BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms
Abstract
:1. Introduction
1.1. Cow Milk
1.2. A1 & A2 Milk
1.3. β-Casomorphin-7 and It’s Opioid Receptor Agonist Character
2. β-Casomorphin-7’s Direct Interaction with Certain Pathways
2.1. GLUT2 & GLUT4 Relation
2.2. TH-2 (CD+4) Pathway
2.3. Relationship with GSH
3. Clinical Studies and Potential Diseases Associated with BCM-7
BCM-7 Related Diseases | Study Type | General Results and Outcome | References |
---|---|---|---|
Lactose intolerance | In vivo | The A1 milk consumer group generally had higher maldigestion compared to the A2 milk group. | [51] |
Bowel-related disease | Randomized controlled trial | Among 387 toddlers, one A2-only milk, and one traditional milk group were created to investigate the gastrointestinal benefits of A2. The A2 milk group’s parents reported less intestinal constipation and increased GI comfort. | [52] |
Central nervous system-related diseases | Animal study | The effect of consumption of A1 and A2 caseins on rat behavior was observed with A1/A2 diet groups. Rats fed with A1 casein showed high depressive-related behaviors and disturbance in neurochemical status. | [53] |
Digestive discomfort | Randomized double-blind trial | In a small group of individuals (25-45) with lactose intolerance, the A2 milk group showed a lower number of symptoms compared to the traditional milk group. | [54] |
Digestive discomfort | Randomized double-blind crossover trial | 33 randomly assigned subjects that are 19-50 years old were fed with only A2 β-casein, conventional, lactose-free, and jersey milk. Compared to the group consuming other types of milk, the group consuming A2 had significantly fewer symptoms of abdominal pain, bloating, and diarrhea. | [55] |
Inflammation/allergy | Animal study | Specific pathogen-free male BALB/c mice were fed a balanced diet and A1/A1 and A2/A2 β-casein milk for 30 weeks. According to the study, 30 weeks of feeding A1/A1 β-casein milk caused Th2-induced allergic airway inflammation. A2/A2 β-casein milk did not cause inflammation in this airway, but rather played a protective role for allergy and asthma. | [56] |
Digestive disorders | Animal study | Aged Balb-c mice were fed with A1A2, A2A2, and standard laboratory pellet diet. The study did not show very specific results, but mice fed A1A2 milk showed an increase in CD3+ T cells involved in epithelial barrier maintenance compared to mice fed A2A2. Especially when the gastrointestinal tract is exposed to A2 β-casein, the aging mouse model has been shown to positively affect intestinal immunology and morphology. | [57] |
Lactose intolerance | Randomized double-blind crossover trial | A 5-day study in lactose-intolerant preschool children compared the consumption of traditional (A1A2) milk with milk containing only A2 β-casein. Gastrointestinal symptoms and problems with stool frequency and consistency were reduced and normalized in child subjects fed milk containing only A2 β-casein. Furthermore, pediatric subjects consuming milk containing A2 β-casein had significant increases in serum levels of interleukin-4, immunoglobulins G, E, G1 and glutathione compared to subjects consuming conventional milk. | [58] |
Diabetes melitius | Animal study | An animal study was performed to determine the A1 milk consumption (BCM-7 derived) effect on diabetes over generations of rats (starts from F0, ends at F3 generation). At the last F3 generation (week 30), the number of diabetic rates were double in the A1 group compared to the A2 gorup. | [59] |
Central nervous system-related diseases | Double-blind randomized cross-study | Levels of GSH according to consumption of A1/A2 milk were investigated from the perspective of association between lower GSH levels and neurodegenerative diseases. It was found that the A1 consumed group showed lower blood GSH levels, potentially suggesting that BCM-7-based GSH disturbance can lead to neurodegenerative diseases and cell differentiation diseases | [50] |
Digestive discomfort | Double-blind, randomized crossover study | A Small group of individuals (41 female) divided into two gorups: the A1 and A2 diet groups. The A1 group had abdominal pain and stool consistency, while the A2 diet group did not show such a correlation. | [29] |
Bowel-related disease | Animal study | Consumption of A1/A2 milk on mice gut inflammatory response was investigated. A1 milk induced inflammatory cytokines and certain antibodies compared to the A2 diet group. | [60] |
Bowel-related disease | Animal study | Consumption of different casein types (A2 A1) and how it alters the gastrointestinal transit were investigated. The A1 consumed group showed a significant delay when compared to the A2 diet group. The opioid-like activity of A1 was a priority in the research. | [31] |
Central nervous system-related diseases | Human study | In a study with 90 infants, 37 were breastfed, and 53 were fed cow milk formula. The research indicated that a problem in the elimination of bovine β-casomorphin-7 is a risk factor that hinders the hypothesis of psychomotor development. | [41] |
Cardiovascular diseases | Animal study | 60 rabbits were fed A1 and A2 caseins for 6 weeks. The samples were collected at weeks 0, 3, and 6. A1 casein produced higher serum cholesterol and the thickness of the aortic lesion was higher in A1-fed rabbits. As a result, A1 casein is an atherogenic compound. | [61] |
Diabetes melitius | Comparative study | The study examined the incidence of diabetes in children aged <14 years ol from 10 countries who consumed A1 variant cow milk protein. As a result of the study, especially in Iceland consumption of A1 variant cow milk protein is related to the occurrence of diabetes mellitus. | [62] |
Milk allergy | Human study | 26 children aged 5-9 years old were fed nutritive casein formula, and their skin reactions to cow’ s milk as a result. | [63] |
Milk allergy | Human and in vitro study | 14 healthy individuals with no history of cow’s milk allergies were tested. An allergic reaction to histamine release in the presence of BCM-7 has been demonstrated with a reaction on the skin after 15 min. | [64] |
3.1. Lactose Intolerance
3.2. Milk Allergy
3.3. Diabetes Mellitus (Type-1)
3.4. Cardiovascular Diseases
3.5. Potential Effect on Central Nervous System
3.6. Gastrointestinal Issues and Intestine-Related Diseases
3.7. Sudden Infant Death Syndrome (SIDS)
4. Effect of A1 and A2 Caseins on Calcium Content and Potential Bone Health
5. Conclusions
6. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Akdaşçi, E.; Duman, H.; Yalçıntaş, Y.M.; Canbolat, A.A.; Kalkan, A.E.; Karav, S.; Šamec, D. Antimicrobial Properties of Colostrum and Milk. Antibiotics 2024, 13, 251. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Musallam, H.M.; Almozogai, H.M.; Amkabis, S.S.; Aoag, M.A.; Hassan, T.M.; Elhefian, E.A.; Asseid, F.M. Physicochemical Characteristics of Various Milk Samples. Nov. J. Med. Biol. Sci. 2017, 9, 546–551. [Google Scholar]
- Kiełczewska, K.; Brożek, O.; Rudkowska, P.; Garczewska-Murzyn, A.; Smoczyński, M. The Effects of Full-Stream and Partial High-Pressure Homogenisation on the Properties of Milk Emulsion. Int. J. Food Sci. Technol. 2022, 57, 7167–7174. [Google Scholar] [CrossRef]
- Kaveh, S.; Gholamhosseinpour, A.; Hashemi, S.M.B.; Jafarpour, D.; Castagnini, J.M.; Phimolsiripol, Y.; Barba, F.J. Recent Advances in Ultrasound Application in Fermented and Non-Fermented Dairy Products: Antibacterial and Bioactive Properties. Int. J. Food Sci. Technol. 2023, 58, 3591–3607. [Google Scholar] [CrossRef]
- Kaskous, S. A1- and A2-Milk and Their Effect on Human Health. J. Food Eng. Technol. 2020, 9, 15–21. [Google Scholar] [CrossRef]
- Giribaldi, M.; Lamberti, C.; Cirrincione, S.; Giuffrida, M.G.; Cavallarin, L. A2 Milk and BCM-7 Peptide as Emerging Parameters of Milk Quality. Front. Nutr. 2022, 9. [Google Scholar] [CrossRef]
- Parappa, K.; Krishnapura, P.R.; Iyyaswami, R.; Belur, P.D. Development of Stable and Functional Encapsulated Chrysin Using Casein–Polysaccharide Complexes for Food Applications. Int. J. Food Sci. Technol. 2023, 58, 5227–5235. [Google Scholar] [CrossRef]
- Singh, M.K.; Kumar, A.; Rai, D.C.; Aggarwal, A.; Malik, M. Identification of Β-casein Phenotypes (A1/A2) in the Milk of the Indian Jersey Crossbreed Bovine Using the High-resolution Accurate Mass Spectrometer. Int. J. Food Sci. Technol. 2024, in press. [Google Scholar] [CrossRef]
- Goulding, D.A.; Fox, P.F.; O’Mahony, J.A. Milk Proteins: An Overview. In Milk Proteins; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–98. [Google Scholar]
- Li, X.; Spencer, G.W.K.; Ong, L.; Gras, S.L. Beta Casein Proteins—A Comparison between Caprine and Bovine Milk. Trends Food Sci. Technol. 2022, 121, 30–43. [Google Scholar] [CrossRef]
- Sodhi, M.; Kataria, R.; Joshii, B.; Mukesh, M.; Mishra, B. Milk Proteins and Human Health: A1/A2 Milk Hypothesis. Indian J. Endocrinol. Metab. 2012, 16, 856. [Google Scholar] [CrossRef]
- Khan, R.; De, S.; Dewangan, R.; Tamboli, R.; Gupta, R. Potential Status of A1 and A2 Variants of Bovine Beta-Casein Gene in Milk Samples of Indian Cattle Breeds. Anim. Biotechnol. 2023, 34, 4878–4884. [Google Scholar] [CrossRef]
- Mishra, B.P.; Mukesh, M.; Prakash, B.; Sodhi, M.; Kapila, R.; Kishore, A.; Kataria, R.R.; Joshi, B.K.; Bhasin, V.; Rasool, T.J.; et al. Status of Milk Protein, β-Casein Variants among Indian Milch Animals. Indian J. Anim. Sci. 2009; 79, 722–725. [Google Scholar]
- Rangel, A.; Zaros, L.; Lima, T.; Borba, L.; Novaes, L.; Mota, L.; Silva, M. Polymorphism in the Beta Casein Gene and analysis of milk characteristicsin Gir and Guzerá dairy cattle. Evolution 2017, 16, gmr16029592. [Google Scholar] [CrossRef] [PubMed]
- Venkatachlapathy, R.; Pramod, S.; Shabib, L.; Beecha, B. Impact of A1/A2 Milk on Health: Facts and Implications. J. Dairy Veter- Sci. 2019, 9, 555761. [Google Scholar] [CrossRef]
- Asledottir, T.; Le, T.T.; Petrat-Melin, B.; Devold, T.G.; Larsen, L.B.; Vegarud, G.E. Identification of bioactive peptides and quantification of β-casomorphin-7 from bovine β-casein A1, A2 and I after ex vivo gastrointestinal digestion. Int. Dairy J. 2017, 71, 98–106. [Google Scholar] [CrossRef]
- Nagpal, R.; Behare, P.; Rana, R.; Kumar, A.; Kumar, M.; Arora, S.; Morotta, F.; Jain, S.; Yadav, H. Bioactive peptides derived from milk proteins and their health beneficial potentials: An update. Food Funct. 2010, 2, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Zioudrou, C.; Streaty, R.; Klee, W. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem. 1979, 254, 2446–2449. [Google Scholar] [CrossRef] [PubMed]
- Brantl, V.; Teschemacher, H.; Henschen, A.; Lottspeich, F. Novel Opioid Peptides Derived from Casein (β-Casomorphins). I. Isolation from Bovine Casein Peptone. Hoppe. Seylers. Z. Physiol. Chem. 1979, 360, 1211–1224. [Google Scholar] [CrossRef]
- De Noni, I.; Stuknytė, M.; Cattaneo, S. Identification of β-casomorphins 3 to 7 in cheeses and in their in vitro gastrointestinal digestates. LWT 2015, 63, 550–555. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Johnson, S.K.; Busetti, F.; Solah, V.A. Formation and Degradation of Beta-casomorphins in Dairy Processing. Crit. Rev. Food Sci. Nutr. 2014, 55, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, S.; Cieślińska, A.; Kostyra, E. Polymorphism of bovine beta-casein and its potential effect on human health. J. Appl. Genet. 2007, 48, 189–198. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Venkidasamy, B.; Thirupathi, P.; Chung, I.-M.; Subramanian, U. β-Casomorphin: A complete health perspective. Food Chem. 2020, 337, 127765. [Google Scholar] [CrossRef]
- Daniloski, D.; McCarthy, N.A.; Vasiljevic, T. Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends Food Sci. Technol. 2021, 116, 681–700. [Google Scholar] [CrossRef]
- Scientific Report of EFSA Prepared by a DATEX Working Group on the Potential Health Impact of β-Casomorphins and Related Peptides. 2009. Available online: https://air.unimi.it/handle/2434/68981 (accessed on 10 April 2024).
- Kay, S.-I.S.; Delgado, S.; Mittal, J.; Eshraghi, R.S.; Mittal, R.; Eshraghi, A.A. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J. Nutr. 2021, 151, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Woodford, K.; Kukuljan, S.; Pal, S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomised cross-over pilot study. Eur. J. Clin. Nutr. 2014, 68, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G.W.; Ni, J.; Clarke, A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2015, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Barnett, M.P.G.; McNabb, W.C.; Roy, N.C.; Woodford, K.B.; Clarke, A.J. Dietary A1β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2β-casein in Wistar rats. Int. J. Food Sci. Nutr. 2014, 65, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, M.R. Biological Activities of Casomorphins. In Opioid Food Peptides; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- ATEX Working Group on β-casomorphins. Review of the potential health impact of β-casomorphins and related peptides. Sci. Rep. EFSA 2009, 7, 231r. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Yeboah, P.J.; Ayivi, R.D.; Eddin, A.S.; Wijemanna, N.D.; Paidari, S.; Bakhshayesh, R.V. A Review and Comparative Perspective on Health Benefits of Probiotic and Fermented Foods. Int. J. Food Sci. Technol. 2023, 58, 4948–4964. [Google Scholar] [CrossRef]
- Ledesma-Martínez, E.; Aguíñiga-Sánchez, I.; Weiss-Steider, B.; Rivera-Martínez, A.R.; Santiago-Osorio, E. Casein and Peptides Derived from Casein as Antileukaemic Agents. J. Oncol. 2019, 2019, 8150967. [Google Scholar] [CrossRef]
- Garg, S.; Nurgali, K.; Mishra, V.K. Food Proteins as Source of Opioid Peptides-A Review. Curr. Med. Chem. 2016, 23, 1. [Google Scholar] [CrossRef]
- Ul Haq, M.R. Opioid Food Peptides; Springer: Singapore, 2020; ISBN 978-981-15-6101-6. [Google Scholar]
- Ul Haq, M.R. β-Casomorphins; Springer: Singapore, 2020; ISBN 978-981-15-3456-0. [Google Scholar]
- Brooke-Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Adv. Nutr.: An Int. Rev. J. 2017, 8, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Jinsmaa, Y.; Yoshikawa, M. Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein. Peptides 1999, 20, 957–962. [Google Scholar] [CrossRef]
- Kost, N.V.; Sokolov, O.Y.; Kurasova, O.B.; Dmitriev, A.D.; Tarakanova, J.N.; Gabaeva, M.V.; Zolotarev, Y.A.; Dadayan, A.K.; Grachev, S.A.; Korneeva, E.V.; et al. β-Casomorphins-7 in infants on different type of feeding and different levels of psychomotor development. Peptides 2009, 30, 1854–1860. [Google Scholar] [CrossRef]
- Pleuvry, B.J. Opioid Receptors and Their Ligands: Natural and Unnatural. Br. J. Anaesth. 1991, 66, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Chia, J.S.J.; McRae, J.L.; Kukuljan, S.; Woodford, K.; Elliott, R.B.; Swinburn, B.; Dwyer, K.M. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutr. Diabetes 2017, 7, e274. [Google Scholar] [CrossRef] [PubMed]
- Cieślińska, A.; Fiedorowicz, E.; Rozmus, D.; Sienkiewicz-Szłapka, E.; Jarmołowska, B.; Kamiński, S. Does a Little Difference Make a Big Difference? Bovine β-Casein A1 and A2 Variants and Human Health—An Update. Inter. J. Mol. Sci. 2022, 23, 15637. [Google Scholar] [CrossRef]
- Monetini, L.; Barone, F.; Stefanini, L.; Petrone, A.; Walk, T.; Jung, G.; Thorpe, R.; Pozzilli, P.; Cavallo, M.G. Establishment of T Cell Lines to Bovine β-Casein and β-Casein-Derived Epitopes in Patients with Type 1 Diabetes. J. Endocrinol. 2003, 176, 143–150. [Google Scholar] [CrossRef]
- Runthala, A.; Mbye, M.; Ayyash, M.; Xu, Y.; Kamal-Eldin, A. Caseins: Versatility of Their Micellar Organization in Relation to the Functional and Nutritional Properties of Milk. Molecules 2023, 28, 2023. [Google Scholar] [CrossRef]
- Wu, X.; Freeze, H.H. GLUT14, a Duplicon of GLUT3, Is Specifically Expressed in Testis as Alternative Splice Forms. Genomics 2002, 80, 553–557. [Google Scholar] [CrossRef]
- Haq, M.R.U.; Kapila, R.; Sharma, R.; Saliganti, V.; Kapila, S. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur. J. Nutr. 2013, 53, 1039–1049. [Google Scholar] [CrossRef]
- Semwal, R.; Joshi, S.K.; Semwal, R.B.; Sodhi, M.; Upadhyaya, K.; Semwal, D.K. Effects of A1 and A2 Variants of β-Casein on Human Health—Is β-Casomorphin-7 Really a Harmful Peptide in Cow Milk? Nutrire 2022, 47, 8. [Google Scholar] [CrossRef]
- Deth, R.; Clarke, A.; Ni, J.; Trivedi, M. Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of β-casein: Results from a randomized, cross-over clinical trial. Nutr. J. 2015, 15, 1–6. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Zhou, X.; Dydak, U.; Dennis, A.S. Gastric Emptying of New-World Milk Containing A1 and A2 Β-Casein Is More Rapid as Compared to Milk Containing Only A2 Β-Casein in Lactose Maldigesters: A Randomized, Cross-Over Trial Using Magnetic Resonance Imaging. Nutrients 2023, 15, 801. [Google Scholar] [CrossRef]
- Meng, Y.; Zhou, Y.; Li, H.; Chen, Y.; Dominik, G.; Dong, J.; Tang, Y.; Saavedra, J.M.; Liu, J. Effectiveness of Growing-Up Milk Containing Only A2 β-Casein on Digestive Comfort in Toddlers: A Randomized Controlled Trial in China. Nutrients 2023, 15, 1313. [Google Scholar] [CrossRef]
- Osman, A.; Zuffa, S.; Walton, G.; Fagbodun, E.; Zanos, P.; Georgiou, P.; Kitchen, I.; Swann, J.; Bailey, A. Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. iScience 2021, 24, 103048. [Google Scholar] [CrossRef]
- Milan, A.M.; Shrestha, A.; Karlström, H.J.; Martinsson, J.A.; Nilsson, N.J.; Perry, J.K.; Day, L.; Barnett, M.P.; Cameron-Smith, D. Comparison of the impact of bovine milk β-casein variants on digestive comfort in females self-reporting dairy intolerance: A randomized controlled trial. Am. J. Clin. Nutr. 2020, 111, 149–160. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Eaton, T.K.; Sermet, O.M.; Savaiano, D.A. Milk Containing A2 β-Casein ONLY, as a Single Meal, Causes Fewer Symptoms of Lactose Intolerance than Milk Containing A1 and A2 β-Caseins in Subjects with Lactose Maldigestion and Intolerance: A Randomized, Double-Blind, Crossover Trial. Nutrients 2020, 12, 3855. [Google Scholar] [CrossRef]
- Yadav, S.; Yadav, N.D.S.; Gheware, A.; Kulshreshtha, A.; Sharma, P.; Singh, V.P. Oral Feeding of Cow Milk Containing A1 Variant of β Casein Induces Pulmonary Inflammation in Male Balb/c Mice. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Guantario, B.; Giribaldi, M.; Devirgiliis, C.; Finamore, A.; Colombino, E.; Capucchio, M.T.; Evangelista, R.; Motta, V.; Zinno, P.; Cirrincione, S.; et al. A Comprehensive Evaluation of the Impact of Bovine Milk Containing Different Beta-Casein Profiles on Gut Health of Ageing Mice. Nutrients 2020, 12, 2147. [Google Scholar] [CrossRef]
- Sheng, X.; Li, Z.; Ni, J.; Yelland, G. Effects of Conventional Milk Versus Milk Containing Only A2 β-Casein on Digestion in Chinese Children. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 375–382. [Google Scholar] [CrossRef]
- Chia, J.S.J.; McRae, J.L.; Enjapoori, A.K.; Lefèvre, C.M.; Kukuljan, S.; Dwyer, K.M. Dietary Cows’ Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients 2018, 10, 1291. [Google Scholar] [CrossRef]
- Haq, M.R.U.; Kapila, R.; Saliganti, V. Consumption of β-casomorphins-7/5 induce inflammatory immune response in mice gut through Th2 pathway. J. Funct. Foods 2014, 8, 150–160. [Google Scholar] [CrossRef]
- Tailford, K. A casein variant in cow’s milk is atherogenic. Atherosclerosis 2003, 170, 13–19. [Google Scholar] [CrossRef]
- Elliott, R.B.; Harris, D.P.; Hill, J.P.; Bibby, N.J.; Wasmuth, H.E. Type I (insulin-dependent) diabetes mellitus and cow milk: Casein variant consumption. Diabetologia 1999, 42, 292–296. [Google Scholar] [CrossRef]
- Kurek, M.; Małaczyńska, T. Nutritive Casein Formula Elicits Pseudoallergic Skin Reactions by Prick Testing. Int. Arch. Allergy Immunol. 1999, 118, 228–229. [Google Scholar] [CrossRef]
- Kurek, M.; Przybilla, B.; Hermann, K.; Ring, I. A Naturally Occurring Opioid Peptide from Cow’s Milk, Beta-Casomorphine-7, Is a Direct Histamine Releaser in Man. Int. Arch. Allergy Immunol. 1992, 97, 115–120. [Google Scholar] [CrossRef]
- Casciano, F.; Nissen, L.; Chiarello, E.; Di Nunzio, M.; Bordoni, A.; Gianotti, A. In vitro assessment of the effect of lactose-free milk on colon microbiota of lactose-intolerant adults. Int. J. Food Sci. Technol. 2022, 58, 4485–4494. [Google Scholar] [CrossRef]
- Kaplan, M.; Baydemir, B.; Günar, B.B.; Arslan, A.; Duman, H.; Karav, S. Benefits of A2 Milk for Sports Nutrition, Health and Performance. Front. Nutr. 2022, 9, 935344. [Google Scholar] [CrossRef]
- Crittenden, R.G.; Bennett, L.E. Cow’s Milk Allergy: A Complex Disorder. J. Am. Coll. Nutr. 2005, 24, 582S–591S. [Google Scholar] [CrossRef]
- Anvari, S.; Miller, J.; Yeh, C.-Y.; Davis, C.M. IgE-Mediated Food Allergy. Clin. Rev. Allergy Immunol. 2018, 57, 244–260. [Google Scholar] [CrossRef]
- García-Ara, M.C.; Boyano-Martínez, M.T.; Díaz-Pena, J.M.; Martín-Muñoz, M.F.; Martín-Esteban, M. Cow’s milk-specific immunoglobulin E levels as predictors of clinical reactivity in the follow-up of the cow’s milk allergy infants. Clin. Exp. Allergy 2004, 34, 866–870. [Google Scholar] [CrossRef]
- Fiedorowicz, E.; Jarmołowska, B.; Iwan, M.; Kostyra, E.; Obuchowicz, R.; Obuchowicz, M. The influence of μ-opioid receptor agonist and antagonist peptides on peripheral blood mononuclear cells (PBMCs). Peptides 2011, 32, 707–712. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Gillespie, K.M. Type 1 Diabetes: Pathogenesis and Prevention. C. Can. Med. Assoc. J. 2006, 18, 165–170. [Google Scholar] [CrossRef]
- Cavallo, M.G.; Monetini, L.; Walker, B.; Thorpe, R.; Pozzilli, P. Diabetes and cows’ milk. Lancet 1996, 348, 1655. [Google Scholar] [CrossRef]
- Laugesen, M.; Elliott, R. Ischaemic heart disease, Type 1 diabetes, and cow milk A1 beta-casein. N. Z. Med. J. 2003, 116, U295. [Google Scholar]
- McLachlan, C.N.S. β-casein A1, ischaemic heart disease mortality, and other illnesses. Med. Hypotheses 2001, 56, 262–272. [Google Scholar] [CrossRef]
- Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci. 2014, 52, 70–85. [Google Scholar] [CrossRef]
- Torreilles, J.; Guérin, M.C. [Casein-derived peptides can promote human LDL oxidation by a peroxidase-dependent and metal-independent process]. C. R. Seances Soc. Biol. Fil. 1995, 189, 933–942. [Google Scholar]
- Holvoet, P.; De Keyzer, D.; Jacobs, D.R. Oxidized LDL and the Metabolic Syndrome. Future Lipidol. 2008, 3, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Mischley, L.K.; Conley, K.E.; Shankland, E.G.; Kavanagh, T.J.; Rosenfeld, M.E.; Duda, J.E.; White, C.C.; Wilbur, T.K.; De La Torre, P.U.; Padowski, J.M. Central nervous system uptake of intranasal glutathione in Parkinson’s disease. NPJ Park. Dis. 2016, 2, 16002. [Google Scholar] [CrossRef] [PubMed]
- Summer, A.; Di Frangia, F.; Marsan, P.A.; De Noni, I.; Malacarne, M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3705–3723. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, O.; Kost, N.; Andreeva, O.; Korneeva, E.; Meshavkin, V.; Tarakanova, Y.; Dadayan, A.; Zolotarev, Y.; Grachev, S.; Mikheeva, I.; et al. Autistic children display elevated urine levels of bovine casomorphin-7 immunoreactivity. Peptides 2014, 56, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Jarmołowska, B.; Bukało, M.; Fiedorowicz, E.; Cieślińska, A.; Kordulewska, N.K.; Moszyńska, M.; Świątecki, A.; Kostyra, E. Role of Milk-Derived Opioid Peptides and Proline Dipeptidyl Peptidase-4 in Autism Spectrum Disorders. Nutrients 2019, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Woodford, K.; Kukuljan, S.; Ho, S. Milk Intolerance, Beta-Casein and Lactose. Nutrients 2015, 7, 7285–7297. [Google Scholar] [CrossRef] [PubMed]
- Koyasu, S.; Moro, K. Type 2 innate immune responses and the natural helper cell. Immunology 2011, 132, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Hanning, N.; Man, J.; Winter, B. Measuring Myeloperoxidase Activity as a Marker of Inflammation in Gut Tissue Samples of Mice and Rat. Bio-Protocol 2023, 13, e4758. [Google Scholar] [CrossRef]
- Selhub, E.M.; Logan, A.C.; Bested, A.C. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. 2014, 33, 2. 33. [CrossRef]
- Mihatsch, W.; Franz, A.; Kuhnt, B.; Högel, J.; Pohlandt, F. Hydrolysis of Casein Accelerates Gastrointestinal Transit via Reduction of Opioid Receptor Agonists Released from Casein in Rats. Neonatology 2005, 87, 160–163. [Google Scholar] [CrossRef]
- Andıran, F.; Dayı, S.; Mete, E. Cows milk consumption in constipation and anal fissure in infants and young children. J. Paediatr. Child Heal. 2003, 39, 329–331. [Google Scholar] [CrossRef]
- Zoghbi, S.; Trompette, A.; Claustre, J.; El Homsi, M.; Garzón, J.; Jourdan, G.; Scoazec, J.-Y.; Plaisancié, P. β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway. Am. J. Physiol. Liver Physiol. 2006, 290, G1105–G1113. [Google Scholar] [CrossRef]
- Jarmołowska, B.; Teodorowicz, M.; Fiedorowicz, E.; Sienkiewicz-Szłapka, E.; Matysiewicz, M.; Kostyra, E. Glucose and calcium ions may modulate the efficiency of bovine β-casomorphin-7 permeability through a monolayer of Caco-2 cells. Peptides 2013, 49, 59–67. [Google Scholar] [CrossRef]
- Li, J. Application of Beta-Casein A2 and Composition Thereof in Promoting Proliferation of Bifidobacterium. Available online: https://patents.google.com/patent/WO2021003741A1/en(accessed on 10 April 2024).
- Li, X.; Lu, X.; Liu, M.; Zhang, Y.; Jiang, Y.; Yang, X.; Man, C. The Immunomodulatory Effects of A2 β-Casein on Immunosuppressed Mice by Regulating Immune Responses and the Gut Microbiota. Nutrients 2024, 16, 519. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, Z.; Wang, X.; Cade, R.; Elmir, Z.; Fregly, M. Relation of β-Casomorphin to Apnea in Sudden Infant Death Syndrome. Peptides 2003, 24, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Pasi, A.; Mahler, H.; Lansel, N.; Bernasconi, C.; Messiha, F.S. Beta-Casomorphin-Immunoreactivity in the Brain Stem of the Human Infant. Res. Commun. Chem. Pathol. Pharmacol. 1993, 80, 305–322. [Google Scholar]
- Wasilewska, J.; Sienkiewicz-Szłapka, E.; Kuźbida, E.; Jarmołowska, B.; Kaczmarski, M.; Kostyra, E. The Exogenous Opioid Peptides and DPPIV Serum Activity in Infants with Apnoea Expressed as Apparent Life Threatening Events (ALTE). Neuropeptides 2011, 45, 189–195. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- Schanler, R.J.; Shulman, R.J.; Lau, C. Feeding Strategies for Premature Infants: Beneficial Outcomes of Feeding Fortified Human Milk versus Preterm Formula. Pediatrics 1999, 103, 1150–1157. [Google Scholar] [CrossRef]
- Hedner, J.; Hedner, T. β-Casomorphins Induce Apnea and Irregular Breathing in Adult Rats and Newborn Rabbits. Life Sci. 1987, 41, 2303–2312. [Google Scholar] [CrossRef]
- Knipp, G.T.; Vander Velde, D.G.; Siahaan, T.J.; Borchardt, R.T. The Effect of β-Turn Structure on the Passive Diffusion of Peptides across Caco-2 Cell Monolayers. Pharm. Res. 1997, 14, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Iwan, M.; Jarmołowska, B.; Bielikowicz, K.; Kostyra, E.; Kostyra, H.; Kaczmarski, M. Transport of μ-Opioid Receptor Agonists and Antagonist Peptides across Caco-2 Monolayer. Peptides 2008, 29, 1042–1047. [Google Scholar] [CrossRef]
- Ranad, A.; Singh, P.K.; Singh, R.; Yadav, S.; Shrivastav, N.; Agarwal, N. Derived Casomorphins and Their Health Significance: A Review. Pharma Innov. J. 2023, 12, 1224–1229. [Google Scholar]
- Andiç, S.; Ayaz, R.M.; Oğuz, Ş. A1 Milk and Beta-Casomorphin-7. Food Heal. 2021, 7, 128–137. [Google Scholar] [CrossRef]
- Aslam, H.; Ruusunen, A.; Berk, M.; Loughman, A.; Rivera, L.; Pasco, J.A.; Jacka, F.N. Unravelled Facets of Milk Derived Opioid Peptides: A Focus on Gut Physiology, Fractures and Obesity. Int. J. Food Sci. Nutr. 2020, 71, 36–49. [Google Scholar] [CrossRef]
- Michaëlsson, K.; Wolk, A.; Langenskiöld, S.; Basu, S.; Lemming, E.W.; Melhus, H.; Byberg, L. Milk Intake and Risk of Mortality and Fractures in Women and Men: Cohort Studies. BMJ 2014, 349, g6015. [Google Scholar] [CrossRef]
- Fernández-Rico, S.; Mondragón, A.D.C.; López-Santamarina, A.; Cardelle-Cobas, A.; Regal, P.; Lamas, A.; Ibarra, I.S.; Cepeda, A.; Miranda, J.M. A2 Milk: New Perspectives for Food Technology and Human Health. Foods 2022, 9, 2387. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.H.; Schwendel, H.; Harland, D.; Day, L. Differences in the Yoghurt Gel Microstructure and Physicochemical Properties of Bovine Milk Containing A1A1 and A2A2 β-Casein Phenotypes. Food Res. Int. 2018, 112, 217–224. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolat, E.; Eker, F.; Yılmaz, S.; Karav, S.; Oz, E.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024, 29, 2161. https://doi.org/10.3390/molecules29092161
Bolat E, Eker F, Yılmaz S, Karav S, Oz E, Brennan C, Proestos C, Zeng M, Oz F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules. 2024; 29(9):2161. https://doi.org/10.3390/molecules29092161
Chicago/Turabian StyleBolat, Ecem, Furkan Eker, Selin Yılmaz, Sercan Karav, Emel Oz, Charles Brennan, Charalampos Proestos, Maomao Zeng, and Fatih Oz. 2024. "BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms" Molecules 29, no. 9: 2161. https://doi.org/10.3390/molecules29092161
APA StyleBolat, E., Eker, F., Yılmaz, S., Karav, S., Oz, E., Brennan, C., Proestos, C., Zeng, M., & Oz, F. (2024). BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules, 29(9), 2161. https://doi.org/10.3390/molecules29092161