Inclusion Complexes of Ethanamizuril with β- and Hydroxypropyl-β-Cyclodextrin in Aqueous Solution and in Solid State: A Comparison Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Solubility Studies
2.2. Molecular Modeling Studies
2.3. DSC Analysis
2.4. PXRD Analysis
2.5. FT-IR Spectra Analysis
2.6. UV–Vis Spectra Analysis
2.7. MS Analysis
2.8. 1H and 2D NMR Analysis
2.8.1. 1H NMR Analysis
2.8.2. 2D ROESY Analysis
3. Materials and Methods
3.1. Materials
3.2. Phase Solubility Studies
3.3. Molecular Docking
3.4. Preparation of the EZL/β-CD and EZL/HP-β-CD Systems in Solid State
3.4.1. Preparation of Inclusion Complexes by Shaking Bottle Method
3.4.2. Preparation of Physical Mixtures
3.5. DSC
3.6. PXRD
3.7. FT-IR
3.8. UV–Vis Spectrophotometry
3.9. MS
3.10. 1H NMR and 2D ROESY
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, R.B. Intercurrent Coccidiosis and Necrotic Enteritis of Chickens: Rational, Integrated Disease Management by Maintenance of Gut Integrity. Avian Pathol. 2005, 34, 159–180. [Google Scholar] [CrossRef]
- Zaheer, T.; Abbas, R.Z.; Imran, M.; Abbas, A.; Butt, A.; Aslam, S.; Ahmad, J. Vaccines against Chicken Coccidiosis with Particular Reference to Previous Decade: Progress, Challenges, and Opportunities. Parasitol. Res. 2022, 121, 2749–2763. [Google Scholar] [CrossRef]
- Chapman, H.D.; Rathinam, T. Focused Review: The Role of Drug Combinations for the Control of Coccidiosis in Commercially Reared Chickens. Int. J. Parasitol. Drugs Drug Resist. 2022, 18, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, M.; Newman, L.J.; Wang, Y.-T.; De Herdt, P.; Hautekeur, J.; De Gussem, M.; Christiaens, I.; Verbeke, J. Sustainable Coccidiosis Control Implications Based on Susceptibility of European Eimeria Field Isolates to Narasin + Nicarbazin from Farms Using Anticoccidial Medication or Coccidial Vaccines. J. Appl. Poult. Res. 2022, 31, 100263. [Google Scholar] [CrossRef]
- Peek, H.W.; Landman, W.J.M. Coccidiosis in Poultry: Anticoccidial Products, Vaccines and Other Prevention Strategies. Vet. Q. 2011, 31, 143–161. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Iqbal, Z.; Blake, D.; Khan, M.N.; Saleemi, M.K. Anticoccidial Drug Resistance in Fowl Coccidia: The State of Play Revisited. World’s Poult. Sci. J. 2011, 67, 337–350. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, Y.; Zhang, L.; Wang, C.; Guo, C.; Fei, C.; Zhang, K.; Wang, X.; Liu, Y.; Wang, M.; et al. Development and Validation of an UPLC-UV Method for Determination of a Novel Triazine Coccidiostat Ethanamizuril and Its Metabolite M3 in Chicken Tissues. J. Chromatogr. B 2017, 1059, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; Fan, C.; Zhao, Q.; Lin, Y.; Wang, X.; Zheng, W.; Wang, M.; Zhang, K.; Zhang, L.; Li, T.; et al. Anticoccidial Effects of a Novel Triazine Nitromezuril in Broiler Chickens. Vet. Parasitol. 2013, 198, 39–44. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Zhao, Q.; She, R.; Xia, S.; Zhang, K.; Zhang, L.; Wang, X.; Wang, M.; Liu, Y.; et al. Anticoccidial Activity of Novel Triazine Compounds in Broiler Chickens. Vet. Parasitol. 2019, 267, 4–8. [Google Scholar] [CrossRef]
- Wang, R.; Xue, F.; Wang, X.; Zhang, L.; Hao, Z. Determination of AC4 in AC4 soluble powder by high performance liquid chromatography. Chin. Poult. 2016, 38, 19–23. [Google Scholar]
- Zhang, Z.; Wang, C.; Zhang, K.; Zhang, L.; Wang, M.; Liu, Y.; Wang, X.; Fei, C.; Xue, F.; Le, T.; et al. Study on the influence of different dispersants on the exposure of samizulil in Beagle dogs. Chin. J. Anim. Infect. Dis. 2019, 27, 78–82. [Google Scholar]
- Buschmann, H.-J.; Schollmeyer, E. Applications of Cyclodextrins in Cosmetic Products: A Review. J. Cosmet. Sci. 2002, 53, 185–191. [Google Scholar] [PubMed]
- Del Valle, E.M.M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Saenger, W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed. Engl. 1980, 19, 344–362. [Google Scholar] [CrossRef]
- Bekers, O.; Uijtendaal, E.V.; Beijnen, J.H.; Bult, A.; Underberg, W.J.M. Cyclodextrins in the Pharmaceutical Field. Drug Dev. Ind. Pharm. 1991, 17, 1503–1549. [Google Scholar] [CrossRef]
- Duchěne, D.; Wouessidjewe, D. Pharmaceutical Uses of Cyclodextrins and Derivatives. Drug Dev. Ind. Pharm. 1990, 16, 2487–2499. [Google Scholar] [CrossRef]
- Deng, Y.; Pang, Y.; Guo, Y.; Ren, Y.; Wang, F.; Liao, X.; Yang, B. Host-Guest Inclusion Systems of Daidzein with 2-Hydroxypropyl-β-Cyclodextrin (HP-β-CD) and Sulfobutyl Ether-β-Cyclodextrin (SBE-β-CD): Preparation, Binding Behaviors and Water Solubility. J. Mol. Struct. 2016, 1118, 307–315. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, X.; Lao, W.; Wang, H.; Chen, S.; Liu, C.; Chen, Z.; Bai, Y.; Zhang, H.; Zhan, X.; et al. Enhancement of the Solubility and Oral Bioavailability of Altrenogest through Complexation with Hydroxypropyl-β-Cyclodextrin. Eur. J. Pharm. Sci. 2024, 194, 106691. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Huang, Z.; Tian, S.; Huang, Y.; Zeng, C. Complexation of Carbendazim with Hydroxypropyl-β-Cyclodextrin to Improve Solubility and Fungicidal Activity. Carbohydr. Polym. 2012, 89, 208–212. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase solubility techniques. Adv. Anal. Chem. Instr. 1965, 4, 117–212. [Google Scholar]
- Chen, W.; Chang, C.-E.; Gilson, M.K. Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug Design. Biophys. J. 2004, 87, 3035–3049. [Google Scholar] [CrossRef]
- Yang, J.; Tang, K.; Qin, G.; Chen, Y.; Peng, L.; Wan, X.; Xiao, H.; Xia, Q. Hydrogen Bonding Energy Determined by Molecular Dynamics Simulation and Correlation to Properties of Thermoplastic Starch Films. Carbohydr. Polym. 2017, 166, 256–263. [Google Scholar] [CrossRef]
- Matencio, A.; Caldera, F.; Rubin Pedrazzo, A.; Khazaei Monfared, Y.; Dhakar, N.; Trotta, F. A Physicochemical, Thermodynamical, Structural and Computational Evaluation of Kynurenic Acid/Cyclodextrin Complexes. Food Chem. 2021, 356, 129639. [Google Scholar] [CrossRef] [PubMed]
- Giordano, F.; Novak, C.; Moyano, J.R. Thermal Analysis of Cyclodextrins and Their Inclusion Compounds. Thermochim. Acta 2001, 380, 123–151. [Google Scholar] [CrossRef]
- Ribeiro, A.; Figueiras, A.; Santos, D.; Veiga, F. Preparation and Solid-State Characterization of Inclusion Complexes Formed Between Miconazole and Methyl-β-Cyclodextrin. AAPS PharmSciTech 2008, 9, 1102–1109. [Google Scholar] [CrossRef]
- Mura, P. Analytical Techniques for Characterization of Cyclodextrin Complexes in the Solid State: A Review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Mura, P.; Faucci, M.T.; Parrini, P.L.; Furlanetto, S.; Pinzauti, S. Influence of the Preparation Method on the Physicochemical Properties of Ketoprofen–Cyclodextrin Binary Systems. Int. J. Pharm. 1999, 179, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Zingone, G.; Rubessa, F. Preformulation Study of the Inclusion Complex Warfarin-β-Cyclodextrin. Int. J. Pharm. 2005, 291, 3–10. [Google Scholar] [CrossRef]
- Eid, E.E.M.; Almaiman, A.A.; Alshehade, S.A.; Alsalemi, W.; Kamran, S.; Suliman, F.O.; Alshawsh, M.A. Characterization of Thymoquinone-Sulfobutylether-β-Cyclodextrin Inclusion Complex for Anticancer Applications. Molecules 2023, 28, 4096. [Google Scholar] [CrossRef]
- Jansook, P.; Kulsirachote, P.; Loftsson, T. Cyclodextrin Solubilization of Celecoxib: Solid and Solution State Characterization. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 75–88. [Google Scholar] [CrossRef]
- Guo, P.; Su, Y.; Cheng, Q.; Pan, Q.; Li, H. Crystal structure determination of the β-cyclodextrin-p-aminobenzoic acid inclusion complex from powder X-ray diffraction data. Carbohydr. Res. 2011, 346, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Correia, I.; Bezzenine, N.; Ronzani, N.; Platzer, N.; Beloeil, J.-C.; Doan, B.-T. Study of Inclusion Complexes of Acridine with β- and (2,6-Di-O-Methyl)-β-Cyclodextrin by Use of Solubility Diagrams and NMR Spectroscopy. J. Phys. Org. Chem. 2002, 15, 647–659. [Google Scholar] [CrossRef]
- Aigner, Z.; Berkesi, O.; Farkas, G.; Szabó-Révész, P. DSC, X-Ray and FTIR Studies of a Gemfibrozil/Dimethyl-β-Cyclodextrin Inclusion Complex Produced by Co-Grinding. J. Pharm. Biomed. Anal. 2012, 57, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.J.; Tártara, L.I.; Onnainty, R.; Palma, S.D.; Longhi, M.R.; Granero, G.E. Characterization, Dissolution and In Vivo Evaluation of Solid Acetazolamide Complexes. Carbohydr. Polym. 2013, 98, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Delrivo, A.; Zoppi, A.; Longhi, M.R. Interaction of Sulfadiazine with Cyclodextrins in Aqueous Solution and Solid State. Carbohydr. Polym. 2012, 87, 1980–1988. [Google Scholar] [CrossRef]
- Ganem, B.; Li, Y.T.; Henion, J.D. Detection of Noncovalent Receptor-Ligand Complexes by Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296. [Google Scholar] [CrossRef]
- Ganem, B.; Li, Y.T.; Henion, J.D. Observation of Noncovalent Enzyme-Substrate and Enzyme-Product Complexes by Ion-Spray Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 7818–7819. [Google Scholar] [CrossRef]
- Camilleri, P.; Haskins, N.J.; New, A.P.; Saunders, M.R. Analysing the Complexation of Amino Acids and Peptides with β-Cyciodextrin Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass. Spectrom. 1993, 7, 949–952. [Google Scholar] [CrossRef]
- Casas-Hinestroza, J.L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles—A Review. Anal. Chim. Acta 2019, 1081, 32–50. [Google Scholar] [CrossRef]
- Chen, X.; Kang, Y.; Zeng, S. Analysis of Stereoisomers of Chiral Drug by Mass Spectrometry. Chirality 2018, 30, 609–618. [Google Scholar] [CrossRef]
- Cunniff, J.B.; Vouros, P. False Positives and the Detection of Cyclodextrin Inclusion Complexes by Electrospray Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 1995, 6, 437–447. [Google Scholar] [CrossRef] [PubMed]
- de Paula, W.X.; Denadai, Â.M.L.; Santoro, M.M.; Braga, A.N.G.; Santos, R.A.S.; Sinisterra, R.D. Supramolecular Interactions between Losartan and Hydroxypropyl-β-CD: ESI Mass-Spectrometry, NMR Techniques, Phase Solubility, Isothermal Titration Calorimetry and Anti-Hypertensive Studies. Int. J. Pharm. 2011, 404, 116–123. [Google Scholar] [CrossRef]
- Faucci, M.T.; Melani, F.; Mura, P. 1H-NMR and Molecular Modelling Techniques for the Investigation of the Inclusion Complex of Econazole with α-Cyclodextrin in the Presence of Malic Acid. J. Pharm. Biomed. Anal. 2000, 23, 25–31. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, K.; An, K.; Ren, S.-H.; Xie, X.; Jin, Y.; Lin, J. Novel Water-Soluble Fisetin/Cyclodextrins Inclusion Complexes: Preparation, Characterization, Molecular Docking and Bioavailability. Carbohydr. Res. 2015, 418, 20–28. [Google Scholar] [CrossRef]
- Siva, S.; Kothai Nayaki, S.; Rajendiran, N. Fabrication of Cyclodextrins-Procainamide Supramolecular Self-Assembly: Shape-Shifting of Nanosheet into Microtubular Structure. Carbohydr. Polym. 2015, 122, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.; Kothai Nayaki, S.; Rajendiran, N. Spectral and Molecular Modeling Investigations of Supramolecular Complexes of Mefenamic Acid and Aceclofenac with α- and β-Cyclodextrin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 174, 349–362. [Google Scholar] [CrossRef]
- Turel, I.; Demšar, A.; Košmrlj, J. The Interactions of Titanocene Dihalides with α-, β- and γ-Cyclodextrin Host Molecules. J. Incl. Phenom. 1999, 35, 595–604. [Google Scholar] [CrossRef]
- Dikmen, G. Investigation of Non-Covalent Complex Formation between 2-(4-Hydroxyphenylazo) Benzoic Acid and α-Cyclodextrin in Solid and Solution Forms. J. Mol. Liq. 2021, 335, 116278. [Google Scholar] [CrossRef]
- Bednarek, E.; Bocian, W.; PoznaŃski, J.; Sitkowski, J.; Sadlej-Sosnowska, N.; Kozerski, L. Complexation of Steroid Hormones: Prednisolone, Ethinyloestradiol and Estriol with β-Cyclodextrin. An Aqueous 1H NMR Study. J. Chem. Soc. Perkin Trans. 2002, 2, 999–1004. [Google Scholar] [CrossRef]
- Liu, K.; Liu, H.; Li, Z.; Li, W.; Li, L. In Vitro Dissolution Study on Inclusion Complex of Piperine with Ethylenediamine-β-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 233–243. [Google Scholar] [CrossRef]
- She, R.; Fei, C.; Zhao, Q.; Xue, F.; Zhang, L.; Zhang, K.; Wang, M.; Wang, X.; Wang, C.; Liu, Y.; et al. Study on the Efficacy of Acetamizuril against Coccidiosis in Chickens. Chin. J. Vet. Med. 2017, 53, 88–92. [Google Scholar]
δ (ppm) | |||||
---|---|---|---|---|---|
β-CD | EZL/β-CD Complex | HP-β-CD | EZL/HP-β-CD Complex | ||
H-1 | d | 4.99 | 4.98 | 4.99 | 4.98 |
H-2 | dd | 3.57 | 3.56 | 3.55 | 3.54 |
H-3 | dd | 3.88 | 3.83 | 3.87 | 3.83 |
H-4 | dd | 3.50 | 3.49 | 3.50 | 3.49 |
H-5 | m | 3.77 | 3.72 | 3.72 | 3.64 |
H-6 | dd | 3.79 | 3.77 | 3.78 | 3.77 |
H-Me | s | - | - | 1.07 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, L.; Wang, M.; Liu, Y.; Fei, C. Inclusion Complexes of Ethanamizuril with β- and Hydroxypropyl-β-Cyclodextrin in Aqueous Solution and in Solid State: A Comparison Study. Molecules 2024, 29, 2164. https://doi.org/10.3390/molecules29102164
Guo J, Zhang L, Wang M, Liu Y, Fei C. Inclusion Complexes of Ethanamizuril with β- and Hydroxypropyl-β-Cyclodextrin in Aqueous Solution and in Solid State: A Comparison Study. Molecules. 2024; 29(10):2164. https://doi.org/10.3390/molecules29102164
Chicago/Turabian StyleGuo, Juan, Lifang Zhang, Mi Wang, Yingchun Liu, and Chenzhong Fei. 2024. "Inclusion Complexes of Ethanamizuril with β- and Hydroxypropyl-β-Cyclodextrin in Aqueous Solution and in Solid State: A Comparison Study" Molecules 29, no. 10: 2164. https://doi.org/10.3390/molecules29102164
APA StyleGuo, J., Zhang, L., Wang, M., Liu, Y., & Fei, C. (2024). Inclusion Complexes of Ethanamizuril with β- and Hydroxypropyl-β-Cyclodextrin in Aqueous Solution and in Solid State: A Comparison Study. Molecules, 29(10), 2164. https://doi.org/10.3390/molecules29102164