In Silico and In Vivo Pharmacokinetic Evaluation of 84-B10, a Novel Drug Candidate against Acute Kidney Injury and Chronic Kidney Disease
Abstract
:1. Introduction
2. Results
2.1. UHPLC-MS/MS Method Validation for the Quantification of 84-B10
2.2. Pharmacokinetic and Tissue Distribution of 84-B10 in Rats
2.3. PBPK Modeling of 84-B10
2.4. Extrapolation of PBPK Model to Humans
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Laboratory Animals
4.3. UHPLC-MS/MS Method Validation for the Quantification of 84-B10
4.4. Pharmacokinetic and Tissue Distribution
4.5. PBPK Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naber, T.; Purohit, S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. Nutrients 2021, 13, 3277. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; James, M.T. Acute Kidney Injury. Ann. Intern. Med. 2017, 167, ITC66–ITC80. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.; Ferris, A.H. Chronic Kidney Disease. Prim. Care 2020, 47, 585–595. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is there Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Lewis, R.D.; Morgan, A.R.; Whyte, M.B.; Hanif, W.; Bain, S.C.; Davies, S.; Dashora, U.; Yousef, Z.; Patel, D.C.; et al. A Narrative Review of Chronic Kidney Disease in Clinical Practice: Current Challenges and Future Perspectives. Adv. Ther. 2022, 39, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Mende, C.W. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape. Adv. Ther. 2022, 39, 148–164. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, J.; Chen, Z.; Feng, J.; Yang, X.; Liang, W.; Ding, G. Transition of Acute Kidney Injury to Chronic Kidney Disease: Role of Metabolic Reprogramming. Metabolism 2022, 131, 155194. [Google Scholar] [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef]
- Ferenbach, D.A.; Bonventre, J.V. Acute Kidney Injury and Chronic Kidney Disease: From the Laboratory to the Clinic. Nephrol. Ther. 2016, 12 (Suppl. S1), S41–S48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Agborbesong, E.; Li, X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int. J. Mol. Sci. 2021, 22, 11253. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xu, X.; Li, Y.; Zhang, L.; Miao, M.; Niu, Y.; Zhang, Y.; Zhang, A.; Jia, Z.; Wu, M. A Novel 3-phenylglutaric Acid Derivative (84-B10) Alleviates Cisplatin-Induced Acute Kidney Injury by Inhibiting Mitochondrial Oxidative Stress-Mediated Ferroptosis. Free Radic. Biol. Med. 2023, 194, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wu, M.; Jiang, M.; He, J.; Deng, X.; Xu, S.; Fan, J.; Miao, M.; Wang, T.; Li, Y.; et al. LONP1 Targets HMGCS2 to Protect Mitochondrial Function and Attenuate Chronic Kidney Disease. EMBO Mol. Med. 2023, 15, 16581. [Google Scholar] [CrossRef] [PubMed]
- Knoll, K.E.; van der Walt, M.M.; Loots, D.T. In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets Against Mycobacterium Tuberculosis. Microbiol. Spectr. 2022, 10, e0231521. [Google Scholar] [CrossRef] [PubMed]
- El Fadili, M.; Er-Rajy, M.; Kara, M.; Assouguem, A.; Belhassan, A.; Alotaibi, A.; Mrabti, N.N.; Fidan, H.; Ullah, R.; Ercisli, S.; et al. QSAR, ADMET In Silico Pharmacokinetics, Molecular Docking and Molecular Dynamics Studies of Novel Bicyclo (Aryl Methyl) Benzamides as Potent GlyT1 Inhibitors for the Treatment of Schizophrenia. Pharmaceuticals 2022, 15, 670. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Lu, C. PBPK Modeling and Simulation in Drug Research and Development. Acta Pharm. Sin. B 2016, 6, 430–440. [Google Scholar] [CrossRef]
- Tan, Y.M.; Chan, M.; Chukwudebe, A.; Domoradzki, J.; Fisher, J.; Hack, C.E.; Hinderliter, P.; Hirasawa, K.; Leonard, J.; Lumen, A.; et al. PBPK Model Reporting Template for Chemical Risk Assessment Applications. Regul. Toxicol. Pharmacol. 2020, 115, 104691. [Google Scholar] [CrossRef]
- Sager, J.E.; Yu, J.J.; Ragueneau-Majlessi, I.; Isoherranen, N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab. Dispos. 2015, 43, 1823–1837. [Google Scholar] [CrossRef]
- Li, X.; Jusko, W.J. Assessing Liver-to-Plasma Partition Coefficients and in Silico Calculation Methods: When Does the Hepatic Model Matter in PBPK? Drug Metab. Dispos. 2022, 50, 1501–1512. [Google Scholar] [CrossRef]
- Yuan, D.; He, H.; Wu, Y.; Fan, J.; Cao, Y.G. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. J. Pharm. Sci. 2019, 108, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Niederalt, C.; Kuepfer, L.; Solodenko, J.; Eissing, T.; Siegmund, H.; Block, M.; Willmann, S.; Lippert, J. A Generic Whole Body Physiologically Based Pharmacokinetic Model for Therapeutic Proteins in PK-Sim. J. Pharmacokinet. Pharmacodyn. 2018, 45, 235–257. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; Kumar, V. The Role of “Physiologically Based Pharmacokinetic Model (PBPK)” New Approach Methodology (NAM) in Pharmaceuticals and Environmental Chemical Risk Assessment. Int. J. Env. Res. Public. Health 2023, 20, 3473. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.R.; You, X.; Wu, W.H.; Guo, G.M.; Lin, R.F.; Ke, M.; Huang, P.F.; Lin, C.H. Application of PBPK Modeling in Predicting Maternal and Fetal Pharmacokinetics of Levetiracetam During Pregnancy. Eur. J. Pharm. Sci. 2023, 181, 106349. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.W.; Deng, J.X.; Murry, D.J.; An, G.H. A Whole-Body Physiologically Based Pharmacokinetic Model of Gefitinib in Mice and Scale-Up to Humans. AAPS J. 2016, 18, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Wachsmuth, L.; Mensen, A.; Barca, C.; Wiart, M.; Tristão-Pereira, C.; Busato, A.; Waiczies, S.; Himmelreich, U.; Millward, J.M.; Reimann, H.M.; et al. Contribution of Preclinical MRI to Responsible Animal Research: Living Up to the 3R Principle. MAGMA 2021, 34, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Bahat, A.; Perlberg, S.; Melamed-Book, N.; Isaac, S.; Eden, A.; Lauria, I.; Langer, T.; Orly, J. Transcriptional Activation of LON Gene by a New Form of Mitochondrial Stress: A Role for the Nuclear Respiratory Factor 2 in StAR Overload Response (SOR). Mol. Cell Endocrinol. 2015, 408, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Li, M.; Saito, T.; Tong, M.M.; Rashed, E.; Mareedu, S.; Zhai, P.Y.; Bárcena, C.; López-Otín, C.; Yehia, G.; et al. Mitochondrial LonP1 Protects Cardiomyocytes from Ischemia/Reperfusion Injury in Vivo. J. Mol. Cell Cardiol. 2019, 128, 38–50. [Google Scholar] [CrossRef]
- Ngo, J.K.; Pomatto, L.C.; Bota, D.A.; Koop, A.L.; Davies, K.J. Impairment of Ion-Induced Protection Against the Accumulation of Oxidized Proteins in Senescent wi-38 Fibroblasts. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 1178–1185. [Google Scholar] [CrossRef]
- Yamazaki, S.J.; Skaptason, J.; Romero, D.; Vekich, S.; Jones, H.M.; Tan, W.W.; Wilner, K.D.; Koudriakova, T. Prediction of Oral Pharmacokinetics of cMet Kinase Inhibitors in Humans: Physiologically Based Pharmacokinetic Model Versus Traditional one-Compartment Model. Drug Metab. Dispos. 2011, 39, 383–393. [Google Scholar] [CrossRef]
- Willmann, S.; Coboeken, k.; Kapsa, S.; Thelen, K.; Mundhenke, M.; Fischer, K.; Hügl, B.; Mück, W. Applications of Physiologically Based Pharmacokinetic Modeling of Rivaroxaban-Renal and Hepatic Impairment and Drug-Drug Interaction Potential. J. Clin. Pharmacol. 2021, 61, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Hafsa, H.; Zamir, A.; Rasool, M.F.; Imran, I.; Saeed, H.; Ahmad, T.; Alsanea, S.; Alshamrani, A.A.; Alruwaili, A.H.; Alqahtani, F. Development and Evaluation of a Physiologically Based Pharmacokinetic Model of Labetalol in Healthy and Diseased Populations. Pharmaceutics 2022, 14, 2362. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, T.; Chen, Y.; Chen, J.; Dixit, V.; Parrott, N.; Peters, S.H.; Poggesi, I.; Sharma, P.; Snoeys, J.; Shebley, M.; et al. Physiologically-Based Pharmacokinetic Modeling in Renal and Hepatic Impairment Populations: A Pharmaceutical Industry Perspective. Clin. Pharmacol. Ther. 2021, 110, 297–310. [Google Scholar] [CrossRef] [PubMed]
Biological Matrix | Calibration Curve | r | Linear Range (ng/mL) | LLOQ (ng/mL) |
---|---|---|---|---|
Plasma | y = 45.259x − 0.9096 | 0.9997 | 1–1000 | 1 |
Heart | y = 80.738x + 0.4783 | 0.9981 | 1–1000 | 1 |
Liver | y = 80.562x − 8.0523 | 0.9908 | 1–1000 | 1 |
Spleen | y = 34.642x − 4.2273 | 0.9973 | 10–1000 | 10 |
Lung | y = 84.462x + 8.2483 | 0.9907 | 1–1000 | 1 |
Kidney | y = 70.598x + 9.66 | 0.9929 | 1–1000 | 1 |
Brain | y = 30.828x + 1.3522 | 0.9999 | 10–1000 | 10 |
Stomach | y = 32.986x − 12.094 | 0.9997 | 10–1000 | 10 |
Intestine | y = 79.144x + 0.6974 | 0.9975 | 1–1000 | 1 |
Muscle | y = 35.05x − 17.483 | 0.9993 | 10–1000 | 10 |
Fat | y = 40.822x − 0.2159 | 0.9998 | 10–1000 | 10 |
Testis | y = 41.882x + 7.4713 | 0.9997 | 10–1000 | 10 |
Ovary | y = 44.511x − 4.902 | 0.9969 | 10–1000 | 10 |
Uterine | y = 38.183x − 9.2433 | 0.9996 | 10–1000 | 10 |
Normalized Concentration (ng/mL) | 1 | 3 | 300 | 750 | |
---|---|---|---|---|---|
Day 1 (n = 6) | Measured (Mean ± SD) | 0.99 ± 0.10 | 3.29 ± 0.09 | 301 ± 7 | 683 ± 30 |
RSD (%) | 10.6 | 2.87 | 2.38 | 4.30 | |
RE (%) | −1.12 | 9.67 | 0.22 | −8.93 | |
Day 2 (n = 6) | Measured (Mean ± SD) | 1.10 ± 0.13 | 3.31 ± 0.08 | 286 ± 39 | 703 ± 19 |
RSD (%) | 11.3 | 2.35 | 13.5 | 2.71 | |
RE (%) | 10.3 | 10.2 | −4.83 | −6.24 | |
Day 3 (n = 6) | Measured (Mean ± SD) | 0.91 ± 0.08 | 3.34 ± 0.10 | 319 ± 20 | 733 ± 18 |
RSD (%) | 8.70 | 2.91 | 6.22 | 2.34 | |
RE (%) | −9.02 | 11.2 | 6.44 | −2.31 | |
Inter-day (n = 18) | Measured (Mean ± SD) | 1.01 ± 0.13 | 3.31 ± 0.09 | 304 ± 25 | 706 ± 30 |
RSD (%) | 13.0 | 2.62 | 8.30 | 4.22 | |
RE (%) | 0.83 | 10.3 | 1.29 | −5.83 |
Normalized Concentration (ng/mL) | Matrix Effect (%) (Mean ± SD) | RSD (%) | Recovery (%) (Mean ± SD) | RSD (%) |
---|---|---|---|---|
3 | 135 ± 7 | 92 ± 6 | ||
300 | 129 ± 3 | 3.68 | 93 ± 4 | 6.03 |
750 | 130 ± 5 | 95 ± 8 | ||
2000 (IS) | 92.0 ± 2.3 | 12.2 | 85 ± 1 | 2.53 |
Storage Conditions | Spiked Concentration (ng/mL) | Measured Concentrations (ng/mL) | RSD (%) | RE (%) |
---|---|---|---|---|
Room temperature for 2 h | 3 | 2.96 ± 0.10 | 3.29 | −1.50 |
300 | 278 ± 3 | 1.20 | −7.44 | |
750 | 670 ± 15 | 2.23 | −10.7 | |
Autosampler stability (4 °C for 24 h) | 3 | 3.15 ± 0.11 | 3.34 | 5.00 |
300 | 299 ± 10 | 3.45 | −0.33 | |
750 | 710 ± 27 | 3.75 | −5.38 | |
Three freeze–thaw cycles | 3 | 2.87 ± 0.29 | 9.99 | −4.22 |
300 | 287 ± 20 | 6.97 | −4.28 | |
750 | 684 ± 18 | 2.59 | −8.87 |
T1/2 (h) | CL (mL/h/kg) | Tmax (h) | Cmax (ng/mL) | AUC0–t (h*ng/mL) | AUC0–∞ (h*ng/mL) | |
---|---|---|---|---|---|---|
Male | 0.45 ± 0.02 | 1149 ± 119 | 0.19 ± 0.10 | 284 ± 48.2 | 305 ± 30.2 | 315 ± 31.0 |
Female | 0.43 ± 0.04 | 1509 ± 177 | 0.14 ± 0.10 | 231 ± 2.08 | 233 ± 27.0 | 241 ± 29.0 |
Total | 0.44 ± 0.03 | 1329 ± 239 | 0.17 ± 0.09 | 257 ± 42.4 | 269 ± 47.3 | 278 ± 48.9 |
Parameter | Predicted Value | Source and Reference |
---|---|---|
Molecular weight (g/mol) | 473.15 | Chemdraw |
pKa (acid) | 4.22 | Chemdraw |
Log P | 4.82 | ADMET lab 2.0 |
Permeability (10−6 cm/s) | 9.30 | ADMET lab 2.0 |
Aqueous solubility at pH 7 (μg/mL) | 1.75 | ADMET lab 2.0 |
Fu (Fraction unbound) | 0.61% | ADMET lab 2.0 |
CLH (mL/min/kg) | 4.26 | ADMET lab 2.0 |
CLR (mL/min/kg) | 4.26 | ADMET lab 2.0 |
Blood/Plasma concentration ratio | 1.50 | PK-Sim |
Partition coefficients | PK-Sim standard | |
Cellular permeabilities | PK-Sim standard |
Mice | Rats | |||||
---|---|---|---|---|---|---|
Observed | Predicted | Fold Error | Observed | Predicted | Fold Error | |
Cmax (ng/mL) | 2038 | 3464 | 1.70 | 257 | 615 | 2.39 |
AUC0→t (h*ng/mL) | 1327 | 1599 | 1.20 | 269 | 260 | 0.97 |
Vd (L/kg) | 11.20 | 12.96 | 1.16 | 4.13 | 4.50 | 1.09 |
Cl (mL/min/kg) | 56.8 | 47.5 | 0.84 | 22.2 | 19.7 | 0.89 |
Time (min) | Water (5 mM Ammonium Formate, %) | Methanol (%) |
---|---|---|
0.1 | 80 | 20 |
0.3 | 5 | 95 |
1.8 | 5 | 95 |
1.9 | 80 | 20 |
3.0 | stop | stop |
Compounds | Precursor Ion | Product Ion | CE (eV) | DP (eV) |
---|---|---|---|---|
84-B10 | 472.0 | 282.0 | −30 | −120 |
IS | 423.0 | 349.0 | −40 | −130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, M.; Liu, X.; Zhao, Y.; Zhu, Y.; Wu, M.; Liu, K.; Yang, G.; Liu, W.; Wang, L. In Silico and In Vivo Pharmacokinetic Evaluation of 84-B10, a Novel Drug Candidate against Acute Kidney Injury and Chronic Kidney Disease. Molecules 2024, 29, 159. https://doi.org/10.3390/molecules29010159
Su M, Liu X, Zhao Y, Zhu Y, Wu M, Liu K, Yang G, Liu W, Wang L. In Silico and In Vivo Pharmacokinetic Evaluation of 84-B10, a Novel Drug Candidate against Acute Kidney Injury and Chronic Kidney Disease. Molecules. 2024; 29(1):159. https://doi.org/10.3390/molecules29010159
Chicago/Turabian StyleSu, Man, Xianru Liu, Yuru Zhao, Yatong Zhu, Mengqiu Wu, Kun Liu, Gangqiang Yang, Wanhui Liu, and Lin Wang. 2024. "In Silico and In Vivo Pharmacokinetic Evaluation of 84-B10, a Novel Drug Candidate against Acute Kidney Injury and Chronic Kidney Disease" Molecules 29, no. 1: 159. https://doi.org/10.3390/molecules29010159
APA StyleSu, M., Liu, X., Zhao, Y., Zhu, Y., Wu, M., Liu, K., Yang, G., Liu, W., & Wang, L. (2024). In Silico and In Vivo Pharmacokinetic Evaluation of 84-B10, a Novel Drug Candidate against Acute Kidney Injury and Chronic Kidney Disease. Molecules, 29(1), 159. https://doi.org/10.3390/molecules29010159