A 4D-Printable Photocurable Resin Derived from Waste Cooking Oil with Enhanced Tensile Strength
Abstract
:1. Introduction
2. Result and Discussion
2.1. Structural Characterization
2.2. Mechanical Properties
2.3. Shape Memory Property
2.4. Biodegradability
3. Materials and Methods
3.1. Materials
3.2. Synthesis and 4D Printing of Photocurable Resin Based on WCO
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WCO | Waste cooking oil |
E-WCO | Epoxy waste cooking oil |
EWOMA | Epoxy waste oil methacrylate |
EWOA | Epoxy waste oil acrylate |
MAA | Methacrylic acid |
AA | Acrylic acid |
TEGDMA | Triethylene glycol dimethacrylate |
PEGDA | PPh3 Triphenylphosphine |
TPGDA | Tripropylene glycol diacrylate |
HDMA | 1,6-hexanediol dimethacrylate |
GDMA | Glycerol dimethacrylate |
EGDMA | Ethylene glycol dimethacrylate |
Irgacure 819 | phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide |
DMAB | p-dimethylaminobenzaldehyde |
HQ | Hydroquinone |
PPh3 | Triphenylphosphine |
Symbols | |
A1–A3 WCO | Resin samples containing different amounts of EWOA and TEGDMA |
MA1–MA3 WCO | Resin samples containing different amounts of EWOMA and TEGDMA |
A2–F2 WCO | Resin samples composed of EWOA and different diacrylate molecules |
References
- Joharji, L.; Mishra, R.B.; Alam, F.; Tytov, S.; Al-Modaf, F.; El-Atab, N. 4D printing: A detailed review of materials, techniques, and applications. Microelectron. Eng. 2022, 265, 111874. [Google Scholar] [CrossRef]
- Manshor, M.R.; Alli, Y.A.; Anuar, H.; Ejeromedoghene, O.; Omotola, E.O.; Suhr, J. 4D printing: Historical evolution, computational insights and emerging applications. Mater. Sci. Eng. B 2023, 295, 116567. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Ettelaie, R.; Mohammadi, A.; Asghartabar, K.P. Multimaterial 3D printing of self-assembling smart thermo-responsive polymers into 4D printed objects: A review. Addit. Manuf. 2023, 71, 103598. [Google Scholar] [CrossRef]
- Shinde, S.; Mane, R.; Vardikar, A.; Dhumal, A.; Rajput, A. 4D printing: From emergence to innovation over 3D printing. Eur. Polym. J. 2023, 197, 112356. [Google Scholar] [CrossRef]
- Ameta, K.L.; Solanki, V.S.; Singh, V.; Devi, A.P.; Chundawat, R.S.; Haque, S. Critical appraisal and systematic review of 3D & 4D printing in sustainable and environment-friendly smart manufacturing technologies. Sustain. Mater. Technol. 2022, 34, e00481. [Google Scholar]
- Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qin, H.; Dunn, M.L. Direct 4D printing via active composite materials. Sci. Adv. 2017, 3, e1602890. [Google Scholar] [CrossRef] [PubMed]
- Raviv, D.; Zhao, W.; Mcknelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; et al. Active printed materials for complex self-evolving deformations. Sci. Rep. 2014, 4, 7422. [Google Scholar] [CrossRef] [PubMed]
- Nadgorny, M.; Xiao, Z.; Chen, C.; Connal, L.A. Three-Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer. ACS Appl. Mater. Interfaces 2016, 8, 28946–28954. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Wei, S.; Jiang, X.; Holmes, D.P.; Ghosh, T.K. Bioinspired Electrically Activated Soft Bistable Actuators. Adv. Funct. Mater. 2018, 28, 1802999. [Google Scholar] [CrossRef]
- Ortiz, A.R.; Valdez, A.E.G.; Gustavo, S.A.; Padilla, G.A.; Berlanga, O.A. Photocurable shape-memory polyether-polythioether/graphene nanocomposites and the study of their thermal conductivity. J. Polym. Res. 2018, 25, 160. [Google Scholar] [CrossRef]
- Grauzeliene, S.; Kastanauskas, M.; Talacka, V.; Ostrauskaite, J. Photocurable Glycerol- and Vanillin-Based Resins for the Synthesis of Vitrimers. ACS Appl. Polym. Mater. 2022, 4, 6103–6110. [Google Scholar] [CrossRef] [PubMed]
- Jaras, J.; Navaruckiene, A.; Skliutas, E.; Jersovaite, J.; Malinauskas, M.; Ostrauskaite, J. Thermo-Responsive Shape Memory Vanillin-Based Photopolymers for Microtransfer Molding. Polymers 2022, 14, 2460. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, M.Y.; Fan, X.G.; Wang, L.; Liang, J.Y.; Jin, X.Y.; Che, R.J.; Ying, W.Y.; Chen, S.P. Four-Dimensional Printing of Multifunctional Photocurable Resin Based on Waste Cooking Oil. ACS Sustain. Chem. Eng. 2022, 10, 16344–16358. [Google Scholar] [CrossRef]
- Rossegger, E.; Höller, R.; Reisinger, D.; Strasser, J.; Fleisch, M.; Griesser, T.; Schlögl, S. Digital light processing 3D printing with thiol–acrylate vitrimers. Polym. Chem. 2021, 12, 639–644. [Google Scholar] [CrossRef]
- Miao, J.T.; Ge, M.; Peng, S.; Zhong, J.; Li, Y.; Weng, Z.; Wu, L.; Zheng, L. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing. ACS Appl. Mater. Interfaces 2019, 11, 40642–40651. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Zhou, D.; Guo, T.; He, W.; Cui, C.; Zhou, Y.; Zhang, Y.; Tang, Z.; Zhang, X.; Wang, Q.; et al. 4D printing of shape memory inferior vena cava filters based on copolymer of poly(glycerol sebacate) acrylate-co-hydroxyethyl methacrylate (PGSA-HEMA). Mater. Des. 2023, 225, 111556. [Google Scholar] [CrossRef]
- Wu, H.; Chen, P.; Yan, C.; Cai, C.; Shi, Y. Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing. Mater. Des. 2019, 171, 107704. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Wang, M.; Wang, Z.; Han, G.; Jin, L.; Lin, P.; Xia, Y.; Zhang, K. Mechanically Robust and Reprocessable Acrylate Vitrimers with Hydrogen-Bond-Integrated Networks for Photo-3D Printing. ACS Appl. Mater. Interfaces 2020, 13, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Molino, B.Z.; O’connell, C.; Kageyama, T.; Yan, L.; Wu, Y.; Kawamura, I.; Maruo, S.; Fukuda, J. Gelatin acrylamide with improved UV crosslinking and mechanical properties for 3D biofabrication. J. Biosci. Bioeng. 2023, 136, 51–57. [Google Scholar] [CrossRef]
- Qu, G.; Huang, J.; Li, Z.; Jiang, Y.; Liu, Y.; Chen, K.; Xu, Z.; Zhao, Y.; Gu, G.; Wu, X.; et al. 4D-printed bilayer hydrogel with adjustable bending degree for enteroatmospheric fistula closure. Mater. Today Bio 2022, 16, 100363. [Google Scholar] [CrossRef]
- Cortés, A.; Cosola, A.; Sangermano, M.; Campo, M.; Prolongo, G.S.; Pirri, C.F.; Jiménez, S.; Chiappone, A. DLP 4D-Printing of Remotely, Modularly, and Selectively Controllable Shape Memory Polymer Nanocomposites Embedding Carbon Nanotubes. Adv. Funct. Mater. 2021, 31, 2106774. [Google Scholar] [CrossRef]
- Gugulothu, S.B.; Chatterjee, K. Visible Light-Based 4D-Bioprinted Tissue Scaffold. ACS Macro Lett. 2023, 12, 494–502. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, J.; Zhang, D.; Zhang, Y.; Chen, J. Structurally Dynamic Gelatin-Based Hydrogels with Self-Healing, Shape Memory, and Cytocompatible Properties for 4D Printing. Biomacromolecules 2022, 24, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.; Li, Y. Development and kinetic evaluation of a low-cost temperature-sensitive shape memory polymer for 4-dimensional printing. Int. J. Adv. Manuf. Technol. 2020, 106, 4263–4279. [Google Scholar] [CrossRef]
- Maines, E.M.; Porwal, M.K.; Ellison, C.J.; Reineke, T.M. Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 2021, 23, 6863–6897. [Google Scholar] [CrossRef]
- Gu, T.; Bi, H.; Sun, H.; Tang, J.; Ren, Z.; Zhou, X.; Xu, M. Design and development of 4D-printed cellulose nanofibers reinforced shape memory polymer composites: Application for self-deforming plant bionic soft grippers. Addit. Manuf. 2023, 70, 103544. [Google Scholar] [CrossRef]
- Mohan, D.; Khai, Z.T.; Sajab, S.M.; Kaco, H. Well-dispersed cellulose-graphene in 4D printing biopolymer. Mater. Lett. 2021, 303, 130522. [Google Scholar] [CrossRef]
- Yuan, R.; Wu, K.; Fu, Q. 3D printing of all-regenerated cellulose material with truly 3D configuration: The critical role of cellulose microfiber. Carbohydr. Polym. 2022, 294, 119784. [Google Scholar] [CrossRef]
- Feng, X.; Yang, Z.; Wang, S.; Wu, Z. The reinforcing effect of lignin-containing cellulose nanofibrils in the methacrylate composites produced by stereolithography. Polym. Eng. Sci. 2022, 62, 2968–2976. [Google Scholar] [CrossRef]
- Morales, M.G.; Sethupathy, S.; Zhang, M.; Xu, L.; Ghaznavi, A.; Xu, J.; Yang, B.; Sun, J.; Zhu, D. Characterization and 3D printing of a biodegradable polylactic acid/thermoplastic polyurethane blend with laccase-modified lignin as a nucleating agent. Int. J. Biol. Macromol. 2023, 236, 123881. [Google Scholar] [CrossRef]
- Zhou, X.; Ren, Z.; Sun, H.; Bi, H.; Gu, T.; Xu, M. 3D printing with high content of lignin enabled by introducing polyurethane. Int. J. Biol. Macromol. 2022, 221, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, J.; Lu, J.; Huang, J.; Zhang, F.; Hu, Y.; Liu, C.; An, R.; Miao, H.; Chen, Y.; et al. Preparation and Properties of Plant-Oil-Based Epoxy Acrylate-Like Resins for UV-Curable Coatings. Polymers 2020, 12, 2165. [Google Scholar] [CrossRef] [PubMed]
- Guit, J.; Tavares, M.B.L.; Hul, J.; Ye, C.; Loos, K.; Jager, J.; Folkersma, R.; Voet, V.S.D. Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography. ACS Appl. Polym. Mater. 2020, 2, 949–957. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, X.; Liu, R.; Liu, X.; Liu, J. Highly functional bio-based acrylates with a hard core and soft arms: From synthesis to enhancement of an acrylated epoxidized soybean oil-based UVcurable coating. Prog. Org. Coat. 2019, 134, 342–348. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, H.; Wang, X.; Zhao, T. Development of green waterborne UV-curable vegetable oil-based urethane acrylate pigment prints adhesive: Preparation and application. J. Clean. Prod. 2018, 180, 272–279. [Google Scholar] [CrossRef]
- Miao, S.; Zhu, W.; Castro, N.J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J.P.; Zhang, L.G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016, 6, 27226. [Google Scholar] [CrossRef] [PubMed]
- Staroń, A. Composite Materials Based on Waste Cooking Oil for Construction Applications. Buildings 2023, 13, 994. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Wang, H.; Kazemi, M.; Fini, E. Research progress on resource utilization of waste cooking oil in asphalt materials: A state-of-the-art review. J. Clean. Prod. 2023, 385, 135427. [Google Scholar] [CrossRef]
- Landi, F.F.D.A.; Fabiani, C.; Castellani, B.; Cotana, F.; Pisello, A.L. Environmental assessment of four waste cooking oil valorization pathways. Waste Manag. 2022, 138, 219–233. [Google Scholar] [CrossRef]
- Aderibigbe, F.A.; Saka, H.B.; Mustapha, S.I.; Amosa, M.K.; Shiru, S.; Tijani, I.A.; Babatunde, E.O.; Bello, B.T. Waste Cooking Oil Conversion to Biodiesel Using Solid Bifunctional Catalysts. ChemBioEng Rev. 2023, 10, 293–310. [Google Scholar] [CrossRef]
- Degfie, T.A.; Mamo, T.T.; Mekonnen, Y.S. Author Correction: Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst. Sci. Rep. 2023, 13, 5898. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.R.; Bhanderi, K.K.; Patel, J.V. Waste cooking oil as a promising source for bio lubricants—A review. J. Indian Chem. Soc. 2023, 100, 100820. [Google Scholar] [CrossRef]
- Paul, A.K.; Borugadda, V.B.; Goud, V.V. In-Situ Epoxidation of Waste Cooking Oil and Its Methyl Esters for Lubricant Applications: Characterization and Rheology. Lubricants 2021, 9, 27. [Google Scholar] [CrossRef]
- Azzena, U.; Montenero, A.; Carraro, M.; Crisafulli, R.; Luca, L.D.; Gaspa, S.; Muzzu, A.; Nuvoli, L.; Polese, R.; Pisano, L.; et al. Recovery, Purifcation, Analysis and Chemical Modifcation of a Waste Cooking Oil. Waste Biomass Valorization 2023, 14, 145–157. [Google Scholar] [CrossRef]
- Orozco, L.M.; Cardona, S.; Gomez, C.; Inciarte, H.; Villada, Y.; Rios, L. Evaluation of KHSO4 as a recyclable catalyst in the production of dehydrated castor oil to be applied in alkyd resins. Prog. Org. Coat. 2021, 161, 106467. [Google Scholar] [CrossRef]
- Cai, D.L.; Yue, X.; Hao, B.; Ma, P.C. A sustainable poly(vinyl chloride) plasticizer derivated from waste cooking oil. J. Clean. Prod. 2020, 274, 122781. [Google Scholar] [CrossRef]
- Pan, S.; Yan, J.; Peng, X.; Xu, Z.; Zeng, Q.; Wang, Z.; Zhao, M.; Chen, Y. Y-Shaping All Components in Waste Cooking Oil-Derived Epoxidized Fatty Acid Methyl Esters toward a Leaching-Resistant Bioplasticizer. ACS Sustain. Chem. Eng. 2023, 11, 1492–1501. [Google Scholar] [CrossRef]
- Pospisilova, A.; Novackova, I.; Prikryl, R. Isolation of poly(3-hydroxybutyrate) from bacterial biomass using soap made of waste cooking oil. Bioresour. Technol. 2021, 326, 124683. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Toor, S.S.; Brandão, J.; Pedersen, T.H.; Rosendahl, L.A. Optimized conversion of waste cooking oil into ecofriendly bio-based polymeric surfactant- A solution for enhanced oil recovery and green fuel compatibility. J. Clean. Prod. 2021, 294, 126214. [Google Scholar] [CrossRef]
- El-Dalatony, M.M.; Sharma, P.; Hussein, E.E.; Elnaggar, A.Y.; Salama, E.S. Pig- and vegetable-cooked waste oils as feedstock for biodiesel, biogas, and biopolymer production. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.S.; Ng, Y.H.; Wong, J.W.C.; Kim, S.H. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef] [PubMed]
- Örs, İ. Experimental investigation of the cetane improver and bioethanol addition for the use of waste cooking oil biodiesel as an alternative fuel in diesel engines. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 177. [Google Scholar] [CrossRef]
- El-Seesy, A.I.; Waly, M.S.; El-Batsh, H.M.; El-Zoheiry, R.M. Enhancement of the waste cooking oil biodiesel usability in the diesel engine by using n-decanol, nitrogen-doped, and amino-functionalized multi-walled carbon nanotube. Energy Convers. Manag. 2023, 277, 116646. [Google Scholar] [CrossRef]
- El-Zohairy, R.M.; Attia, A.S.; Huzayyin, A.S.; El-Seesy, A.I. Effect of diethyl ether addition to waste cooking oil biodiesel on the combustion and emission characteristics of a swirl-stabilized premixed flame. Energy Convers. Manag. 2023, 286, 117052. [Google Scholar] [CrossRef]
- Niyas, M.M.; Shaija, A. Biodiesel production from coconut waste cooking oil using novel solar powered rotating flask oscillatory flow reactor and its utilization in diesel engine. Therm. Sci. Eng. Prog. 2023, 40, 101794. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Wang, P.; Ying, W.; Liu, Q.; Ding, G.; Chen, S. Synthesis and Properties of a Photocurable Coating Based on Waste Cooking Oil. Coatings 2023, 13, 1553. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, X.; Liu, M.; Wang, L.; Wang, P.; Xiu, H.; Chen, Y.; Chen, S. Fatty acid wax from epoxidation and hydrolysis treatments of waste cooking oil: Synthesis and properties. RSC Adv. 2022, 12, 36018–36027. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, M.; Qi, Y.; Jin, X.; Xiu, H.; Chen, Y.; Chen, S.; Su, H. Synthesis and properties of wax based on waste cooking oil. RSC Adv. 2022, 12, 3365–3371. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Miao, W.; Wang, N.; Chen, H.; Wang, X.; Wang, J.; Tan, Q.; Chen, S. Solid alcohol based on waste cooking oil: Synthesis, properties, micromorphology and simultaneous synthesis of biodiesel. Waste Manag. 2019, 85, 295–303. [Google Scholar] [CrossRef]
- Wu, B.; Sufi, A.; Biswas, G.R.; Hisatsune, A.; Paquette, M.V.; Ning, P.; Soong, R.; Dicks, A.P.; Simpson, A.J. Direct Conversion of McDonald’s Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin. ACS Sustain. Chem. Eng. 2020, 8, 1171–1177. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, M.; Ji, M.; Kuang, X.; Qi, H.J.; Wang, T. Recyclable thermosetting polymers for digital light processing 3D printing. Mater. Des. 2021, 197, 109189. [Google Scholar] [CrossRef]
- Chung, J.H.; Ma, S.Y.; Bail, R.; Lee, D.H. Synthesis of Crosslinkable Polyetherimide and Application as an Additive in 3D Printing of Photopolymers. Macromol. Res. 2022, 30, 43–50. [Google Scholar] [CrossRef]
- Shan, J.; Yang, Z.; Chen, G.; Hu, Y.; Luo, Y.; Dong, X.; Zheng, W.; Zhou, W. Design and Synthesis of Free-Radical/Cationic Photosensitive Resin Applied for 3D Printer with Liquid Crystal Display (LCD) Irradiation. Polymers 2020, 12, 1346. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Chen, Y.; Hu, M.; Qin, S.; Liu, P. 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing. Mater. Res. Express 2020, 7, 105305. [Google Scholar] [CrossRef]
- Yang, S.; Chen, T.; Bu, Z.; Tuo, X.; Gong, Y.; Guo, J. Thermal responsive photopolymerization 3D printed shape memory polymers enhanced by heat transfer media. J. Appl. Polym. Sci. 2022, 140, e53514. [Google Scholar] [CrossRef]
Sample | Tensile Strength (MPa) | Elongation at Break (%) | Biodegradation Rates (45 d Weight Loss, %) | Production Cost ($/kg) |
---|---|---|---|---|
EWOA-TEGDMA resin (A2 sample) | 9.17 | 15.39 | 8.34 | 3.0 a |
Commercial 3D printing photocurable resin | 22.35 | 15.80 | 1.95 | 20.7 |
Sample | A2 | B2 | C2 | D2 | E2 | F2 |
---|---|---|---|---|---|---|
EWOA (g) | 100 | 100 | 100 | 100 | 100 | 100 |
PEGDA (g) | - | 100 | - | - | - | - |
TPGDA (g) | - | - | 100 | - | - | - |
TEGDMA (g) | 100 | - | - | - | - | - |
HDMA (g) | - | - | - | 100 | - | - |
GDMA (g) | - | - | - | - | 100 | - |
EGDMA (g) | - | - | - | - | - | 100 |
Irgacure 819 (g) | 6 | 6 | 6 | 6 | 6 | 6 |
DMAB (g) | 6 | 6 | 6 | 6 | 6 | 6 |
Numbering | EWOA (g) | EWOMA (g) | TEGDMA (g) | Irgacure 819 (g) | DMAB (g) |
---|---|---|---|---|---|
A1 | 100 | 0 | 50 | 4.5 | 4.5 |
A2 | 100 | 0 | 100 | 6 | 6 |
A3 | 50 | 0 | 100 | 4.5 | 4.5 |
MA1 | 100 | 0 | 50 | 4.5 | 4.5 |
MA2 | 100 | 0 | 100 | 6 | 5 |
MA3 | 50 | 0 | 100 | 4.5 | 4.5 |
EWOA (control sample) | 100 | 0 | 0 | 3 | 3 |
EWOMA (control sample) | 0 | 100 | 0 | 3 | 3 |
TEGDMA (control sample) | 0 | 0 | 100 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, M.-Y.; Fan, X.-G.; Wang, P.-Y.; Chen, S.-P. A 4D-Printable Photocurable Resin Derived from Waste Cooking Oil with Enhanced Tensile Strength. Molecules 2024, 29, 2162. https://doi.org/10.3390/molecules29092162
Liu Y, Liu M-Y, Fan X-G, Wang P-Y, Chen S-P. A 4D-Printable Photocurable Resin Derived from Waste Cooking Oil with Enhanced Tensile Strength. Molecules. 2024; 29(9):2162. https://doi.org/10.3390/molecules29092162
Chicago/Turabian StyleLiu, Yan, Meng-Yu Liu, Xin-Gang Fan, Peng-Yu Wang, and Shuo-Ping Chen. 2024. "A 4D-Printable Photocurable Resin Derived from Waste Cooking Oil with Enhanced Tensile Strength" Molecules 29, no. 9: 2162. https://doi.org/10.3390/molecules29092162
APA StyleLiu, Y., Liu, M. -Y., Fan, X. -G., Wang, P. -Y., & Chen, S. -P. (2024). A 4D-Printable Photocurable Resin Derived from Waste Cooking Oil with Enhanced Tensile Strength. Molecules, 29(9), 2162. https://doi.org/10.3390/molecules29092162