Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Optimization of the LC-MS Method and Electrochemical Experiments
2.2. Metabolite Identification and Transformation Pathway
2.3. Biotransformation of Miconazole
2.4. Multivariate Comparison of HLM Metabolites and Electrochemical Products
2.5. Electrochemical Experiments
2.6. Toxicity
2.6.1. Aquatic Toxicity
Fish
D. magna
Algae
2.6.2. Acute Toxicity to Rodents
2.6.3. Mutagenicity and Developmental Toxicity
2.6.4. Receptor-Mediated Toxicity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. In Vitro Simulation of Metabolism with HLM
3.3. Electrochemical Studies
3.4. LC–MS Analysis
3.5. Data Preprocessing and Chemometric Studies
3.6. In Silico Estimation of Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piérard, G.E.; Hermanns-Lê, T.; Delvenne, P.; Piérard-Franchimont, C. Miconazole, a Pharmacological Barrier to Skin Fungal Infections. Expert Opin. Pharmacother. 2012, 13, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Wroński, M.; Trawiński, J.; Skibiński, R. Antifungal Drugs in the Aquatic Environment: A Review on Sources, Occurrence, Toxicity, Health Effects, Removal Strategies and Future Challenges. J. Hazard. Mater. 2024, 465, 133167. [Google Scholar] [CrossRef] [PubMed]
- Monapathi, M.E.; Oguegbulu, J.C.; Adogo, L.; Klink, M.; Okoli, B.; Mtunzi, F.; Modise, J.S. Pharmaceutical Pollution: Azole Antifungal Drugs and Resistance of Opportunistic Pathogenic Yeasts in Wastewater and Environmental Water. Appl. Environ. Soil Sci. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Juksu, K.; Zhao, J.-L.; Liu, Y.-S.; Yao, L.; Sarin, C.; Sreesai, S.; Klomjek, P.; Jiang, Y.-X.; Ying, G.-G. Occurrence, Fate and Risk Assessment of Biocides in Wastewater Treatment Plants and Aquatic Environments in Thailand. Sci. Total Environ. 2019, 690, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lv, Y.-Z.; Zhang, L.-J.; Liu, W.-R.; Zhao, J.-L.; Yang, Y.-Y.; Jia, Y.-W.; Liu, Y.-S.; He, L.-Y.; Ying, G.-G. Bioaccumulation and Risks of 24 Personal Care Products in Plasma of Wild Fish from the Yangtze River, China. Sci. Total Environ. 2019, 665, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhao, J.-L.; Liu, Y.-S.; Zhang, Q.-Q.; Jiang, Y.-X.; Liu, S.; Liu, W.-R.; Yang, Y.-Y.; Ying, G.-G. Personal Care Products in Wild Fish in Two Main Chinese Rivers: Bioaccumulation Potential and Human Health Risks. Sci. Total Environ. 2018, 621, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- De Solla, S.R.; Gilroy, È.A.M.; Klinck, J.S.; King, L.E.; McInnis, R.; Struger, J.; Backus, S.M.; Gillis, P.L. Bioaccumulation of Pharmaceuticals and Personal Care Products in the Unionid Mussel Lasmigona Costata in a River Receiving Wastewater Effluent. Chemosphere 2016, 146, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Roskar, R.; Trdan, T. Analytical Methods for Quantification of Drug Metabolites in Biological Samples. In Chromatography–The Most Versatile Method of Chemical Analysis; Calderon, L., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0813-9. [Google Scholar]
- Francois, I.; Cammue, B.; Borgers, M.; Ausma, J.; Dispersyn, G.; Thevissen, K. Azoles: Mode of Antifungal Action and Resistance Development. Effect of Miconazole on Endogenous Reactive Oxygen Species Production in Candida Albicans. Anti-Infect. Agents Med. Chem. 2006, 5, 3–13. [Google Scholar] [CrossRef]
- Ankley, G.T.; Jensen, K.M.; Kahl, M.D.; Makynen, E.A.; Blake, L.S.; Greene, K.J.; Johnson, R.D.; Villeneuve, D.L. Ketoconazole in the Fathead Minnow (Pimephales promelas): Reproductive Toxicity and Biological Compensation. Environ. Toxicol. Chem. 2007, 26, 1214–1223. [Google Scholar] [CrossRef]
- Zhang, X.; Hecker, M.; Jones, P.D.; Newsted, J.; Au, D.; Kong, R.; Wu, R.S.S.; Giesy, J.P. Responses of the Medaka HPG Axis PCR Array and Reproduction to Prochloraz and Ketoconazole. Environ. Sci. Technol. 2008, 42, 6762–6769. [Google Scholar] [CrossRef]
- Richter, E.; Roller, E.; Kunkel, U.; Ternes, T.A.; Coors, A. Phytotoxicity of Wastewater-Born Micropollutants—Characterisation of Three Antimycotics and a Cationic Surfactant. Environ. Pollut. 2016, 208, 512–522. [Google Scholar] [CrossRef] [PubMed]
- ECETOC. Intelligent Testing Strategies in Ecotoxicology: Mode of Action Approach for Specifically Acting Chemicals (Technical Report No. 102); ECETOC: Sparks, Brussels, Belgium, 2007. [Google Scholar]
- Lam, P.-L.; Wong, M.-M.; Hung, L.-K.; Yung, L.-H.; Tang, J.C.-O.; Lam, K.-H.; Chung, P.-Y.; Wong, W.-Y.; Ho, Y.-W.; Wong, R.S.-M.; et al. Miconazole and Terbinafine Induced Reactive Oxygen Species Accumulation and Topical Toxicity in Human Keratinocytes. Drug Chem. Toxicol. 2022, 45, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lueje, A.; Bollo Dragnic, S. Stability and Drug Metabolism Assessed by Electrochemical Methods. Comb. Chem. High Throughput Screen. 2010, 13, 712–727. [Google Scholar] [CrossRef] [PubMed]
- Wroński, M.; Trawiński, J.; Skibiński, R. Electrochemical Simulation of Phase I Hepatic Metabolism of Voriconazole Using a Screen-Printed Iron(II) Phthalocyanine Electrode. Pharmaceutics 2023, 15, 2586. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mustafa, M.; Yu, G.; Östman, M.; Cheng, Y.; Wang, Y.; Tysklind, M. Oxidation of Emerging Biocides and Antibiotics in Wastewater by Ozonation and the Electro-Peroxone Process. Chemosphere 2019, 235, 575–585. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.B.; Mielcke, J.; Ali, I.; Dewil, R.; Van De Goor, T.; Cabooter, D. Removal of Miconazole from Water by O3, UV/H2O2 and Electrochemical Advanced Oxidation: Real-Time Process Monitoring and Degradation Pathway Elucidation. J. Environ. Chem. Eng. 2023, 11, 109993. [Google Scholar] [CrossRef]
- Ali, I.; Barros De Souza, A.; Cabooter, D.; De Laet, S.; Van Eyck, K.; Dewil, R. Treatment of Antimicrobial Azole Compounds via Photolysis, Electrochemical and Photoelectrochemical Oxidation: Degradation Kinetics and Transformation Products. Environ. Pollut. 2023, 334, 122220. [Google Scholar] [CrossRef] [PubMed]
- Rush, W.R.; Alexander, O.F.; Hall, D.J.; Dow, R.J.; Tokes, L.; Kurz, L.; Graham, D.J.M. The Metabolism of Nafimidone Hydrochloride in the Dog, Primates and Man. Xenobiotica 1990, 20, 123–132. [Google Scholar] [CrossRef]
- Midgley, I.; Biggs, S.R.; Hawkins, D.R.; Chasseaud, L.F.; Darragh, A.; Brodie, R.R.; Walmsley, L.M. The Metabolic Fate of 3[H]Econazole in Man. Xenobiotica 1981, 11, 595–608. [Google Scholar] [CrossRef]
- Rietjens, I.M.C.M.; Soffers, A.E.M.F.; Veeger, C.; Vervoort, J. Regioselectivity of Cytochrome P-450 Catalyzed Hydroxylation of Fluorobenzenes Predicted by Calculated Frontier Orbital Substrate Characteristics. Biochemistry 1993, 32, 4801–4812. [Google Scholar] [CrossRef]
- Bakhytari, N.G.; Raitano, G.; Benfenati, E.; Martin, T.; Young, D. Comparison of in silico models for prediction of mutagenicity. J. Environ. Sci. Health C 2013, 31, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Cassano, A.; Raitano, G.; Mombelli, E.; Fernández, A.; Cester, J.; Roncaglioni, A.; Benfenati, E. Evaluation of QSAR models for the prediction of ames genotoxicity: A retrospective exercise on the chemical substances registered under the EU REACH regulation. J. Environ. Sci. Health Part C 2014, 32, 273–298. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.; Mumtaz, M.; Gombar, V. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models. Toxicol. Appl. Pharmacol. 2011, 254, 198–205. [Google Scholar] [CrossRef]
- Kolšek, K.; Mavri, J.; Sollner Dolenc, M.; Gobec, S.; Turk, S. Endocrine Disruptome—An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding. J. Chem. Inf. Model. 2014, 54, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
Name | Retention Time [min] | Mass [m/z] | Mass Error [ppm] | Molecular Formula [M + H]+ | Fragmentation MS/MS | ||
---|---|---|---|---|---|---|---|
Measured | Theoretical | Mass [m/z] | Ion Formula [M + H]+ | ||||
Miconazole | 6.01 | 414.9938 | 414.9933 | 1.20 | C18H15Cl4N2O | 379.0206 255.0061 239.0141 227.0137 203.0364 172.9900 158.9764 132.9609 111.0566 69.0457 | C18H14Cl3N2O C11H9Cl2N2O C11H9Cl2N2 C10H9Cl2N2 C11H8ClN2 C8H7Cl2 C7H5Cl2 C5H3Cl2 C5H7N2O C3H5N2 |
M1 | 7.13 | 448.9887 | 448.9988 | 0.22 | C18H17Cl4N2O3 | 345.9801 273.0218 245.0258 188.0034 170.9801 158.9760 152.0270 117.0601 86.0242 | C14H11Cl3NO3 C11H11Cl2N2O2 C10H11Cl2N2O C8H8Cl2N C8H5Cl2 C7H5Cl2 C8H7ClN C4H9N2O2 C3H4NO2 |
M2 | 7.62 | 430.9867 | 430.9882 | 3.48 | C18H15Cl4N2O2 | 188.0013 158.9765 85.0408 | C8H8Cl2N C7H5Cl2 C3H5N2O |
M3 | 5.27 | 430.9877 | 430.9882 | 1.16 | C18H15Cl4N2O2 | 174.9709 110.9980 69.0453 | C7H5Cl2O C6H4Cl C3H5N2 |
M4 | 5.51 | 430.9897 | 430.9882 | 3.48 | C18H15Cl4N2O2 | 257.0237 188.9897 174.9708 110.9996 69.0451 | C11H11Cl2N2O C8H7Cl2O C7H5Cl2O C6H4Cl C3H5N2 |
M5 | 6.47 | 430.9871 | 430.9882 | 2.55 | C18H15Cl4N2O2 | 243.0078 158.9754 85.0398 | C10H9Cl2N2O C7H5Cl2 C3H5N2O |
M6 | 5.6 | 363.9824 | 363.9824 | 0 | C15H14Cl4NO | 188.0025 158.9744 153.0352 117.0563 | C8H8Cl2N C7H5Cl2 C8H8ClN C8H7N |
M7 | 5.69 | 421.0018 | 421.0039 | 4.99 | C17H17Cl4N2O2 | 245.02261 188.0033 158.9758 | C10H11Cl2N2O C8H8Cl2N C7H5Cl2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wroński, M.; Trawiński, J.; Skibiński, R. Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry. Molecules 2024, 29, 2160. https://doi.org/10.3390/molecules29092160
Wroński M, Trawiński J, Skibiński R. Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry. Molecules. 2024; 29(9):2160. https://doi.org/10.3390/molecules29092160
Chicago/Turabian StyleWroński, Michał, Jakub Trawiński, and Robert Skibiński. 2024. "Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry" Molecules 29, no. 9: 2160. https://doi.org/10.3390/molecules29092160
APA StyleWroński, M., Trawiński, J., & Skibiński, R. (2024). Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry. Molecules, 29(9), 2160. https://doi.org/10.3390/molecules29092160