Functional Sol-Gel Composites: Preparation and Applications
Acknowledgments
Conflicts of Interest
List of Contributions
- Gomes, P.; Costa, B.; Carvalho, J.P.F.; Soares, P.I.P.; Vieira, T.; Henriques, C.; Valente, M.A.; Teixeira, S.S. Cobalt Ferrite Synthesized Using a Biogenic Sol–Gel Method for Biomedical Applications. Molecules 2023, 28, 7737.
- Loughlani, R.-I.; Gamero-Quijano, A.; Montilla, F. Electroassisted Incorporation of Ferrocene within Sol–Gel Silica Films to Enhance Electron Transfer. Molecules 2023, 28, 6845.
- Kanwal, A; Shahzadi, T.; Riaz, T.; Zaib, M.; Khan, S.; Habila, M.A.; Sillanpaa, M. Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies. Molecules 2023, 28, 6474.
- Lin, J.; Yang, X.; Su, K.; Yang, F.; He, Y.; Lin, Q. Effects of Nonmagnetic Zn2+ Ion and RE Ion Substitution on the Magnetic Properties of Functional Nanomaterials Co1−yZnyRExFe2−xO4 (RE = La, Sm, Gd) by Sol–Gel. Molecules 2023, 28, 6280.
- Yang, F.; Yang, X.; Su, K.; Lin, J.; He, Y.; Lin, Q. Structural and Magnetic Properties of Perovskite Functional Nanomaterials La1−xRxFeO3 (R = Co, Al, Nd, Sm) Obtained Using Sol-Gel. Molecules 2023, 28, 5745.
- Gartner, M.; Szekeres, A.; Stroescu, H.; Mitreaand, D.; Covei, M. Advanced Nanostructured Coatings Based on Doped TiO2 for Various Applications. Molecules 2023, 28, 7828.
References
- Aegerter, M.A.; Leventis, N.M.; Koebel, M. Aerogels Handbook; Springer: New York, NY, USA, 2011; pp. 585–605. ISBN 978-1-4419-7589-8. [Google Scholar]
- Bandi, S.; Bell, M.; Schiraldi, D.A. Temperature-responsive clay aerogel-polymer compostites. Macromolecules 2005, 48, 9216–9220. [Google Scholar] [CrossRef]
- Gomez-Romero, P.; Sanchez, C. Functional Hybrid Materials; Wiley-VCH: Weinheim, Germany, 2003; ISBN 9781787284395. [Google Scholar]
- Allisona, S.W.; Bakerb, E.S.; Lynchb, K.J.; Sabri, F. In vivo X-Ray excited optical luminescence from phosphor-doped aerogel and Sylgard 184 composites. Radiat. Phys. Chem. 2017, 135, 88–93. [Google Scholar] [CrossRef]
- Galeener, F.L. Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B 1979, 19, 4292–4297. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, S.K.; Doh, H.; Kim, M.Y.; Kim, D.K. Real-Time Tracking of Highly Luminescent Mesoporous Silica Particles Modified with Europium -Diketone Chelates in Living Cells. Nanomaterials 2021, 11, 343. [Google Scholar] [CrossRef]
- Gutzov, S.; Shandurkov, D.; Danchova, N.; Petrov, V.; Spassov, T. Hybrid composites based on aerogels: Preparation, structure and tunable luminescence. J. Lumin. 2022, 251, 119171. [Google Scholar] [CrossRef]
- Shandurkov, D.; Danchova, N.; Spassov, T.; Petrov, V.; Tsekov, R.; Gutzov, S. Silica gels doped with gold nanoparticles: Preparation, structure and optical properties. Gels 2023, 9, 663. [Google Scholar] [CrossRef]
- Alothman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Avnir, D.; Farin, D.; Pfeifer, P. Molecular fractal surfaces. Nature 1984, 308, 261–263. [Google Scholar] [CrossRef]
- Galeener, F.L.; Lucovsky, G. Longitudinal optical vibrations in glasses: GeO2 and SiO2. Phys. Rev. Lett. 1976, 37, 1474–1478. [Google Scholar] [CrossRef]
- Fidalgo, A.; Ciriminna, R.; Ilharco, L.M.; Pagliaro, M. Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol-gel catalysts. Chem. Mater. 2005, 17, 6686–6694. [Google Scholar] [CrossRef]
- Thorpe, M.F.; Leeuw, S.W. Coulomb effects in disordered solids. Phys. Rev. B 1986, 33, 8490–8505. [Google Scholar] [CrossRef]
- Doneliene, J.; Fataraite-Urboniene, E.; Rudzikas, M.; Danchova, N.; Ulbikas, J. Effect of precursor nature and sol-gel synthesis conditions on TiO2 aerogel’s structure. Molecules 2021, 26, 5090. [Google Scholar] [CrossRef]
- Bernardes, J.C.; Müller, D.; Pinheiro, G.K.; Rambo, C.R. Enhancing the optical transparency of TiO2 aerogels with high surface area through water-based synthesis. Opt. Mater. 2020, 109, 110359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutzov, S. Functional Sol-Gel Composites: Preparation and Applications. Molecules 2024, 29, 33. https://doi.org/10.3390/molecules29010033
Gutzov S. Functional Sol-Gel Composites: Preparation and Applications. Molecules. 2024; 29(1):33. https://doi.org/10.3390/molecules29010033
Chicago/Turabian StyleGutzov, Stoyan. 2024. "Functional Sol-Gel Composites: Preparation and Applications" Molecules 29, no. 1: 33. https://doi.org/10.3390/molecules29010033
APA StyleGutzov, S. (2024). Functional Sol-Gel Composites: Preparation and Applications. Molecules, 29(1), 33. https://doi.org/10.3390/molecules29010033