rich formula reduces oxidative stress and inflammation by regulating NF-kappaB in rats with TNBS-induced colitis. J. Nutr. 2010, 140, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Pal, M. Ghosh Studies on comparative efficacy of α-linolenic acid and α-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. Food Chem. Toxicol. 2012, 50, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Akay, M.B.; Şener, K.; Sari, S.; Bodur, E. Inhibitory Action of Omega-3 and Omega-6 Fatty Acids Alpha-Linolenic, Arachidonic and Linoleic acid on Human Erythrocyte Acetylcholinesterase. Protein J. 2023, 2, 96–103. [Google Scholar] [CrossRef]
- Fratianni, F.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. Potential therapeutic benefits of unconventional oils: Assessment of the potential in vitro biological properties of some Rubiaceae, Cucurbitaceae, and Brassicaceae seed oils. Front. Nut. 2023, 10, 1171766. [Google Scholar] [CrossRef]
- Vinutha, B.; Prashanth, D.; Salma, K.; Sreeja, S.L.; Pratiti, D.; Padmaja, R.; Radhika, S.; Amit, A.; Venkateshwarlu, K.; Deepak, M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2007, 109, 359–363. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory effect of roasted/unroasted Argania spinosa seeds oil on α-glucosidase, α-amylase and intestinal glucose absorption activities. S. Afr. J. Bot. 2020, 135, 413–420. [Google Scholar] [CrossRef]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evalution of in-vitro antiinflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 2, S178–S180. [Google Scholar] [CrossRef]
- El Omari, N.; Ezzahrae Guaouguaou, F.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and biological activities of Pinus halepensis Mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef] [PubMed]
- Amri, O.; Zekhnini, A.; Bouhaimi, A.; Tahrouch, S.; Hatimi, A. Anti-inflammatory Activity of Methanolic Extract from Pistacia atlantica Desf. Leaves. Pharmacogn. J. 2018, 10, 71–76. [Google Scholar] [CrossRef]
- Santamarina, A.B.; Pisani, L.P.; Baker, E.J.; Marat, A.D.; Valenzuela, C.A.; Miles, E.A.; Calder, P.C. Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: Effects on monocyte and macrophage responses and the NF-κB pathway. Food Funct. J. 2021, 12, 7909–7922. [Google Scholar] [CrossRef] [PubMed]
- Labdelli, A.; Zemour, K.; Simon, V.; Cerny, M.; Adda, A.; Merah, O. Pistacia atlantica Desf., a Source of Healthy Vegetable Oil. Appl. Sci. 2019, 9, 2552. [Google Scholar] [CrossRef]
- Darakhshandeh-Ghahfarokhi, G.; Mohammadi-Sichani, M.; Tavakoli, M. Chemical Composition and Antibacterial and Anti-biofilm Activity of Acetone Extract of Pistacia atlantica Leaf, Fruit, and Gall. HMJ 2021, 25, 54–59. [Google Scholar] [CrossRef]
- Kordbacheh, H.; Eftekhar, F.; Ebrahimi, S. Anti-quorum sensing activity of Pistacia atlantica against Pseudomonas aeruginosa PAO1 and identification of its bioactive compounds. Microb. Pathog. 2017, 110, 390–398. [Google Scholar] [CrossRef]
- Bhagwat, A.C.; Patil, A.M.; Saroj, S.D. Natural Bio-actives Acting Against Clinically Important Bacterial Biofilms. Curr. Bioact. Compd. 2022, 3, 43–64. [Google Scholar]
- Karygianni, L.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbiol. 2016, 6, 169768. [Google Scholar] [CrossRef]
- Vaughn, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. Natural oils for skin-barrier repair: Ancient compounds now backed by modern science. Am. J. Clin. Dermatol. 2018, 19, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Khedhri, S.; Polito, F.; Caputo, L.; De Feo, V.; Khamassi, M.; Kochti, O.; Hamrouni, L.; Mabrouk, Y.; Nazzaro, F.; Fratianni, F.; et al. Chemical Composition, Antibacterial Properties, and Anti-Enzymatic Effects of Eucalyptus Essential Oils Sourced from Tunisia. Molecules 2023, 28, 7211. [Google Scholar] [CrossRef] [PubMed]
- Bernfeld, P. Amylases α and β. In Methods and Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press: Cambridge, MA, USA, 1955; Volume 1, pp. 149–158. [Google Scholar]
- Si, M.M.; Lou, J.S.; Zhou, C.X.; Shen, J.N.; Wu, H.H.; Yang, B.; Wu, H.S. Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo. J. Ethnopharmacol. 2010, 128, 154–159. [Google Scholar] [CrossRef] [PubMed]
% | ||||
---|---|---|---|---|
RT | A. spinosa | P. halepensis | P. atlantica | |
24.0 | Myristic acid (C14:0) | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.0 ± 0.5 b |
24.4 | Palmitic acid (C16:0) | 14.9 ± 0.8 a | 7.5 ± 0.5 b | 14.1 ± 0.6 a |
25.8 | Stearic acid (C18:0) | 0.0 ± 0.0 a | 0.1 ± 0.04 b | 0.0 ± 0.0 a |
27.6 | Oleic acid (C18:1) | 16.6 ± 0.7 b | 6.7 ± 0.5 a | 21.4 ± 0.9 c |
27.8 | Linoleic acid (C18:2) | 58.9 ± 1.3 a | 66.6 ± 2.6 b | 58.1 ± 1.9 a |
28.2 | Linolenic acid (C18:3) | 7.8 ± 0.6 c | 4.5 ± 0.3 b | 2.7 ± 0.4 a |
31.2 | Arachidic acid (C20:0) | 1.3 ± 0.1 a | 3.3 ± 0.9 b | 1.1 ± 0.4 a |
31.6 | Gadoleic acid (C20:1) | 1.8 ± 0.6 b | 2.3 ± 0.2 b | 0.0 ± 0.0 a |
31.8 | Arachidonic acid (C20:4) | 0.0 ± 0.0 a | 4.0 ± 0.8 b | 0.0 ± 0.0 a |
DPPH | FRAP | ABTS | |
---|---|---|---|
EC50 | mM Trolox Eq/g of Oils | mM Trolox Eq/g of Oil | |
A. spinosa | 0.36 ± 0.05 a | 2.46 ± 0.12 a | 1.88 ± 0.02 a |
P. halepensis | 0.35 ± 0.07 a | 2.84 ± 0.14 a | 2.28 ± 0.02 b |
P. atlantica | 0.35 ± 0.06 a | 4.93 ± 0.28 b | 2.84 ± 0.07 c |
Anti-Enzymatic Activity | Anti-Inflammatory Activity | ||||
---|---|---|---|---|---|
EC50 μg/mL | EC50 μg/mL | ||||
AChE | BChE | α-Amylase | α-Glucosidase | ||
A. spinosa | 12.97 ± 0.09 c | 26.36 ± 2.38 c | 310.21 ± 30.03 c | 1310.97 ± 8.62 d | 1.23 c ± 0.75 |
P. halepensis | na | na | 350.14 ± 10.13 c | na | 1.86 c ± 0.22 |
P. atlantica | 4.82 ± 0.48 d | 11.38 ± 1.98 | 370.22 ± 10.31 c | 10.23 ± 1.56 d | 1.51 d ± 0.02 |
Galantamine | 15.21 ± 0.15 | 14.51 ± 0.27 | / | / | / |
Acarbose | / | / | 4.48 ± 0.01 | 80.13 ± 0.95 | / |
Diclofenac | / | / | / | / | 5.47 ± 0.32 |
AB | EC | LM | PA | SA | |
---|---|---|---|---|---|
A. spinosa | 25 ns ± 2 | 25 ns ± 2 | 28 ns ± 2 | 27 ns ± 3 | >30 a |
P. halepensis | 26 ns ± 3 | 24 ns ± 2 | 28 ns ± 1 | 26 ns ± 2 | >30 a |
P. atlantica | 25 ns ± 2 | 27 ns ± 1 | 27 ns± 3 | 27 ns ± 2 | >30 a |
Tetracycline | 25 ± 2 | 25 ± 2 | 28 ± 1 | 28 ± 1 | 28 ± 1 |
CV (24 h) | P. halepensis 10 μL/mL | P. halepensis 20 μL/mL | A. spinosa 10 μL/mL | A. spinosa 20 μL/mL | P. atlantica 10 μL/mL | P. atlantica 20 μL/mL |
---|---|---|---|---|---|---|
A. baumannii | 0.00 ± 0.00 | 3.31 a ± 0.44 | 19.03 a ± 1.21 | 50.30 c ± 3.67 | 0.00 ± 0.00 | 35.21 b ± 2.55 |
E. coli | 17.26 a ± 1.04 | 34.54 b ± 3.67 | 0.00 ± 0.00 | 15.44 a ± 1.98 | 0.00 ± 0.00 | 20.59 a ± 1.67 |
L. monocytogenes | 15.65 a ± 1.15 | 42.15 c ± 1.05 | 14.70 a ± 1.02 | 15.68 a ± 2.05 | 14.34 a ± 0.57 | 34.80 b ± 2.67 |
P. aeruginosa | 22.13 b ± 1.67 | 45.25 c ± 2.42 | 26.35 b ± 1.02 | 34.83 b ± 2.44 | 13.90 a ± 0.98 | 15.55 a ± 1.05 |
S. aureus | 0.00 ± 0.00 | 1.29 ± 0.08 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.000.00 | 1.09 ± 0.11 |
MTT (24 h) | P. halepensis 10 μL/mL | P. halepensis 20 μL/mL | A. spinosa 10 μL/mL | A. spinosa 20 μL/mL | P. atlantica 10 μL/mL | P. atlantica 20 μL/mL |
---|---|---|---|---|---|---|
A. baumannii | 0.00 ± 0.00 | 4.20 a ± 0.41 | 0.00 ± 0.00 | 0.00 ± 0.00 | 32.01 b ± 2.55 | 49.30 c ± 4.02 |
E. coli | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
L. monocytogenes | 27.79 b ± 1.67 | 32.05 b ± 1.12 | 26.31 b ± 2.02 | 33.83 b ± 3.15 | 31.17 b ± 2.91 | 36.52 b ± 2.67 |
P. aeruginosa | 0.00 ± 0.00 | 23.56 b ± 2.48 | 0.00 ± 0.00 | 32.09 b ± 4.01 | 12.45 a ± 1.12 | 19.85 a ± 1.56 |
S. aureus | 0.00 ± 0.00 | 2.47 a ± 0.28 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.000.00 | 17.26 a ± 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khammassi, M.; Amato, G.; Caputo, L.; Nazzaro, F.; Fratianni, F.; Kouki, H.; Amri, I.; Hamrouni, L.; De Feo, V. Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study. Molecules 2024, 29, 160. https://doi.org/10.3390/molecules29010160
Khammassi M, Amato G, Caputo L, Nazzaro F, Fratianni F, Kouki H, Amri I, Hamrouni L, De Feo V. Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study. Molecules. 2024; 29(1):160. https://doi.org/10.3390/molecules29010160
Chicago/Turabian StyleKhammassi, Marwa, Giuseppe Amato, Lucia Caputo, Filomena Nazzaro, Florinda Fratianni, Habiba Kouki, Ismail Amri, Lamia Hamrouni, and Vincenzo De Feo. 2024. "Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study" Molecules 29, no. 1: 160. https://doi.org/10.3390/molecules29010160
APA StyleKhammassi, M., Amato, G., Caputo, L., Nazzaro, F., Fratianni, F., Kouki, H., Amri, I., Hamrouni, L., & De Feo, V. (2024). Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study. Molecules, 29(1), 160. https://doi.org/10.3390/molecules29010160