Application of Cyclocarya paliurus–Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutrient and Antioxidant Capacity
2.2. Volatile Aroma Compounds in Four Kiwi Wines
2.3. Odor Profiles and PCA Analysis of OAVs in Four Kiwi Wines
2.4. Sensory Analysis of Four Kiwi Wines
3. Materials and Methods
3.1. Materials
3.2. Preparation of C. paliurus Aqueous Extracts and Kiwifruit Pulp
3.3. Wine Fermentation
3.4. Nutrient and Antioxidant Capacity Analysis
3.5. Headspace Solid Phase Microextraction/Gas Chromatography–Mass Spectrometer (HS-SPME/GC–MS) Analysis
3.6. Sensory Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, W.; Chen, H.; Wang, J.; Zheng, Y.; Lu, Q.; Zhu, Z.; Li, N.; Jin, Z.; Li, J.; Lu, H. Transcriptome analysis associated with polysaccharide synthesis and their antioxidant activity in Cyclocarya paliurus leaves of different developmental stages. PeerJ 2021, 9, e11615. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Dong, C.j.; Nie, S.P.; Li, F.; Wang, Z.J.; Shen, M.Y.; Xie, M.Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 2015, 186, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jiang, C.; Wang, Z.; Zhang, J.; Mao, X.; Chen, G.; Yao, X.; Liu, C. Cyclocarya paliurus extract attenuates hepatic lipid deposition in HepG2 cells by the lipophagy pathway. Pharm. Biol. 2020, 58, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, X.; Li, L.; Wang, H.; Chen, K.; Xu, M.; Wu, Y.; Huang, X.; Zhang, M.; Ye, X.; et al. Cyclocarya paliurus ethanol leaf extracts protect against diabetic cardiomyopathy in db/db mice via regulating PI3K/Akt/NF-κB signaling. Food Nutr. Res. 2020, 64, 4267. [Google Scholar] [CrossRef]
- Yao, Y.; Yan, L.; Chen, H.; Wu, N.; Wang, W.; Wang, D. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine 2020, 77, 153268. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Quan, H.; Liang, L.; Yang, T.; Feng, L.; Mao, X.; Wang, Y. Nontargeted metabolomics reveals the discrimination of Cyclocarya paliurus leaves brewed by different methods. Food Res. Int. 2021, 142, 110221. [Google Scholar] [CrossRef]
- Kakar, M.U.; Naveed, M.; Saeed, M.; Zhao, S.; Rasheed, M.; Firdoos, S.; Manzoor, R.; Deng, Y.; Dai, R. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. Int. J. Biol. Macromol. 2020, 156, 420–429. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, M.; Yang, K.; Fan, M. Effect of Skin Maceration Treatment on Aroma Profiles of Kiwi Wines Elaborated with Actinidia deliciosa “Xuxiang” and A. chinensis “Hort16A”. J. AOAC Int. 2019, 102, 683–685. [Google Scholar]
- Xu, D.; Zhou, F.; Gu, S.; Feng, K.; Hu, W.; Zhang, J.; Sun, X.; Liang, X.; Jiang, A. 1-Methylcyclopropene maintains the postharvest quality of hardy kiwifruit (Actinidia aruguta). J. Food Mers. Charact. 2021, 15, 3036–3044. [Google Scholar] [CrossRef]
- Lu, Y.; Voon, M.K.W.; Huang, D.; Lee, P.R.; Liu, S.Q. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017, 101, 3005–3014. [Google Scholar] [CrossRef]
- Hu, K.; Jin, G.J.; Mei, W.C.; Li, T.; Tao, Y.S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 2018, 239, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Gao, Z.Y.; Li, S.Q.; Chen, X.W.; Guo, J. Assessment of chemical constitution and aroma properties of kiwi wines obtained from pure and mixed fermentation with Wickerhamomyces anomalus and Saccharomyces cerevisiae. J. Sci. Food Agric. 2022, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Stojković, D.; Soković, M.; Tavares, D.; Cánepa, A.L.; Ferreira, I.C.; Caleja, C.; et al. Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. Appl. Sci. 2021, 11, 6416. [Google Scholar] [CrossRef]
- Kumar, V.; Joshi, V.K.; Thakur, N.S.; Kumar, S.; Gupta, R.K.; Sharma, N.; Sharma, A. Bioprocess optimization for production of apple tea wine: Influence of different variables on the quality attributes. J. Food Meas. Charact. 2022, 16, 1528–1539. [Google Scholar] [CrossRef]
- Fracassetti, D.; Bottelli, P.; Corona, O.; Foschino, R.; Vigentini, I. Innovative Alcoholic Drinks Obtained by Co-Fermenting Grape Must and Fruit Juice. Metabolites 2019, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Neafsey, N.J.; Collins, M.A. Moderate alcohol consumption and cognitive risk. Neuropsychiatr. Dis. Treat. 2011, 7, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol. 2009, 20, 376–387. [Google Scholar] [CrossRef]
- Tsegay, Z.T.; Sathyanarayana, C.B.; Lemma, S.M. Optimization of Cactus Pear Fruit Fermentation Process for Wine Production. Foods 2018, 7, 121. [Google Scholar] [CrossRef]
- Sudheer Kumar, Y.; Prakasam, R.S.; Reddy, O.V.S. Optimisation of fermentation conditions for mango (Mangifera indica L.) wine production by employing response surface methodology. Int. J. Food Sci. Tech. 2009, 44, 2320–2327. [Google Scholar] [CrossRef]
- Meng, Z.; Yi, L.; Hu, Q.; Lin, Z.; Ramaswamy, H.S.; Wang, C. Optimized Extraction and Characterization of Folates from Date Palm Fruits and Their Tracking During Fruits Wine Fermentation. Front. Nutr. 2021, 8, 699555. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, S.K.C.; Stringer, S.J.; Zhang, Y. Characterization of titratable acids, phenolic compounds, and antioxidant activities of wines made from eight Mississippi-grown muscadine varieties during fermentation. LWT 2017, 86, 302–311. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, J.; Wang, X.; Sun, X.; Hackman, R.M.; Li, Z.; Feng, X. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process. Food Chem. 2017, 232, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.; Pan, Z. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT 2016, 66, 56–62. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhang, X.; Meng, N.; Chai, X.; Wang, Y. Fermentation characteristics and the dynamic trend of chemical components during fermentation of Massa Medicata Fermentata. Arab. J. Chem. 2022, 15, 103472. [Google Scholar] [CrossRef]
- Lei, X.; Hu, W.-B.; Yang, Z.-W.; Hui, C.; Wang, N.; Liu, X.; Wang, W.-J. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja:HPLC profile, antimicrobial and antioxidant activity. Ind. Crops Prod. 2019, 130, 615–626. [Google Scholar]
- Kelebek, H.; Selli, S.; Canbas, A.; Cabaroglu, T. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchem. J. 2009, 91, 187–192. [Google Scholar] [CrossRef]
- Treml, J.; Smejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. F. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Huang, J.; Li, H.; Wang, Y.; Wang, X.; Ren, Y.; Yue, T.; Gao, Z. Evaluation of the quality of fermented kiwi wines made from different kiwifruit cultivars. Food Biosci. 2021, 42, 101051. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of kiwifruit juice from two cultivars by probiotic bacteria: Bioactive phenolics, antioxidant activities and flavor volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Influence of Temperature during Pre-Fermentative Maceration and Alcoholic Fermentation on the Phenolic Composition of ‘Cabernet Sauvignon’ Wines. Foods 2021, 10, 1053. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M.; Curiel, J.A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. J. Funct. Foods 2014, 7, 322–329. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Nikolaou, A.; Kourkoutas, Y.; Biliaderis, C.G.; Kandylis, P. Impact of Sugar Type Addition and Fermentation Temperature on Pomegranate Alcoholic Beverage Production and Characteristics. Antioxidants 2021, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Longo, R.; Torley, P.; Saliba, A.; Schmidtke, L. SPME Method Optimized by Box-Behnken Design for Impact Odorants in Reduced Alcohol Wines. Foods 2018, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, Y.; Liu, S.Q. Effects of pectinase treatment on the physicochemical and oenological properties of red dragon fruit wine fermented with Torulaspora delbrueckii. LWT 2020, 132, 109929. [Google Scholar] [CrossRef]
- Zhou, Y.; Fei, G.; Faridul Hasan, K.M.; Kang, Y.; Wu, Y.; Li, H.; Zhou, S. Cultivar difference characterization of kiwifruit wines on phenolic profiles, volatiles and antioxidant activity. Food Chem. X 2023, 18, 100691. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, Y.; Ren, Y.; Wang, X.; Li, H.; Liu, Z.; Yue, T.; Gao, Z. Effect of inoculation method on the quality and nutritional characteristics of low-alcohol kiwi wine. LWT 2022, 156, 113049. [Google Scholar] [CrossRef]
- Qin, Z.; Petersen, M.A.; Bredie, W.L.P. Flavor profiling of apple ciders from the UK and Scandinavian region. Food Res. Int. 2018, 105, 713–723. [Google Scholar] [CrossRef]
- Buttery, R.G. Flavor Chemistry and Odor Thresholds. In Flavor Chemistry: Thirty Years of Progress; Teranishi, R., Wick, E.L., Hornstein, I., Eds.; Springer US: Boston, MA, USA, 1999; pp. 353–365. [Google Scholar]
- Sánchez-Palomo, E.; Trujillo, M.; García Ruiz, A.; González Viñas, M.A. Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100, 201–208. [Google Scholar] [CrossRef]
- Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Bescansa, L.; Masa, A.; Oliveira, J.M. Volatile composition of wines from cvs. Blanco lexítimo, Agudelo and Serradelo (Vitis vinifera) grown in Betanzos (NW Spain). J. I. Brewing 2009, 115, 35–40. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Medina, M. Changes in aroma profile of sherry wines during the oxidative ageing. Int. J. Food Sci. Tech. 2010, 45, 2425–2432. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Guan, X.; Qin, W.; Zhang, X.; Ding, Y.; Yang, W.; Zhou, J.; Yu, X. Characterization of key aroma compounds in melon spirits using the sensomics concept. LWT 2022, 161, 113341. [Google Scholar] [CrossRef]
- Zhao, L.; Ruan, S.; Yang, X.; Chen, Q.; Shi, K.; Lu, K.; He, L.; Liu, S.; Song, Y. Characterization of volatile aroma compounds in litchi (Heiye) wine and distilled spirit. Food Sci. Nutr. 2021, 9, 5914–5927. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Wang, J.; Yuan, Q.; Lei, Y.; Peng, W.; Zhang, M.; Li, X.; Sun, X.; Ma, T. Evaluation of the color and aroma characteristics of commercially available Chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem. X 2022, 15, 100427. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chhun, S.; Xiang, J.; Tangjaidee, P.; Peng, Y.; Quek, S.Y. Microencapsulation of Cyclocarya paliurus (Batal.) Iljinskaja Extracts: A Promising Technique to Protect Phenolic Compounds and Antioxidant Capacities. Foods 2021, 10, 2910. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, J.N.; Cao, Y.F.; Qi, Y.M.; Yang, K.; Wei, X.Y.; Xu, Y.H.; Fan, M.T. Effect of glutathione-enriched inactive dry yeast on color, phenolic compounds, and antioxidant activity of kiwi wine. J. Food Process. Preserv. 2020, 44, e14347. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Ye, P.; Lin, F.; Huang, J.; Wang, H.; Zhou, R.; Zhang, S.; Zhou, J.; Cai, L. Characterization of major properties and aroma profile of kiwi wine co-cultured by Saccharomyces yeast (S. cerevisiae, S. bayanus, S. uvarum) and T. delbrueckii. Eur. Food Res. Technol. 2020, 246, 807–820. [Google Scholar] [CrossRef]
- Li, S.; Bi, P.; Sun, N.; Gao, Z.; Chen, X.; Guo, J. Characterization of different non-Saccharomyces yeasts via mono-fermentation to produce polyphenol-enriched and fragrant kiwi wine. Food Microbiol. 2022, 103, 103867. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Q.; Hu, X.; Wu, W.; Zhang, Y.; Liu, S.; Li, C. Evaluation of different Saccharomyces cerevisiae strains on the profile of volatile compounds in pineapple wine. J. Food Sci. Technol. 2018, 55, 4119–4130. [Google Scholar] [CrossRef]
- Chen, A.-J.; Fu, Y.-Y.; Jiang, C.; Zhao, J.-L.; Liu, X.-P.; Liu, L.; Ma, J.; Liu, X.-Y.; Shen, G.-H.; Li, M.-L.; et al. Effect of mixed fermentation (Jiuqu and Saccharomyces cerevisiae EC1118) on the quality improvement of kiwi wine. CyTA J. Food 2019, 17, 967–975. [Google Scholar] [CrossRef]
- Hidalgo, P.; Pueyo, E.; Pozo-Bayón, M.A.; Martínez-Rodríguez, A.J.; Martín-Álvarez, P.; Polo, M.C. Sensory and Analytical Study of Rosé Sparkling Wines Manufactured by Second Fermentation in the Bottle. J. Agric. Food Chem. 2004, 52, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, Y.Z.; Liu, D.; Zhang, J.; Qi, Y.M.; Xu, J.N.; Wei, X.Y.; Fan, M.T. Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines. Eur. Food Res. Technol. 2020, 246, 875–890. [Google Scholar] [CrossRef]
- Liang, J.J.; Ren, Y.P.; Wang, Y.; Han, M.Z.; Yue, T.L.; Wang, Z.L.; Gao, Z.P. Physicochemical, nutritional, and bioactive properties of pulp and peel from 15 kiwifruit cultivars. Food Biosci. 2021, 42, 101157. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Lan, T.; Geng, T.; Gao, C.; Yuan, Q.; Zhang, Q.; Xu, P.; Sun, X.; Liu, X.; et al. Comparative Analysis of Physicochemical Characteristics, Nutritional and Functional Components and Antioxidant Capacity of Fifteen Kiwifruit (Actinidia) Cultivars-Comparative Analysis of Fifteen Kiwifruit (Actinidia) Cultivars. Foods 2020, 9, 1267. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Li, M.; Ma, F.; Liang, D. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Panja, S.; Chaudhuri, D.; Ghate, N.B.; Minh, H.L.; Mandal, N. In vitro assessment of phytochemicals, antioxidant and DNA protective potential of wild edible fruit of Elaeagnus latifolia Linn. Fruits 2014, 69, 303–314. [Google Scholar] [CrossRef]
- Stupak, M.; Kocourek, V.; Kolouchova, I.; Hajslova, J. Rapid approach for the determination of alcoholic strength and overall quality check of various spirit drinks and wines using GC–MS. Food Control 2017, 80, 307–313. [Google Scholar] [CrossRef]
- Wang, M.L.; Wang, J.T.; Choong, Y.M. Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem. 2004, 86, 609–615. [Google Scholar] [CrossRef]
Compounds | OT (μg/L) | Aroma Description | Aroma Series | OAVs | |||
---|---|---|---|---|---|---|---|
C.paliurus–Kiwi Wine | Kiwi Wine | K1 | K2 | ||||
Octanoic acid | 500 | Fatty, rancid | Fatty | 0.494 | 0.0410 | 0.0150 | n.d. |
n-Decanoic acid | 1.00 × 103 | Waxy, tallowy, rancid, soapy | Fatty, chemical | 0.127 | n.d. | n.d. | n.d. |
Linalool | 25.0 | Citrus, floral, sweet, grape | Floral, fruity, sweet | 0.708 | 2.79 | n.d. | n.d. |
Geraniol | 7.50 | Citric, geranium | Floral | 0.877 | 2.09 | n.d. | n.d. |
(Z)-Ethyl cinnamate | 1.00 | Sweet, spicy, cinnamon, woody | Sweet, green, chemical | n.d | n.d. | 8.63 | n.d. |
Ethyl butyrate | 20.0 | Papaya, butter, sweetish, apple | Fruity | n.d | 52.7 | n.d. | n.d. |
3-Methylbutyl acetate | 30.0 | Banana | Fruity | 3.53 | n.d. | n.d. | n.d. |
Ethyl hexanoate | 8.00 | Green apple, brandy, wine-like | Fruity | 55.0 | 16.5 | 11.0 | 2.74 |
Ethyl octanoate | 250 | Sweet, fruity, pear | Fruity, sweet | 6.46 | 0.702 | 0.494 | 1.25 |
Ethyl decanoate | 500 | Fruity, Strawberry | Fruity | 2.54 | 0.160 | n.d. | 1.65 |
Benzoic acid ethyl ester | 53.0 | Rose | Floral | 3.66 | 11.4 | 6.24 | n.d. |
Ethyl 9-decenoate | 100 | - | - | 0.215 | n.d. | n.d. | n.d. |
Phenylacetic acid ethyl ester | 70.0 | Fruity, rose, honey | Fruity, floral | n.d | 0.116 | 0.0600 | n.d. |
Methyl 3-phenyl propenoate | 11.0 | Cherry | Fruity | n.d | 4.23 | n.d. | n.d. |
Ethyl heptanoate | 0.170 | Pineapple | Fruity | 156 | n.d. | n.d. | n.d. |
3-Phenylpropionic acid ethyl ester | 1.60 | - | - | n.d | 10.8 | n.d. | n.d. |
4-Allyl-2-methoxyphenol | 5.00 | Clove, honey, spice | Floral | n.d | n.d. | 1.20 | n.d. |
Color Appearance (25.0 Points) | Aroma (30.0 Points) | Taste (30.0 Points) | Typicality (15.0 Points) | Total Score (100.0 Points) | |
---|---|---|---|---|---|
C. paliurus–kiwi wine | 22.0 | 22.8 | 23.8 | 9.80 | 78.5 |
kiwi wine | 20.0 | 23.8 | 23.8 | 10.2 | 77.8 |
K1 | 19.5 | 20.5 | 22.0 | 9.50 | 71.5 |
K2 | 20.0 | 20.0 | 22.0 | 9.10 | 71.1 |
Name | Brand | Features | ABV (Vol.%) |
---|---|---|---|
K1 | Dujiangyan Qingcheng Mountain Avenue Industrial Co. (Chengdu, China) | Fermented wine | 12.5 |
K2 | Anhui Rose Supreme Organic Food Co. (Lu’An, China) | Fermented wine | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Guan, W.; Sun, Z.; Ni, Y.; He, L.; Tian, F.; Cai, L. Application of Cyclocarya paliurus–Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine. Molecules 2024, 29, 32. https://doi.org/10.3390/molecules29010032
Liu J, Guan W, Sun Z, Ni Y, He L, Tian F, Cai L. Application of Cyclocarya paliurus–Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine. Molecules. 2024; 29(1):32. https://doi.org/10.3390/molecules29010032
Chicago/Turabian StyleLiu, Jing, Weiliang Guan, Zhidong Sun, Yunfan Ni, Long He, Fang Tian, and Luyun Cai. 2024. "Application of Cyclocarya paliurus–Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine" Molecules 29, no. 1: 32. https://doi.org/10.3390/molecules29010032
APA StyleLiu, J., Guan, W., Sun, Z., Ni, Y., He, L., Tian, F., & Cai, L. (2024). Application of Cyclocarya paliurus–Kiwifruit Composite Fermented to Enhance Antioxidant Capacity, Flavor, and Sensory Characteristics of Kiwi Wine. Molecules, 29(1), 32. https://doi.org/10.3390/molecules29010032