Development of Self-Assembling bis-1,4-Dihydropyridines: Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of bis-1,4-Dihydropyrdines
2.2. Bromination of Methyl Groups at Positions 2 and 6 of 1,4-Dihydropyridine
2.3. Synthesis of bis-1,4-Dihydropyridine Amphiphiles
2.4. Estimation of Self-Assembling Properties
3. Materials and Methods
3.1. Synthesis of bis-1,4-Dihydropyridines 10a,b
- Tetraethyl 4,4′-([1,1′-biphenyl]-4,4′-diyl)bis(2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) (10a): Ethyl 3-oxobutanoate (7a, 1.25 g, 9.6 mmol), [1,1′-biphenyl]-4,4′-dicarbaldehyde (8, 500 mg, 2.4 mmol) and ammonium acetate (9, 426 mg, 5.5 mmol) were dissolved in ethanol (70 mL) and the resulting mixture was refluxed in a pressure vessel for 24 h at 100 °C. The reaction mixture was cooled to 4 °C. Resulting precipitate was filtered off, washed with cold methanol and dried under vacuum to give the desired product 10a as a yellowish powder (1.08 g, 68%). 1H-NMR (300 MHz, DMSO-d6) δ 8.82 (bs, 2H), 7.43 (d, J = 8.4 Hz, 4H), 7.19 (d, J = 8.4 Hz, 4H), 4.88 (s, 2H), 4.05–3.94 (m, 8H), 2.27 (s, 12H), 1.14 (t, J = 7.1 Hz, 12H) ppm. 1H-NMR spectra data were in agreement with data reported in the literature [16].
- Tetradodecyl 4,4′-([1,1′-biphenyl]-4,4′-diyl)bis(2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) (10b): Dodecyl 3-oxobutanoate (7b, 5.19 g, 19.2 mmol), [1,1′-biphenyl]-4,4′-dicarbaldehyde (8, 1.00 g, 4.8 mmol) and ammonium acetate (9, 0.85 g, 11.0 mmol) were dissolved in ethanol (70 mL) and the resulting mixture was refluxed in a pressure vessel for 72 h at 100 °C. The reaction mixture was concentrated under reduced pressure and the crude product was purified by flash column chromatography with EtOAc/PE, (0:100 to 50:50%) as eluent to give the desired product 10b as a yellowish solid (2.15 g, 37%). m.p. 133–135 °C. Rf = 0.39 (EtOAc:PE, 1:2). 1H-NMR (400 MHz, CDCl3) δ 7.41–7.33 (m, 4H), 7.31–7.27 (m, 4H), 5.58 (bs, 2H), 5.02 (s, 2H), 4.03 (t, J = 6.7 Hz, 8H), 2.35 (s, 12H), 1.65–1.55 (m, 8H), 1.30–1.23 (m, 72H), 0.90–0.85 (m, 12H) ppm. 13C-NMR (101 MHz, CDCl3) δ 167.8, 146.5, 144.0, 139.2, 128.3, 126.7, 104.3, 64.1, 39.3, 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 28.9, 26.2, 22.8, 19.8, 14.3 ppm. Anal. calc. for C78H124N2O8: C, 76.93; H, 10.26; N, 2.30 found: C, 76.85; H, 10.24; N, 2.47.
3.2. Synthesis of Bis(2,6-bis(bromomethyl)-1,4-dihydropyridines 11a,b
- Tetraethyl 4,4′-([1,1′-biphenyl]-4,4′-diyl)bis(2,6-bis(bromomethyl)-1,4-dihydropyridine-3,5-dicarboxylate) (11a): To a stirred solution of compound 10a (296 mg, 0.45 mmol) in EtOAc (200 mL), a solution of pyridinium bromide–perbromide (3, 620 mg, 1.84 mmol) in EtOAc (60 mL) was added dropwise and the resulting reaction mixture was stirred for 30 min at r.t. and monitored by TLC. The reaction mixture was concentrated under reduced pressure and the crude product was purified by flash column chromatography with EtOAc/PE, (0:100 to 40:60%) as eluent to give the desired product 11a as a yellow solid (161 mg, 38%). m.p. 197–199 °C (decomp.). Rf = 0.36 (EtOAc:PE, 1:3). 1H-NMR (400 MHz, DMSO-d6) δ 9.63 (bs, 2H), 7.50–7.46 (m, 4H), 7.23–7.19 (m, 4H), 4.94 (s, 2H), 4.72 and 4.57 (AB-system, 2d, J = 9.7 Hz, 4H and 4H), 4.11–4.05 (m, 8H), 1.18 (t, J = 7.1 Hz, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 179.4, 165.5, 144.2, 138.2, 127.9, 126.4, 103.2, 60.0, 29.5, 27.0, 14.0 ppm. Anal. calc. for C38H40Br4N2O8: C, 46.94; H, 4.15; N, 2.88 found: C, 46.66; H, 4.13; N, 3.25.
- Tetradodecyl 4,4′-([1,1′-biphenyl]-4,4′-diyl)bis(2,6-bis(bromomethyl)-1,4-dihydropyridine-3,5-dicarboxylate) (11b): To a stirred solution of compound 10b (500 mg, 0.41 mmol) in EtOAc (200 mL), a solution of pyridinium bromide–perbromide (3, 567 mg, 1.68 mmol) in EtOAc (100 mL) was added dropwise and the resulting reaction mixture was stirred for 30 min at r.t. The reaction rate was monitored by TLC. The reaction mixture was concentrated under reduced pressure and the crude product was purified by flash column chromatography with EtOAc/PE, (0:100 to 25:75%) as eluent to give the desired product 11b as a yellow oil (483 mg, 77%). m.p. 30–32 °C (decomp.). Rf = 0.66 (EtOAc:PE, 1:4). 1H-NMR (400 MHz, CDCl3) δ 7.42–7.38 (m, 4H), 7.31–7.27 (m, 4H), 6.52 (bs, 2H), 5.06 (s, 2H), 4.93 and 4.63 (AB-system, 2d, J = 11.5 Hz, 4H and 4H), 4.09 (t, J = 6.7 Hz, 8H), 1.65–1.60 (m, 8H), 1.31–1.24 (m, 72H), 0.91–0.83 (m, 12H) ppm. 13C-NMR (101 MHz, CDCl3) δ 166.3, 144.5, 141.7, 139.5, 128.3, 126.9, 106.0, 64.9, 39.8, 31.9, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 28.6, 27.4, 26.1, 22.7, 14.1 ppm. Anal. calc. for C78H120Br4N2O8 (with 0.6% hexane): C, 61.22; H, 7.93; N, 1.82 found: C, 61.59; H, 8.07; N, 1.87.
3.3. Synthesis of bis-1,4-Dihydropyridine Amphiphiles—General Procedure
- Diethyl 4-[4-[4-[3,5-bis(ethoxycarbonyl)-2,6-bis(pyridin-1-ium-1-ylmethyl)-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis(pyridin-1-ium-1-ylmethyl)-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (22a): Synthesized according to method A. Bromide 11a (100 mg, 0.10 mmol), pyridine (13, 15 mL) and MeOH (6 mL). The reaction mixture was stirred for 2 days. The crude product was purified by flash column chromatography with sat. KNO3/H2O/Acetone, (1:4:25) as an eluent to give the desired product 22a as a yellow powder (89 mg, 69%), m.p. 192–194 °C (decomp.). Rf = 0.59 (sat. KNO3:H2O:Acetone, 1:4:10). MS (+ESI) m/z (relative intensity) 242 (([M − 4Br]/4, 29%). 1H-NMR (400 MHz, DMSO-d6) δ 10.04 (bs, 2H), 8.98–8.92 (m, 8H), 8.59 (t, J = 7.7 Hz, 4H), 8.11 (t, J = 7.7 Hz, 8H), 7.55 (d, J = 8.2 Hz, 4H), 7.38 (d, J = 8.2 Hz, 4H), 6.06 and 5.56 (AB-system, 2d, J = 15.0 Hz, 4H and 4H), 5.06 (s, 2H), 4.06 (q, J = 7.1 Hz, 8H), 1.11 (t, J = 7.1 Hz, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.6, 146.4, 144.5, 138.6, 128.3, 128.0, 126.6, 68.7, 60.7, 56.7, 13.9 ppm. HRMS (TOF MS ES+): Calculated [C58H57N6O8 − 4H + H]+ 965.4238; found: 965.4232.
- Didodecyl 4-[4-[4-[3,5-bis(dodecoxycarbonyl)-2,6-bis(pyridin-1-ium-1-ylmethyl)-1,4-dihydro-pyridin-4-yl]phenyl]phenyl]-2,6-bis(pyridin-1-ium-1-ylmethyl)-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (22b): Synthesized according to method A. Bromide 11b (114 mg, 0.06 mmol), pyridine (13, 20 mL), MeOH (1 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in acetone and the resulting precipitate was filtered and washed with cold diethyl ether to give the desired product 22b as a dark yellow solid (75 mg, 54%), m.p. 184–186 °C. Rf = 0.12 (sat. KNO3:H2O:Acetone, 1:6:10). MS (+ESI) m/z (relative intensity) 382 ([M − 4Br]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 10.57 (bs, 2H), 9.03 (d, J = 5.5 Hz, 8H), 8.59 (t, J = 7.6 Hz, 4H), 8.12 (t, J = 7.6 Hz, 8H), 7.49 (d, J = 8.2 Hz, 4H), 7.37 (d, J = 8.2 Hz, 4H), 6.16 and 5.65 (AB-system, 2d, J = 14.7 Hz, 4H and 4H), 5.06 (s, 2H), 4.01 (t, J = 6.1 Hz, 8H), 1.56–1.48 (m, 8H), 1.24–1.20 (m, 72H), 0.85–0.81 (m, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.6, 146.3, 144.7, 138.7, 138.6, 128.2, 128.0, 126.5, 108.3, 64.6, 57.4, 31.3, 29.0, 28.9, 28.7, 28.6, 28.0, 25.6, 22.1, 13.9 ppm. HRMS (TOF MS ES+): Calculated [C98H140N6O8]4+ 382.2678; found: 382.2668.
- Diethyl 4-[4-[4-[2,6-bis[[4-(dimethylamino)pyridin-1-ium-1-yl]methyl]-3,5-bis(ethoxycarbonyl)-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[[4-(dimethylamino)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (23a): Synthesized according to method B. Bromide 11a (97 mg, 0.10 mmol), N,N-dimethylpyridin-4-amine (14, 55 mg, 0.45 mmol), DMF (10 mL). The reaction mixture was stirred for 3 days and monitored by TLC. The crude product was purified by flash column chromatography with sat. KNO3/H2O/Acetone, (1:4:25) as an eluent to give the desired product 23a as a yellowish powder (84 mg, 58%), m.p. 195–197 °C (decomp.). Rf = 0.41 (sat. KNO3:H2O:Acetone, 2:8:25). MS (+ESI) m/z (relative intensity) 282 ([M − 4Br − 2H]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 9.87 (bs, 2H), 8.13 (d, J = 7.8 Hz, 8H), 7.54 (d, J = 8.3 Hz, 4H), 7.31 (d, J = 8.3 Hz, 4H), 6.99 (d, J = 7.8 Hz, 8H), 5.56 and 5.13 (AB-system, 2d, J = 14.5 Hz, 4H and 4H), 5.02 (s, 2H), 4.08 (q, J = 7.1 Hz, 8H), 3.18 (s, 24H), 1.15 (t, J = 7.1 Hz, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.7, 155.9, 144.9, 141.6, 140.2, 138.5, 128.2, 126.6, 107.5, 107.1, 60.5, 54.3, 14.0 ppm. HRMS (TOF MS ES+): Calculated [C66H76N10O8 − 4H + 2H]2+ 569.3002; found: 569.2992.
- Didodecyl 4-[4-[4-[2,6-bis[[4-(dimethylamino)pyridin-1-ium-1-yl]methyl]-3,5-bis(dodecoxy-carbonyl)-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[[4-(dimethylamino)-pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (23b): Synthesized according to method B. Bromide 11b (101 mg, 0.07 mmol), N,N-dimethylpyridin-4-amine (14, 36 mg, 0.30 mmol), acetone (4 mL). The reaction mixture was stirred for 2 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 23b as a yellow solid (81 mg, 60%), m.p. 183–185 °C. Rf = 0.68 (sat. KNO3:H2O:Acetone, 1:4:10). MS (+ESI) m/z (relative intensity) 425 ([M − 4Br]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 10.39 (bs, 2H), 8.25 (d, J = 7.7 Hz, 8H), 7.48 (d, J = 8.2 Hz, 4H), 7.30 (d, J = 8.2 Hz, 4H), 6.98 (d, J = 7.7 Hz, 8H), 5.69 and 5.19 (AB-system, 2d, J = 14.3 Hz, 4H and 4H), 5.02 (s, 2H), 4.01 (t, J = 6.1 Hz, 8H), 3.18 (s, 24H), 1.58–1.49 (m, 8H), 1.25–1.19 (m, 72H), 0.86–0.80 (m, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.7, 155.9, 144.9, 141.7, 140.6, 138.5, 128.0, 126.4, 107.5, 107.0, 64.4, 53.4, 31.3, 29.1, 29.0, 28.8, 28.7, 28.0, 25.7, 22.1, 13.9 ppm. HRMS (TOF MS ES+): Calculated [C106H160N10O8]4+ 425.3081; found: 425.3100.
- Diethyl 4-[4-[4-[3,5-bis(ethoxycarbonyl)-2,6-bis[(4-propylpyridin-1-ium-1-yl)methyl]-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[(4-propylpyridin-1-ium-1-yl)methyl]-1,4-dihydro-pyridine-3,5-dicarboxylate tetrabromide (24a): Synthesized according to method A. Bromide 11a (60 mg, 0.06 mmol), pyridine 15 (3 mL), DMF (2 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 24a as a yellow solid (72 mg, 80%), m.p. 147–149 °C. Rf = 0.46 (sat. KNO3:H2O:Acetone, 1:4:35). MS (+ESI) m/z (relative intensity) 284 ([M − 4Br]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 10.43 (bs, 2H), 8.89 (d, J = 6.3 Hz, 8H), 7.99 (d, J = 6.3 Hz, 8H), 7.55 (d, J = 7.9 Hz, 4H), 7.37 (d, J = 7.9 Hz, 4H), 6.05 and 5.59 (AB-system, 2d, J = 14.7 Hz, 4H and 4H), 5.05 (s, 2H), 4.12–4.02 (m, 8H), 2.86 (t, J = 7.6 Hz, 8H), 1.66 (sext, J = 7.6 Hz, 8H), 1.11 (t, J = 7.6 Hz, 12H), 0.89 (t, J = 7.0 Hz, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.6, 163.2, 144.6, 143.8, 138.6, 128.3, 127.5, 126.6, 60.6, 57.0, 36.5, 22.6, 13.9, 13.3 ppm. HRMS (TOF MS ES+): Calculated [C70H84N6O8]4+ 284.1582; found: 284.1596.
- Didodecyl 4-[4-[4-[3,5-bis(dodecoxycarbonyl)-2,6-bis[(4-propylpyridin-1-ium-1-yl)methyl]-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[(4-propylpyridin-1-ium-1-yl)methyl]-1,4-dihydro-pyridine-3,5-dicarboxylate tetrabromide (24b): Synthesized according to method A. Bromide 11b (40 mg, 0.03 mmol), pyridine 15 (2 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 24b as a yellow solid (8 mg, 16%), m.p. 183–185 °C (decomp.). Rf = 0.55 (sat. KNO3:H2O:Acetone, 1:4:35). MS (+ESI) m/z (relative intensity) 424 ([M − 4Br]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 10.60 (bs, 2H), 8.87 (d, J = 6.1 Hz, 8H), 7.97 (d, J = 6.1 Hz, 8H), 7.48 (d, J = 7.9 Hz, 4H), 7.36 (d, J = 7.9 Hz, 4H), 6.07 and 5.54 (AB-system, 2d, J = 14.5 Hz, 4H and 4H), 5.06 (s, 2H), 4.06–3.95 (m, 8H), 2.85 (t, J = 7.5 Hz, 8H), 1.66 (sext, J = 7.5 Hz, 8H), 1.55–1.48 (m, 8H), 1.28–1.16 (m, 72H), 0.90 (t, J = 7.5 Hz, 12H), 0.85–0.81 (m, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.7, 163.1, 143.8, 128.2, 127.4, 126.4, 64.4, 36.5, 31.3, 29.0, 28.9, 28.7, 28.6, 28.0, 25.6, 22.6, 22.1, 13.9, 13.3 ppm. HRMS (TOF MS ES+): Calculated [C110H164N6O8]4+ 424.3147; found: 424.3134.
- Diethyl 4-[4-[4-[3,5-bis(ethoxycarbonyl)-2,6-bis[[4-(1-ethylpropyl)pyridin-1-ium-1-yl]-methyl]-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[[4-(1-ethylpropyl)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (25a): Synthesized according to method A. Bromide 11a (60 mg, 0.06 mmol), pyridine 16 (3 mL), DMF (2 mL). The reaction mixture was stirred for 4 days. The crude product was purified by flash column chromatography with sat. KNO3/H2O/Acetone (1:4:60) as an eluent to give the desired product 25a as a yellow solid (58 mg, 58%), m.p. 159–161 °C (decomp.). Rf = 0.38 (sat. KNO3:H2O:Acetone, 1:4:60). MS (+ESI) m/z (relative intensity) 312 ([M − 4Br]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 10.56 (bs, 2H), 8.90 (d, J = 6.3 Hz, 8H), 8.01 (d, J = 6.3 Hz, 8H), 7.49 (d, J = 7.9 Hz, 4H), 7.31 (d, J = 7.9 Hz, 4H), 5.96 and 5.61 (AB-system, 2d, J = 14.8 Hz, 4H and 4H), 5.02 (s, 2H), 4.11–3.95 (m, 8H), 2.80–2.74 (m, 4H), 1.80–1.71 (m, 8H), 1.64–1.53 (m, 8H), 1.07 (t, J = 7.1 Hz, 12H), 0.70 (m, 24H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 166.4, 143.9, 128.1, 126.7, 126.4, 60.3, 48.3, 27.4, 27.3, 13.9, 11.6, 11.5 ppm. HRMS (TOF MS ES+): Calculated [C78H100N6O8]4+ 312.1895; found: 312.1894.
- Didodecyl 4-[4-[4-[3,5-bis(dodecoxycarbonyl)-2,6-bis[[4-(1-ethylpropyl)pyridin-1-ium-1-yl]-methyl]-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[[4-(1-ethylpropyl)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridine-3,5-dicarboxylate (25b): Synthesized according to method A. Bromide 11b (47 mg, 0.03 mmol), pyridine 16 (2 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 25b as a yellow solid (41 mg, 64%), m.p. 152–154 °C (decomp.). Rf = 0.59 (sat. KNO3:H2O:Acetone, 1:4:60). MS (+ESI) m/z (relative intensity) 452 ([M − 4Br]+/4, 100%). 1H-NMR (400 MHz, DMSO-d6) δ 10.50 (bs, 2H), 8.94 (d, J = 6.2 Hz, 8H), 8.00 (d, J = 6.2 Hz, 8H), 7.45 (d, J = 7.9 Hz, 4H), 7.32 (d, J = 7.9 Hz, 4H), 6.01 and 5.63 (AB-system, 2d, J = 14.6 Hz, 4H and 4H), 5.04 (s, 2H), 4.05–3.91 (m, 8H), 2.83–2.71 (m, 4H), 1.81–1.72 (m, 8H), 1.63–1.55 (m, 8H), 1.52–1.44 (m, 8H), 1.24–1.18 (m, 72H), 0.86–0.80 (m, 12H), 0.71 (t, J = 7.3 Hz, 24H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 166.5, 165.7, 144.0, 128.1, 126.7, 126.3, 64.4, 48.2, 31.3, 29.0, 28.7, 28.0, 27.4, 27.3, 25.6, 22.1, 13.9, 11.6, 11.5 ppm. HRMS (TOF MS ES+): Calculated [C118H180N6O8]4+ 452.3460; found: 452.3460.
- Diethyl 4-[4-[4-[2,6-bis[(3-bromopyridin-1-ium-1-yl)methyl]-3,5-bis(ethoxycarbonyl)-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[(3-bromopyridin-1-ium-1-yl)methyl]-1,4-dihydro-pyridine-3,5-dicarboxylate tetrabromide (26a): Synthesized according to method A. Bromide 11a (60 mg, 0.06 mmol), pyridine 17 (2 mL). The reaction mixture was stirred for 2 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 26a as a yellow solid (79 mg, 80%), m.p. 190–192 °C (decomp.). Rf = 0.22 (sat. KNO3:H2O:Acetone, 1:4:35). MS (+ESI) m/z (relative intensity) 321 ([M − 4Br]+/4, 44%). 1H-NMR (400 MHz, DMSO-d6) δ 10.31 (bs, 2H), 9.40 (s, 4H), 9.13–8.98 (m, 4H), 8.97–8.80 (m, 4H), 8.21–7.97 (m, 4H), 7.58 (d, J = 8.3 Hz, 4H), 7.41 (d, J = 8.3 Hz, 4H), 6.16 and 5.64 (AB-system, 2d, J = 15.0 Hz, 4H and 4H), 5.05 (s, 2H), 4.09 (q, J = 7.1 Hz, 8H), 1.15 (t, J = 7.1 Hz, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.6, 148.8, 146.2, 144.6, 143.3, 138.6, 137.8, 128.7, 128.4, 126.7, 121.7, 108.5, 60.7, 57.7, 13.9 ppm. Anal. calc. for C58H56Br8N6O8: C, 43.34; H, 3.70; N, 5.23 found: C, 43.09; H, 4.01; N, 4.96.
- Didodecyl 4-[4-[4-[2,6-bis[(3-bromopyridin-1-ium-1-yl)methyl]-3,5-bis(dodecoxycarbonyl)-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[(3-bromopyridin-1-ium-1-yl)methyl]-1,4-dihydro-pyridine-3,5-dicarboxylate tetrabromide (26b): Synthesized according to method A. Bromide 11b (53 mg, 0.03 mmol), pyridine 17 (2 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 26b as a yellow solid (45 mg, 62%), m.p. 156–158 °C (decomp.). Rf = 0.21 (sat. KNO3:H2O:Acetone, 1:4:35). MS (+ESI) m/z (relative intensity) 461 ([M − 4Br]+/4, 23%). 1H-NMR (400 MHz, DMSO-d6) δ 10.32 (bs, 2H), 9.37 (s, 4H), 9.01 (d, J = 6.0 Hz, 4H), 8.89 (d, J = 8.3 Hz, 4H), 8.10–8.02 (m, 4H), 7.51 (d, J = 7.8 Hz, 4H), 7.39 (d, J = 7.8 Hz, 4H), 6.16 and 5.60 (AB-system, 2d, J = 14.7 Hz, 4H and 4H), 5.04 (s, 2H), 4.07–3.96 (m, 8H), 1.56–1.49 (m, 8H), 1.24–1.18 (m, 72H), 0.87–0.79 (m, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.7, 148.8, 146.1, 144.6, 143.4, 138.6, 128.7, 128.3, 126.4, 121.7, 108.5, 64.6, 57.6, 31.3, 29.0, 29.0, 28.7, 28.6, 28.0, 25.6, 22.1, 13.9 ppm. Anal. calc. for C98H136Br8N6O8 (with 1.2% water): C, 53.69; H, 6.39; N, 3.83 found: C, 53.33; H, 6.39; N, 3.81.
- Diethyl 4-[4-[4-[3,5-bis(ethoxycarbonyl)-2,6-bis[[4-(3-phenylpropyl)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[[4-(3-phenylpropyl)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (27a): Synthesized according to method A. Bromide 11a (31 mg, 0.03 mmol), pyridine 18 (3 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in hexane and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 27a as a yellowish solid (40 mg, 71%), m.p. 169–171 °C (decomp.). Rf = 0.57 (sat. KNO3:H2O:Acetone, 1:4:50). MS (+ESI) m/z (relative intensity) 360 ([M − 4Br]+/4, 100%). 1H-NMR (600 MHz, DMSO-d6) δ 10.43 (bs, 2H), 8.89 (d, J = 6.3 Hz, 8H), 7.99 (d, J = 6.3 Hz, 8H), 7.54 (d, J = 7.7 Hz, 4H), 7.37 (d, J = 7.7 Hz, 4H), 7.30–7.24 (m, 8H), 7.21–7.15 (m, 12H), 6.05 and 5.60 (AB-system, 2d, J = 14.7 Hz, 4H and 4H), 5.05 (s, 2H), 4.09–4.03 (m, 8H), 2.90–2.81 (m, 8H), 2.60–2.55 (m, 8H), 1.97–1.88 (m, 8H), 1.11 (t, J = 7.1 Hz, 12H) ppm. 13C-NMR (151 MHz, DMSO-d6) δ 165.5, 163.0, 149.5, 144.6, 143.8, 141.1, 138.4, 128.4, 128.3, 128.2, 127.5, 126.7, 126.0, 123.9, 108.3, 60.6, 56.9, 34.5, 34.4, 30.7, 13.9 ppm. HRMS (TOF MS ES+): Calculated [C94H100N6O8]4+ 360.1895; found: 360.1902.
- Didodecyl 4-[4-[4-[3,5-bis(dodecoxycarbonyl)-2,6-bis[[4-(3-phenylpropyl)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridin-4-yl]phenyl]phenyl]-2,6-bis[[4-(3-phenylpropyl)pyridin-1-ium-1-yl]methyl]-1,4-dihydropyridine-3,5-dicarboxylate tetrabromide (27b): Synthesized according to method A. Bromide 11b (54 mg, 0.04 mmol), pyridine 18 (3 mL). The reaction mixture was stirred for 4 days. The crude product was suspended in acetone and the resulting precipitate was filtered off and washed with cold diethyl ether to give the desired product 27b as a yellowish solid (47 mg, 57%), m.p. 215–217 °C (decomp.). Rf = 0.40 (sat. KNO3:H2O:Acetone, 1:4:60). MS (+ESI) m/z (relative intensity) 500 ([M − 4Br]+/4, 53%). 1H-NMR (400 MHz, DMSO-d6) δ 10.51 (bs, 2H), 8.89 (d, J = 6.2 Hz, 8H), 7.98 (d, J = 6.2 Hz, 8H), 7.49 (d, J = 7.9 Hz, 4H), 7.37 (d, J = 7.9 Hz, 4H), 7.31–7.24 (m, 8H), 7.22–7.15 (m, 12H), 6.07 and 5.58 (AB-system, 2d, J = 14.7 Hz, 4H and 4H), 5.07 (s, 2H), 4.06–3.95 (m, 8H), 2.89–2.82 (m, 8H), 2.62–2.55 (m, 8H), 1.93 (p, J = 7.8 Hz, 8H), 1.55–1.46 (m, 8H), 1.24–1.18 (m, 72H), 0.86–0.81 (m, 12H) ppm. 13C-NMR (101 MHz, DMSO-d6) δ 165.6, 162.9, 143.8, 141.1, 128.3, 128.2, 127.4, 126.4, 126.0, 64.5, 34.5, 34.4, 31.3, 30.7, 29.1, 29.0, 28.7, 28.6, 28.0, 25.6, 22.1, 13.9 ppm. HRMS (TOF MS ES+): Calculated [C134H180N6O8]4+ 500.3460; found: 500.3468.
3.4. Self-Assembling Properties of Compounds by Dynamic Light Scattering Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aatif, M.; Raza, M.A.; Javed, K.; Nashre-ul-Islam, S.M.; Farhan, M.; Alam, M.W. Potential Nitrogen-Based Heterocyclic Compounds for Treating Infectious Diseases: A Literature Review. Antibiotics 2022, 11, 1750. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Hao, Z.-Y.; Liang, D.; Zhang, C.-L.; Liu, Y.-F.; Wang, Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des. Devel. Ther. 2021, 15, 4289–4338. [Google Scholar] [CrossRef] [PubMed]
- Parthiban, A.; Parameshwar, M. 1,4-Dihydropyridine: Synthetic advances, medicinal and insecticidal properties. RSC Adv. 2022, 12, 29253–29290. [Google Scholar] [CrossRef]
- Malhi, D.S.; Sohal, H.S.; Singh, K.; Almarhoon, Z.M.; Bacha, A.B.; Al-Zaben, M.I. Highly Efficient Electrocarboxylation Method to Synthesize Novel Acid Derivatives of 1,4-Dihydropyridines and to Study Their Antimicrobial Activity. ACS Omega 2022, 7, 16055–16062. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef] [PubMed]
- Sohal, H.S. A review on recent trends in synthesis and applications of 1,4-dihydropyridines. Mater. Today Proc. 2022, 48, 1163–1170. [Google Scholar] [CrossRef]
- Lentz, F.; Reiling, N.; Spengler, G.; Kincses, A.; Csonka, A.; Molnár, J.; Hilgeroth, A. Dually Acting Nonclassical 1,4-Dihydropyridines Promote the Anti-Tuberculosis (Tb) Activities of Clofazimine. Molecules 2019, 24, 2873. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Zhou, M.; Guo, J.; Zhu, C.; Zhou, J.; Ma, M.; He, L. Calcium channel blockers versus other classes of drugs for hypertension. Cochrane Database Syst. Rev. 2022, 2022, CD003654. [Google Scholar] [CrossRef]
- Pajuste, K.; Hyvönen, Z.; Petrichenko, O.; Kaldre, D.; Rucins, M.; Cekavicus, B.; Ose, V.; Skrivele, B.; Gosteva, M.; Morin-Picardat, E.; et al. Gene delivery agents possessing antiradical activity: Self-assembling cationic amphiphilic 1,4-dihydropyridine derivatives. New J. Chem. 2013, 37, 3062–3075. [Google Scholar] [CrossRef]
- Apsite, G.; Timofejeva, I.; Vezane, A.; Vigante, B.; Rucins, M.; Sobolev, A.; Plotniece, M.; Pajuste, K.; Kozlovska, T.; Plotniece, A. Synthesis and Comparative Evaluation of Novel Cationic Amphiphile C12-Man-Q as an Efficient DNA Delivery Agent In Vitro. Molecules 2018, 23, 1540. [Google Scholar] [CrossRef]
- Razzaghi-Asl, N.; Miri, R.; Firuzi, O. Assessment of the Cytotoxic Effect of a Series of 1,4-Dihydropyridine Derivatives Against Human Cancer Cells. Iran. J. Pharm. Res. 2016, 15, 413–420. [Google Scholar] [PubMed]
- Abdella, A.M.; Abdelmoniem, A.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Synthesis of heterocyclic compounds via Michael and Hantzsch reactions. J. Heterocycl. Chem. 2020, 57, 1476–1523. [Google Scholar] [CrossRef]
- Zhu, S.; Tu, S.; Gao, Y.; Miao, C.; Li, T.; Zhang, X.; Fang, F.; Shi, D. Synthesis of Bis-1,4-dihydropyridine Derivatives. ChemInform 2005, 36, 1011–1015. [Google Scholar] [CrossRef]
- Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A.J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N.R.; et al. Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. J. Am. Chem. Soc. 2010, 132, 14457–14469. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Easun, T.L.; Dhakshinamoorthy, A.; Cebula, I.; Beton, P.H.; Titman, J.J.; Garcia, H.; Thomas, K.M.; Schröder, M. Porous macromolecular dihydropyridyl frameworks exhibiting catalytic and halochromic activity. J. Mater. Chem. A 2014, 2, 19889–19896. [Google Scholar] [CrossRef]
- Gan, Z.; Okui, A.; Kawashita, Y.; Hayashi, M. Convenient Synthesis of Linear-extended Bipyridines Involving a Central Phenyl Linking Group. Chem. Lett. 2008, 37, 1302–1303. [Google Scholar] [CrossRef]
- Abdella, A.M.; Abdelmoniem, A.M.; Ibrahim, N.S.; El-Hallouty, S.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Synthesis, Cytotoxicity and Molecular Docking Simulation of Novel bis-1,4-Dihydropyridines Linked to Aliphatic or Arene Core via Amide or Ester-Amide Linkages. Mini-Rev. Med. Chem. 2020, 20, 801–816. [Google Scholar] [CrossRef] [PubMed]
- Kassab, R.M.; Elwahy, A.H.M.; Abdelhamid, I.A. 1,ω-Bis(formylphenoxy)alkane: Versatile precursors for novel bis-dihydropyridine derivatives. Monatshefte Chem.—Chem. Mon. 2016, 147, 1227–1232. [Google Scholar] [CrossRef]
- Sanad, S.M.H.; Kassab, R.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Microwave Assisted Multi-Component Synthesis of Novel Bis(1,4-dihydropyridines) Based Arenes or Heteroarenes. Heterocycles 2016, 92, 910. [Google Scholar] [CrossRef]
- Abdelhamid, I.A.; Darweesh, A.F.; Elwahy, A.H.M. Synthesis and characterization of poly(2,6-dimethyl-4-phenyl-1,4-dihydropyridinyl)arenes as novel multi-armed molecules. Tetrahedron Lett. 2015, 56, 7085–7088. [Google Scholar] [CrossRef]
- Rajesh, K.; Palakshi Reddy, B.; Vijayakumar, V. Novel bipodal, tripodal, and tetrapodal 1,4-dihydropyridines—Microwave-assisted synthesis and structural confinements. Can. J. Chem. 2011, 89, 1236–1244. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Ibrahim, N.S.; Elwahy, A.H.M.; Abdelhamid, I.A. Molecular Studies on Novel Antitumor Bis 1,4-Dihydropyridine Derivatives Against Lung Carcinoma and their Limited Side Effects on Normal Melanocytes. Anticancer Agents Med. Chem. 2018, 18, 2156–2168. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pliego, R.; Gómez-Zamudio, J.; Velasco-Bejarano, B.; Ibarra-Barajas, M.; Villalobos-Molina, R. Effect of bis-1,4-Dihydropyridine in the Kidney of Diabetic Rats. J. Pharmacol. Sci. 2013, 122, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Rucins, M.; Smits, R.; Sipola, A.; Vigante, B.; Domracheva, I.; Turovska, B.; Muhamadejev, R.; Pajuste, K.; Plotniece, M.; Sobolev, A.; et al. Pleiotropic Properties of Amphiphilic Dihydropyridines, Dihydropyridones, and Aminovinylcarbonyl Compounds. Oxid. Med. Cell. Longev. 2020, 2020, 8413713. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Griera, R.; Llor, N.; López-Aguilar, E.; Busquets, M.A.; Noé, V.; Ciudad, C.J. Trioleyl Pyridinium, a Cationic Transfection Agent for the Lipofection of Therapeutic Oligonucleotides into Mammalian Cells. Pharmaceutics 2023, 15, 420. [Google Scholar] [CrossRef]
- Aubets, E.; Griera, R.; Felix, A.J.; Rigol, G.; Sikorski, C.; Limón, D.; Mastrorosa, C.; Busquets, M.A.; Pérez-García, L.; Noé, V.; et al. Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. Eur. J. Pharm. Biopharm. 2021, 165, 279–292. [Google Scholar] [CrossRef]
- Massa, M.; Rivara, M.; Donofrio, G.; Cristofolini, L.; Peracchia, E.; Compari, C.; Bacciottini, F.; Orsi, D.; Franceschi, V.; Fisicaro, E. Gene-Delivery Ability of New Hydrogenated and Partially Fluorinated Gemini bispyridinium Surfactants with Six Methylene Spacers. Int. J. Mol. Sci. 2022, 23, 3062. [Google Scholar] [CrossRef]
- Ahmed, T.; Kamel, A.O.; Wettig, S.D. Interactions between DNA and Gemini surfactant: Impact on gene therapy: Part I. Nanomedicine 2016, 11, 289–306. [Google Scholar] [CrossRef]
- Rosen, M.J.; Tracy, D.J. Gemini surfactants. J. Surfactants Deterg. 1998, 1, 547–554. [Google Scholar] [CrossRef]
- Smile, S.S.; Novanna, M.; Kannadasan, S.; Shanmugam, P. DMSO–allyl bromide: A mild and efficient reagent for atom economic one-pot N -allylation and bromination of 2°-aryl amines, 2-aryl aminoamides, indoles and 7-aza indoles. RSC Adv. 2022, 12, 1834–1839. [Google Scholar] [CrossRef]
- Saikia, I.; Borah, A.J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, S.Q.; Cui, X.; Wang, Q.W.; Li, G.X.; Tang, Z. Chiral Phosphoric Acid Catalyzed Enantioselective Desymmetrization of 1,4-Dihydropyridines by C(sp3)−H Bromination. Angew. Chemie—Int. Ed. 2022, 61, e202201418. [Google Scholar] [CrossRef] [PubMed]
- Sircar, I.; Anderson, K.; Bonadies, L. An improved and efficient synthesis of 2-substituted 1,4-dihydropyridine derivatives via regiospecific bromination. Tetrahedron Lett. 1988, 29, 6835–6838. [Google Scholar] [CrossRef]
- Ozolins, R.; Plotniece, M.; Pajuste, K.; Putralis, R.; Pikun, N.; Sobolev, A.; Plotniece, A.; Rucins, M. 1,1′-{[3,5-Bis((dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis[4-(anthracen-9-yl)pyridin-1-ium] Dibromide. Molbank 2022, 2022, M1438. [Google Scholar] [CrossRef]
- Kastron, V.V.; Kats, A.M.; Dubar, G.Y.; Zolotoyabko, R.M. Substitution reactions involving the 2,6-methyl groups of 1,4-dihydropyridines. Chem. Heterocycl. Compd. 1978, 14, 1236–1240. [Google Scholar] [CrossRef]
- Moshtaghi Zenouz, A.; Allahverdi, S.; Raissossadat, M.Q.; Sadeghi, S.Q. Synthesis of the C-2 Functionalized 1,4-Dihydropyridines. Asian J. Chem. 2005, 17, 2639–2643. [Google Scholar]
- Rastgar Miraei, Y.; Moshtagi Zenouz, A. Selective mono bromination of 1,4-dihydropyridines. Iran J. Chem. Chem. Eng. 1997, 16, 29–32. [Google Scholar]
- Duburs, G.; Kalniņš, G.; Strods, A.; Šmits, R.; Renhofa, R.; Gulbe, A.; Šestakova, I. Novel Compounds for Effective Protein Transfection in Eukaryotic Cells. LV Patent LV 15073 B, 20 March 2016. [Google Scholar]
- Skrastins, I.P.; Kastron, V.V.; Chekavichus, B.S.; Sausinsh, A.E.; Zolotoyabko, R.M.; Dubur, G.Y. Bromination of 4-aryl-3,5-dialkoxycarbonyl-2,6-dimethyl-1,4-dihydropyridines. Chem. Heterocycl. Compd. 1991, 27, 989–994. [Google Scholar] [CrossRef]
- Muhamadejev, R.; Petrova, M.; Smits, R.; Plotniece, A.; Pajuste, K.; Duburs, G.; Liepinsh, E. Study of interactions of mononucleotides with 1,4-dihydropyridine vesicles using NMR and ITC techniques. New J. Chem. 2018, 42, 6942–6948. [Google Scholar] [CrossRef]
- Petrova, M.; Muhamadejev, R.; Cekavicus, B.; Vigante, B.; Plotniece, A.; Sobolev, A.; Duburs, G.; Liepinsh, E. Experimental and Theoretical Studies of Bromination of Diethyl 2,4,6-Trimethyl-1,4-dihydropyridine-3,5-dicarboxylate. Heteroat. Chem. 2014, 25, 114–126. [Google Scholar] [CrossRef]
- Rucins, M.; Pajuste, K.; Sobolev, A.; Plotniece, M.; Pikun, N.; Pajuste, K.; Plotniece, A. Data for the synthesis and characterisation of 2,6-di(bromomethyl)-3,5-bis(alkoxycarbonyl)-4-aryl-1,4-dihydropyridines as important intermediates for synthesis of amphiphilic 1,4-dihydropyridines. Data Br. 2020, 30, 105532. [Google Scholar] [CrossRef] [PubMed]
- Galabov, B.; Popov, V.A.; Cheshmedzhieva, D.; Ilieva, S.; Schaefer III, H.F. Hydrogen bonding as a probe of electron density Variations: Substituted pyridines. Chem. Phys. Lett. 2022, 791, 139378. [Google Scholar] [CrossRef]
- Galabov, B.; Ilieva, S.; Cheshmedzhieva, D.; Nikolova, V.; Popov, V.A.; Hadjieva, B.; Schaefer, H.F. Mini-Review on Structure–Reactivity Relationship for Aromatic Molecules: Recent Advances. ACS Omega 2022, 7, 8199–8208. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Roberts, I.; Taylor, P.G. Pyridine nitrogen reactivity. J. Chem. Soc. Perkin Trans. 1981, 2, 409–413. [Google Scholar] [CrossRef]
- Coe, B.J.; Fielden, J.; Foxon, S.P.; Harris, J.A.; Helliwell, M.; Brunschwig, B.S.; Asselberghs, I.; Clays, K.; Garín, J.; Orduna, J. Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability. J. Am. Chem. Soc. 2010, 132, 10498–10512. [Google Scholar] [CrossRef] [PubMed]
- Krapivina, A.; Lacis, D.; Rucins, M.; Plotniece, M.; Pajuste, K.; Sobolev, A.; Plotniece, A. Synthesis and Characterization of Novel Amphiphilic N-Benzyl 1,4-Dihydropyridine Derivatives—Evaluation of Lipid Monolayer and Self-Assembling Properties. Materials 2023, 16, 4206. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Koirala, S.; Roy, B.; Guha, P.; Bhattarai, R.; Sapkota, M.; Nahak, P.; Karmakar, G.; Mandal, A.K.; Kumar, A.; Panda, A.K. Effect of double tailed cationic surfactants on the physicochemical behavior of hybrid vesicles. RSC Adv. 2016, 6, 13786–13796. [Google Scholar] [CrossRef]
- Mahboobian, M.M.; Seyfoddin, A.; Rupenthal, I.D.; Aboofazeli, R.; Foroutan, S.M. Formulation Development and Evaluation of the Therapeutic Efficacy of Brinzolamide Containing Nanoemulsions. Iran. J. Pharm. Res. 2017, 16, 16. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264. [Google Scholar] [CrossRef]
- Dong, D.; Gao, W.; Liu, Y.; Qi, X.-R. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Lett. 2015, 359, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Szczyglewska, P.; Feliczak-Guzik, A.; Nowak, I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules 2023, 28, 4932. [Google Scholar] [CrossRef] [PubMed]
Entry | Reagent | Eq. | Solvent | Concentration, mM 1 | Reaction Time, h | Yield, % 2 |
---|---|---|---|---|---|---|
1 | NBS (1) | 4.1 | MeOH | 0.23 | 48 | 41 |
2 | CHCl3 | 1.17 | 3 | 54 | ||
3 | CHCl3/MeOH (1:3) | 1.17 | 24 | 48 | ||
4 | EtOAc/MeOH (1:3) | 0.68 | 20 | 56 | ||
5 | EtOAc | 0.68 | 24 | 73 | ||
6 | DBDMH (6) | 2.1 | MeOH | 0.23 | 48 | 22 |
7 | CHCl3 | 1.17 | 2 | - | ||
8 | EtOAc/MeOH (1:3) | 0.68 | 20 | 48 | ||
9 | PBPB (3) | 4.1 | EtOAc/MeOH (1:3) | 0.68 | 0.5 | 50 |
10 | 4.1 | EtOAc/MeOH (1:3) | 0.68 | 2 | 48 | |
11 | 4.1 | EtOAc/MeOH (1:3) | 0.68 | 4 | 35 | |
12 | 5.0 | EtOAc/MeOH (1:3) | 0.68 | 2 | 33 | |
13 | 4.1 | EtOAc | 0.68 | 0.5 | 85 | |
14 | PTAB (12) | 4.1 | EtOAc | 0.68 | 0.5 | 59 |
Entry | R 1 | Comp. | Eq. | R | Solvent | Reaction Time, Days | Product | Yield, % 1 |
---|---|---|---|---|---|---|---|---|
1 | H | 13 | Excess | C2H5 | MeOH | 2 | 22a | 69 |
2 | C12H25 | 2 | 22b | 54 | ||||
3 | 4-N(CH3)2 | 14 | 4.5 | C2H5 | DMF | 2 | 23a | 58 |
4 | C12H25 | Acetone | 2 | 23b | 60 | |||
5 | 4-C3H7-n | 15 | Excess | C2H5 | DMF | 4 | 24a | 80 |
6 | C12H25 | - | 4 | 24b | 16 | |||
7 | 4-CH(C2H5)2 | 16 | Excess | C2H5 | DMF | 4 | 25a | 58 |
8 | C12H25 | - | 4 | 25b | 64 | |||
9 | 3-Br | 17 | Excess | C2H5 | - | 2 | 26a | 80 |
10 | C12H25 | 4 | 26b | 62 | ||||
11 | 4-(CH2)3Ph | 18 | Excess | C2H5 | DMF | 4 | 27a | 71 |
12 | C12H25 | - | 4 | 27b | 57 | |||
13 | 4-Ph | 19 | 4.1 | C2H5 | DMF | 6 | - | - |
14 | C12H25 | 8 | - | - | ||||
15 | 4-CH2Ph | 20 | Excess | C2H5 | DMF | 4 | - | - |
16 | C12H25 | - | 4 | - | - | |||
17 | 4-CONH2 | 21 | 4.1 | C2H5 | DMF | 6 | - | - |
18 | C12H25 | 12 | - | - |
Entry | Comp. | Freshly Prepared | 3 Days | 7 Days | 14 Days | |||||
---|---|---|---|---|---|---|---|---|---|---|
Zav Dh, nm | PDI | Zav Dh, nm | PDI | Z-Potential, mV | Zav Dh, nm | PDI | Zav Dh, nm | PDI | ||
1 * | 22a | 61 ± 1 | 0.205 ± 0.014 | 100 ± 1 | 0.368 ± 0.013 | 24.6 ± 0.5 | 70 ± 1 | 0.263 ± 0.014 | 71 ± 1 | 0.269 ± 0.029 |
2 | E-22b | 353 ± 66 | 0.384 ± 0.019 | 293 ± 63 | 0.488 ± 0.150 | 31.0 ± 1.4 | 264 ± 29 | 0.410 ± 0.337 | 249 ± 36 | 0.476 ± 0.096 |
3 | E-23a | 73 ± 8 | 0.391 ± 0.062 | 140 ± 6 | 0.612 ± 0.016 | 24.8 ± 0.5 | 205 ± 10 | 0.639 ± 0.051 | 326 ± 10 | 0.481 ± 0.090 |
4 | E-23b | 897 ± 186 | 0.691 ± 0.114 | 261 ± 75 | 0.358 ± 0.089 | 18.0 ± 1.9 | 26 ± 4 | 1 ± 0 | 37 ± 8 | 1 ± 0 |
5 | E-24a | 1096 ± 224 | 0.784 ± 0.194 | 596 ± 139 | 0.397 ± 0.187 | 10.9 ± 0.4 | 618 ± 72 | 0.546 ± 0.212 | 585 ± 130 | 0.707 ± 0.065 |
6 | E-25a | 302 ± 1 | 0.478 ± 0.035 | 502 ± 41 | 0.277 ± 0.084 | 9.7 ± 0.8 | 757 ± 65 | 0.647 ± 0.546 | 510 ± 199 | 0.342 ± 0.067 |
7 | E-25b | 653 ± 130 | 0.542 ± 0.089 | 495 ± 133 | 0.486 ± 0.095 | 24.9 ± 1.1 | 436 ± 143 | 0.669 ± 0.276 | 324 ± 248 | 0.742 ± 0.312 |
8 | E-26a | 557 ± 27 | 0.546 ± 0.030 | 332 ± 80 | 0.439 ± 0.075 | 23.4 ± 1.1 | 766 ± 102 | 0.645 ± 0.084 | 305 ± 28 | 0.601 ± 0.331 |
9 | E-26b | 655 ± 218 | 0.928 ± 0.074 | 236 ± 50 | 0.555 ± 0.293 | 11.9 ± 0.9 | 185 ± 28 | 0.527 ± 0.323 | 102 ± 17 | 0.789 ± 0.123 |
10 | E-27a | 380 ± 36 | 0.372 ± 0.114 | 401 ± 16 | 0.151 ± 0.114 | 20.9 ± 1.0 | 321 ± 29 | 0.334 ± 0.048 | 259 ± 7 | 0.269 ± 0.026 |
11 | E-27b | 427 ± 26 | 0.395 ± 0.052 | 434 ± 3 | 0.357 ± 0.126 | 23.8 ± 0.2 | 444 ± 5 | 0.289 ± 0.052 | - # | - # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaukulis, M.; Rucins, M.; Lacis, D.; Plotniece, A.; Sobolev, A. Development of Self-Assembling bis-1,4-Dihydropyridines: Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution. Molecules 2024, 29, 161. https://doi.org/10.3390/molecules29010161
Kaukulis M, Rucins M, Lacis D, Plotniece A, Sobolev A. Development of Self-Assembling bis-1,4-Dihydropyridines: Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution. Molecules. 2024; 29(1):161. https://doi.org/10.3390/molecules29010161
Chicago/Turabian StyleKaukulis, Martins, Martins Rucins, Davis Lacis, Aiva Plotniece, and Arkadij Sobolev. 2024. "Development of Self-Assembling bis-1,4-Dihydropyridines: Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution" Molecules 29, no. 1: 161. https://doi.org/10.3390/molecules29010161
APA StyleKaukulis, M., Rucins, M., Lacis, D., Plotniece, A., & Sobolev, A. (2024). Development of Self-Assembling bis-1,4-Dihydropyridines: Detailed Studies of Bromination of Four Methyl Groups and Bromine Nucleophilic Substitution. Molecules, 29(1), 161. https://doi.org/10.3390/molecules29010161