Borane-Pyridine: An Efficient Catalyst for Direct Amidation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magano, J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org. Process Res. Dev. 2022, 26, 1562–1689. [Google Scholar] [CrossRef]
- Santos, A.S.; Silva, A.M.S.; Marques, M.M.B. Sustainable Amidation Reactions—Recent Advances. Eur. J. Org. Chem. 2020, 2020, 2501–2516. [Google Scholar] [CrossRef]
- Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019, 2, 98–102. [Google Scholar] [CrossRef]
- Braddock, D.C.; Davies, J.J.; Lickiss, P.D. Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids. Org. Lett. 2022, 24, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. [Google Scholar] [CrossRef]
- Mohy El Dine, T.; Erb, W.; Berhault, Y.; Rouden, J.; Blanchet, J. Catalytic Chemical Amide Synthesis at Room Temperature: One More Step Toward Peptide Synthesis. J. Org. Chem. 2015, 80, 4532–4544. [Google Scholar] [CrossRef]
- Al-Zoubi, R.M.; Marion, O.; Hall, D.G. Direct and Waste-Free Amidations and Cycloadditions by Organocatalytic Activation of Carboxylic Acids at Room Temperature. Angew. Chem. Int. Ed. 2008, 47, 2876–2879. [Google Scholar] [CrossRef]
- Arnold, K.; Davies, B.; Giles, R.L.; Grosjean, C.; Smith, G.E.; Whiting, A. To Catalyze or not to Catalyze? Insight into Direct Amide Bond Formation from Amines and Carboxylic Acids under Thermal and Catalyzed Conditions. Adv. Synth. Catal. 2006, 348, 813–820. [Google Scholar] [CrossRef]
- Pan, B.; Huang, D.-M.; Sun, H.-T.; Song, S.-N.; Su, X.-B. Heterocyclic Boron Acid Catalyzed Dehydrative Amidation of Aliphatic/Aromatic Carboxylic Acids with Amines. J. Org. Chem. 2023, 88, 2832–2840. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, Y.; Xie, H.L.; Ren, S.F.; Liu, J.B.; Luo, N.H.; Qiu, G.S. Iron-catalyzed cross-coupling of N-methoxy amides and arylboronic acids for the synthesis of N-aryl amides. Mol. Catal. 2021, 516, 111993. [Google Scholar] [CrossRef]
- Starkov, P.; Sheppard, T.D. Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Org. Biomol. Chem. 2011, 9, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Tang, P. Boric Acid Catalyzed Amide Formation From Carboxylic Acids And Amines: N-Benzyl-4-Phenylbutyramide [(Benzenebutanamide, N-(Phenylmethyl)-)]. Org. Synth. 2005, 81, 262–272. [Google Scholar] [CrossRef]
- Huang, Z.; Reilly, J.E.; Buckle, R.N. An Efficient Synthesis of Amides and Esters via Triacyloxyboranes. Synlett 2007, 2007, 1026–1030. [Google Scholar] [CrossRef]
- Trapani, G.; Reho, A.; Latrofa, A. Trimethylamine-Borane as Useful Reagent in the N-Acylation or N-Alkylation of Amines by Carboxylic Acids. Synthesis 1983, 1983, 1013–1014. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Alawaed, A.A.; Hamann, H.J. A Safer Reduction of Carboxylic Acids with Titanium Catalysis. Org. Lett. 2022, 24, 8481–8486. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Luo, Z.; Han, J.; Xu, X.; Chen, C.; Zhao, H.; Xu, L.; Fan, Q.; Xiao, J. B(C6F5)3-Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. Adv. Synth. Catal. 2019, 361, 2301–2308. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Hamann, H.J.; Choudhary, S. Amine-boranes as Dual-Purpose Reagents for Direct Amidation of Carboxylic Acids. Org. Lett. 2020, 22, 8593–8597. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Hamann, H.J. Ammonia-borane as a Catalyst for the Direct Amidation of Carboxylic Acids. Org. Lett. 2021, 23, 2938–2942. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Hamann, H.J.; Lin, R.; Singh, A. Scalable, Green Synthesis of Heteroaromatic Amine-boranes. Org. Process Res. Dev. 2023, 27, 775–783. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Kulkarni, A.S.; Zhao, Y.; Mei, J. Amine–boranes bearing borane-incompatible functionalities: Application to selective amine protection and surface functionalization. Chem. Comm. 2016, 52, 11885–11888. [Google Scholar] [CrossRef]
- Ohshima, T.; Hayashi, Y.; Agura, K.; Fujii, Y.; Yoshiyama, A.; Mashima, K. Sodium methoxide: A simple but highly efficient catalyst for the direct amidation of esters. Chem. Comm. 2012, 48, 5434–5436. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Huang, X.M.; Wang, S.Y.; Liu, B.X.; Xu, B. A straightforward synthesis of N-monosubstituted α-keto amides via aerobic benzylic oxidation of amides. Tetrahedron 2012, 68, 573–579. [Google Scholar] [CrossRef]
- Xiao, K.-J.; Wang, A.-E.; Huang, Y.-H.; Huang, P.-Q. Versatile and Direct Transformation of Secondary Amides into Ketones by Deaminative Alkylation with Organocerium Reagents. Asian J. Org. Chem. 2012, 1, 130–132. [Google Scholar] [CrossRef]
- Duangkamol, C.; Jaita, S.; Wangngae, S.; Phakhodee, W.; Pattarawarapan, M. An efficient mechanochemical synthesis of amides and dipeptides using 2,4,6-trichloro-1,3,5-triazine and PPh3. RSC Adv. 2015, 5, 52624–52628. [Google Scholar] [CrossRef]
- Gabriel, C.M.; Keener, M.; Gallou, F.; Lipshutz, B.H. Amide and Peptide Bond Formation in Water at Room Temperature. Org. Lett. 2015, 17, 3968–3971. [Google Scholar] [CrossRef] [PubMed]
- Gockel, S.N.; Hull, K.L. Chloroform as a Carbon Monoxide Precursor: In or Ex Situ Generation of CO for Pd-Catalyzed Aminocarbonylations. Org. Lett. 2015, 17, 3236–3239. [Google Scholar] [CrossRef] [PubMed]
- Nozawa-Kumada, K.; Kadokawa, J.; Kameyama, T.; Kondo, Y. Copper-Catalyzed sp3 C–H Aminative Cyclization of 2-Alkyl-N-arylbenzamides: An Approach for the Synthesis of N-Aryl-isoindolinones. Org. Lett. 2015, 17, 4479–4481. [Google Scholar] [CrossRef] [PubMed]
- Sirgamalla, R.; Kommakula, A.; Banoth, S.; Dharavath, R.; Adem, K.; P, M.; Boda, S. Synthesis of Amides from Aliphatic Acids and Amines by using of I2/TBHP at Room Temperature. ChemistrySelect 2018, 3, 1062–1065. [Google Scholar] [CrossRef]
- Yu, W.; Yang, S.; Xiong, F.; Fan, T.; Feng, Y.; Huang, Y.; Fu, J.; Wang, T. Palladium-catalyzed carbonylation of benzylic ammonium salts to amides and esters via C–N bond activation. Org. Biomol. Chem. 2018, 16, 3099–3103. [Google Scholar] [CrossRef]
- Ling, L.; Chen, C.; Luo, M.; Zeng, X. Chromium-Catalyzed Activation of Acyl C–O Bonds with Magnesium for Amidation of Esters with Nitroarenes. Org. Lett. 2019, 21, 1912–1916. [Google Scholar] [CrossRef]
- Manasa, K.L.; Tangella, Y.; Krishna, N.H.; Alvala, M. A metal-free approach for the synthesis of amides/esters with pyridinium salts of phenacyl bromides via oxidative C–C bond cleavage. Beilstein J. Org. Chem. 2019, 15, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramachandran, P.V.; Singh, A.; Walker, H.; Hamann, H.J. Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules 2024, 29, 268. https://doi.org/10.3390/molecules29010268
Ramachandran PV, Singh A, Walker H, Hamann HJ. Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules. 2024; 29(1):268. https://doi.org/10.3390/molecules29010268
Chicago/Turabian StyleRamachandran, P. Veeraraghavan, Aman Singh, Harry Walker, and Henry J. Hamann. 2024. "Borane-Pyridine: An Efficient Catalyst for Direct Amidation" Molecules 29, no. 1: 268. https://doi.org/10.3390/molecules29010268
APA StyleRamachandran, P. V., Singh, A., Walker, H., & Hamann, H. J. (2024). Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules, 29(1), 268. https://doi.org/10.3390/molecules29010268