Some Aspects and Convergence of Human and Veterinary Drug Repositioning †
Abstract
:1. Introduction
- 2.
- De novo drug innovation:
- 2.1.
- Current landscape;
- 2.2.
- Human and veterinary de novo drug innovation.
- 3.
- Drug repositioning:
- 3.1.
- General overview;
- 3.2.
- Human and veterinary drug repositioning.
- 4.
- Business aspects of drug innovation:
- 4.1.
- Patent-based market exclusivity:
- 4.1.1.
- New Chemical Entity;
- 4.1.2.
- Second medical use.
- 4.2.
- Regulatory-based market exclusivity;
- 4.3.
- The role of off-label use in drug repositioning.
- 5.
- Drug repositioning for oncological diseases:
- 5.1.
- Current aspects of drug therapy in oncology;
- 5.2.
- Drug repositioning of COX-2 inhibitors for the treatment of dog cancers.
- 6.
- One Health approach to drug repositioning.
- 7.
- Conclusion and recommendations.
2. De Novo Drug Innovation
2.1. Current Landscape
2.2. Human and Veterinary De Novo Drug Innovation
3. Drug Repositioning
3.1. General Overview
3.2. Human and Veterinary Drug Repositioning
4. Business Aspects of Drug Innovation
4.1. Patent-Based Market Exclusivity
4.1.1. New Chemical Entity
4.1.2. Second Medical Use
4.2. Regulatory-Based Market Exclusivity
4.3. The Role of Off-Label Use in Drug Repositioning
5. Drug Repositioning for Oncological Diseases
5.1. Current Aspects of Drug Therapy in Oncology
5.2. Drug Repositioning of COX-2 Inhibitors for the Treatment of Dog Cancers
Active Ingredient INN | Authorized Veterinary Medicinal Product | Registration Number of the Product | Authorization Date | Type of Authorization | Species | Indication | Administration Route |
---|---|---|---|---|---|---|---|
Metamizole sodium H | Algopyrin | 3915/1/17 NÉBIH ÁTI | 1 January 1956 | National authorization | Dog | Fever management, relief of abdominal pain symptoms, relief of esophageal spasm in the case of esophageal obstruction, muscle and joint pain, and post-operative pain relief. | IM |
Phenylbutazone H | Phen-Pred | 2284/1/07 MgSzH ÁTI | 8 November 1999 | National authorization | Dog | For the treatment of inflammatory diseases of the musculoskeletal system (arthritis, tendinitis, rheumatism), hyperthermia, heat stroke, and inflammatory processes of traumatic or bacterial origin. | IV, IM, PO |
Tolfenamic acid H | Tolfedine | 2084/1/06 ÁOGYTI | 23 May 2000 | National authorization | Dog | Treatment of painful bone, joint, and musculoskeletal disorders. | IM, SC, PO |
Cat | For the treatment of fever, NSAIDs can be used as an additional treatment. | SC, PO | |||||
Carprofen H | Rimadyl | 2617/1/09 MgSzH ÁTI | 13 November 2002 | National authorization | Dog | Relieving inflammation and pain caused by musculoskeletal pathologies and degenerative joint diseases and post-operative pain relief. | IV, IM, PO |
Cat | Post-operative pain relief. | ||||||
Ketoprofen H | Ketofen | 2211/1/07 MgSzH ÁTI | 11 June 2007 | National authorization | Dog | For the treatment of acute, painful, inflammatory lesions of the bones, joints and musculoskeletal system, especially in cases of arthrosis, trauma, dislocation, disc herniation, and oedema. For the treatment of fever and pain after surgery. Treatment of chronic pain due to osteoarthritis or musculoskeletal disorders. | PO |
Cat | For the treatment of acute, painful, inflammatory lesions of the bones, joints, and musculoskeletal system, especially in cases of arthrosis, trauma, dislocation, disc herniation, and oedema. For the treatment of fever and pain after surgery. | ||||||
Meloxicam H | Metacam | EMEA/V/C/ 000033 | 7 January 1998 | Central authorization, EMA | Dog | Reduction in inflammation and pain relief in acute and chronic musculoskeletal disorders. Reducing post-operative pain and inflammation following orthopedic and soft tissue surgery. | IV, SC, PO |
Cat | Post-operative pain relief after hysterectomy, ovariectomy, and minor soft tissue surgery. | ||||||
* Tepoxalin V | Zubrin | EMEA/V/C/ 000057 | 13 March 2001 | Central authorization, EMA | Dog | Used to reduce pain and inflammation (soreness) due to osteoarthritis. | PO |
Nimesulide H | Zolan | 2869/1/11 MgSzH ÁTI | 23 April 2004 | National authorization | Dog | To reduce inflammation and relieve bone, joint, and muscle pain. | PO |
Firocoxib V | Previcox | EMEA/V/C/ 000082 | 13 September 2004 | Central authorization, EMA | Dog | To reduce inflammation and pain during osteoarthritis. To relieve pain and inflammation caused by soft tissue, orthopedic, and dental surgery. | PO |
Mavacoxib V | Trocoxil | EMEA/V/C/ 000132 | 9 September 2008 | Central authorization, EMA | Dog | For the treatment of pain and inflammation associated with degenerative joint disease, if the duration of the proposed treatment exceeds one month. | PO |
Robenacoxib V | Onsior | EMEA/V/C/ 000127 | 16 December 2008 | Central authorization, EMA | Dog | Treatment of pain and inflammation associated with chronic osteoarthritis. Treatment of pain and inflammation associated with soft tissue surgery. | SC, PO |
Cat | Treatment of acute or chronic pain and inflammation associated with musculoskeletal disorders. To reduce moderate pain and inflammation associated with orthopedic surgery. | ||||||
Cimicoxib V | Cimalgex | EMEA/V/C/ 000162 | 18 February 2011 | Central authorization, EMA | Dog | For the treatment of pain and inflammation associated with osteoarthritis and pain related to orthopedic or soft tissue surgery. | PO |
Deracoxib V | Deramaxx | 807-307-6 | 11 January 2015 | FDA authorization | Dog | The control of pain and inflammation associated with osteoarthritis, orthopedic surgery, or dental surgery. | PO |
Enflicoxib V | Daxocox | EMEA/V/C/ 005354 | 20 April 2021 | Central authorization, EMA | Dog | Treat pain and inflammation associated with osteoarthritis (or degenerative joint disease). | PO |
Active Ingredient INN | Species | IC50 − COX-1 (µM) | IC50 − COX-2 (µM) | COX-1:COX-2 | Reference |
---|---|---|---|---|---|
Metamizole sodium | Dog | 350 | >1000 | <1 | [191,192] |
Phenylbutazone | Dog | 17 | 28 | 0.6–9.7 | [193,194,195] |
Tolfenamic acid | Dog | - | 3.53 | 0.06–15 | [196,197,198,199] |
Cat | - | - | - | ||
Carprofen | Dog | 4.4–380 | 1–161 | 2.4–129 | [193,195,197,199,200,201,202,203] |
Cat | 8.9–26.6 | 0.9–1.6 | 5.5–28.1 | [195,202,204] | |
Ketoprofen | Dog | 0.1–4.9 | 0.1–13.5 | 0.36–0.8 | [193,195,197,199,203] |
Cat | 0.02–0.5 | 0.5–48.5 | 0.009–0.05 | [205,206,207] | |
Meloxicam | Dog | 1–23.7 | 0.1–1.9 | 7.2–12.3 | [193,195,197,199,203] |
Cat | 1.35–4 | 0.5–1.2 | 2.7–3.5 | [204,205] | |
* Tepoxalin | Horse | 0.04 | 0.06 | 0.35 | [208] |
Nimesulide | Dog | 6.4–20.3 | 0.17–1.6 | 13–36.3 | [203,209] |
Firocoxib | Dog | 56–119.1 | 0.16–0.31 | 380–384 | [200,210] |
Mavacoxib | Dog | 8.7 | 0.4 | 22.2 | [211,212] |
Robenacoxib | Dog | 7.8–10.8 | 0.04–0.07 | 128.8–141.3 | [203,213,214,215] |
Cat | 4.5–28.9 | 0.04–0.12 | 32.2–502.3 | [203,205,206,213,214,216] | |
Cimicoxib | Dog | - | - | - | - |
Deracoxib | Dog | 4.9–9.9 | 0.2–0.4 | 12.0–61.5 | [194,200,203] |
Enflicoxib | Dog | 37.5–334 | 2.9–11.7 | 3.2–113.9 | [217,218,219] |
6. One Health Approach to Drug Repositioning
7. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Measuring the Return of Pharmaceutical Innovation 2019. Available online: https://www.statista.com/study/69635/pharmaceutical-randd-return-of-innovation-report-2019/ (accessed on 24 July 2024).
- Prasad, V.; Mailankody, S. Research and Development Spending to Bring a Single Cancer Drug to Market and Revenues after Approval. JAMA Intern. Med. 2017, 177, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Hinkson, I.V.; Madej, B.; Stahlberg, E.A. Accelerating Therapeutics for Opportunities in Medicine: A Paradigm Shift in Drug Discovery. Front. Pharmacol. 2020, 11, 770. [Google Scholar] [CrossRef]
- Global Life Sciences Outlook. Available online: https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/gx-new-global-life-sciences-sector-outlook.html (accessed on 24 July 2024).
- CDER Drug Approvals U.S. 2008–2023. Available online: https://www.statista.com/statistics/817534/annual-novel-drug-approvals-by-cder/ (accessed on 24 July 2024).
- Measuring the Return from Pharmaceutical Innovation 2019. Available online: https://www2.deloitte.com/ch/en/pages/life-sciences-and-healthcare/articles/measuring-the-return-from-pharmaceutical-innovation-2019.html (accessed on 24 July 2024).
- Fernald, K.D.S.; Förster, P.C.; Claassen, E.; van de Burgwal, L.H. The Pharmaceutical Productivity Gap—Incremental Decline in R&D Efficiency despite Transient Improvements. Drug Discov. Today 2024, 29, 104160. [Google Scholar] [CrossRef]
- Animal Health and Veterinary Drugs. Available online: https://lasttechnology.it/en/animal-health-and-veterinary-drugs-the-current-landscape/ (accessed on 24 July 2024).
- Hunter, R.P.; Shryock, T.R.; Cox, B.R.; Butler, R.M.; Hammelman, J.E. Overview of the Animal Health Drug Development and Registration Process: An Industry Perspective. Future Med. Chem. 2011, 3, 881–886. [Google Scholar] [CrossRef]
- Rhodes, L. Terminology Matters: Understanding the Differences in Animal vs. Human Drug Development. Available online: https://kisacoresearch.com/sites/default/files/documents/ahinnovationusa_linda_rhodes.pdf (accessed on 24 July 2024.).
- Center for Veterinary Medicine. From an Idea to the Marketplace: The Journey of an Animal Drug through the Approval Process. FDA 2022. Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/idea-marketplace-journey-animal-drug-through-approval-process (accessed on 24 July 2024.).
- Center for Veterinary Medicine. FDA Regulation of Animal Drugs. FDA 2023. Available online: https://www.fda.gov/animal-veterinary/resources-you/fda-regulation-animal-drugs (accessed on 24 July 2024.).
- Veterinary Medicinal Products Regulation|European Medicines Agency. Available online: https://www.ema.europa.eu/en/veterinary-regulatory-overview/veterinary-medicinal-products-regulation (accessed on 24 July 2024).
- Center for Veterinary Medicine. Recent Animal Drug Approvals. FDA 2024. Available online: https://www.fda.gov/animal-veterinary/approved-animal-drug-products-green-book/recent-animal-drug-approvals (accessed on 24 July 2024).
- Why Are There So Few Treatments Approved for Animals?—Anivive Lifesciences. Available online: https://www.anivive.com/learn/article/why-are-there-so-few-drug-approved-specifically-for-veterinary-use (accessed on 24 July 2024).
- Why Animal Health Is the Next Big Growth Area. Available online: https://www.lifescienceleader.com/doc/why-animal-health-is-the-next-big-growth-area-0001 (accessed on 24 July 2024).
- Expedited Programs for Serious Conditions—Drugs and Biologics. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/expedited-programs-serious-conditions-drugs-and-biologics (accessed on 11 September 2024).
- PRIME: Priority Medicines|European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/prime-priority-medicines (accessed on 24 July 2024).
- Pharmaceutical Legislation. Available online: https://www.efpia.eu/pharmaceutical-legislation/ (accessed on 24 July 2024).
- Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.-H.D.B. Drug Repositioning and Repurposing: Terminology and Definitions in Literature. Drug Discov. Today 2015, 20, 1027–1034. [Google Scholar] [CrossRef]
- Pantziarka, P.; Bouche, G.; André, N. “Hard” Drug Repurposing for Precision Oncology: The Missing Link? Front. Pharmacol. 2018, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Raju, T.N. The Nobel Chronicles. Lancet 2000, 355, 1022. [Google Scholar] [CrossRef] [PubMed]
- Wermuth, C.G. Selective Optimization of Side Activities: The SOSA Approach. Drug Discov. Today 2006, 11, 160–164. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug Repositioning: Identifying and Developing New Uses for Existing Drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Khambhati, K.; Alessa, A.H.; Singh, V. An Overview to Drug Repurposing. Prog. Mol. Biol. Transl. Sci. 2024, 205, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Team, D.D.W. Therapeutic Drug Repurposing, Repositioning and Rescue Part I: Overview. Available online: https://www.ddw-online.com/therapeutic-drug-repurposing-repositioning-and-rescue-part-i-overview-1463-201412/ (accessed on 24 July 2024).
- Polamreddy, P.; Gattu, N. The Drug Repurposing Landscape from 2012 to 2017: Evolution, Challenges, and Possible Solutions. Drug Discov. Today 2019, 24, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Latif, K.; Ullah, A.; Shkodina, A.D.; Boiko, D.I.; Rafique, Z.; Alghamdi, B.S.; Alfaleh, M.A.; Ashraf, G.M. Drug Reprofiling History and Potential Therapies against Parkinson’s Disease. Front. Pharmacol. 2022, 13, 1028356. [Google Scholar] [CrossRef]
- Pantziarka, P.; Pirmohamed, M.; Mirza, N. New Uses for Old Drugs. BMJ 2018, 361, k2701. [Google Scholar] [CrossRef]
- Weth, F.R.; Hoggarth, G.B.; Weth, A.F.; Paterson, E.; White, M.P.J.; Tan, S.T.; Peng, L.; Gray, C. Unlocking Hidden Potential: Advancements, Approaches, and Obstacles in Repurposing Drugs for Cancer Therapy. Br. J. Cancer 2024, 130, 703–715. [Google Scholar] [CrossRef]
- Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug Repositioning: A Brief Overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef]
- Drug Repurposing: Approaches, Methods and Considerations|Elsevier. Available online: https://www.elsevier.com/industry/drug-repurposing (accessed on 24 July 2024).
- Trivedi, J.; Mohan, M.; Byrareddy, S.N. Drug Repurposing Approaches to Combating Viral Infections. J. Clin. Med. 2020, 9, 3777. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Jadhav, A.G.; Rudrapal, M.; Khairnar, S.J.; Jadhav, A.G. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. In Drug Repurposing—Hypothesis, Molecular Aspects and Therapeutic Applications; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-83968-521-7. [Google Scholar]
- Roessler, H.I.; Knoers, N.V.A.M.; van Haelst, M.M.; van Haaften, G. Drug Repurposing for Rare Diseases. Trends Pharmacol. Sci. 2021, 42, 255–267. [Google Scholar] [CrossRef]
- Hua, Y.; Dai, X.; Xu, Y.; Xing, G.; Liu, H.; Lu, T.; Chen, Y.; Zhang, Y. Drug Repositioning: Progress and Challenges in Drug Discovery for Various Diseases. Eur. J. Med. Chem. 2022, 234, 114239. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Khan, S.; Agnihotri, J.; Patil, S.; Khan, N. Drug Repurposing: A Futuristic Approach in Drug Discovery. J. Pharm. Biol. Sci. 2023, 11, 66–69. [Google Scholar] [CrossRef]
- Mishra, A.S.; Vasanthan, M.; Malliappan, S.P. Drug Repurposing: A Leading Strategy for New Threats and Targets. ACS Pharmacol. Transl. Sci. 2024, 7, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Moos, W.; Munk, B.; Munk, S. Drug Discovery; Woodhead Publishing: Sawston, UK, 2017; pp. 183–279. ISBN 978-0-08-100625-2. [Google Scholar]
- The Latest on Drug Failure and Approval Rates. Available online: https://www.science.org/content/blog-post/latest-drug-failure-and-approval-rates (accessed on 26 July 2024).
- Würth, R.; Thellung, S.; Bajetto, A.; Mazzanti, M.; Florio, T.; Barbieri, F. Drug-Repositioning Opportunities for Cancer Therapy: Novel Molecular Targets for Known Compounds. Drug Discov. Today 2016, 21, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Begley, C.G.; Ashton, M.; Baell, J.; Bettess, M.; Brown, M.P.; Carter, B.; Charman, W.N.; Davis, C.; Fisher, S.; Frazer, I.; et al. Drug Repurposing: Misconceptions, Challenges, and Opportunities for Academic Researchers. Sci. Transl. Med. 2021, 13, eabd5524. [Google Scholar] [CrossRef]
- Panda, S.; Kumari, L.; Badwaik, H.R.; Shanmugarajan, D. Chapter 12—Computational Approaches for Drug Repositioning and Repurposing to Combat SARS-CoV-2 Infection. In Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection; Parihar, A., Khan, R., Kumar, A., Kaushik, A.K., Gohel, H., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 247–265. ISBN 978-0-323-91172-6. [Google Scholar]
- Bolognesi, M.L. Polypharmacology in a Single Drug: Multitarget Drugs. Curr. Med. Chem. 2013, 20, 1639–1645. [Google Scholar] [CrossRef]
- Mei, Y.; Yang, B. Rational Application of Drug Promiscuity in Medicinal Chemistry. Future Med. Chem. 2018, 10, 1835–1851. [Google Scholar] [CrossRef] [PubMed]
- Wermuth, C.G. Multitargeted Drugs: The End of the “One-Target-One-Disease” Philosophy? Drug Discov. Today 2004, 9, 826–827. [Google Scholar] [CrossRef]
- Morphy, R.; Kay, C.; Rankovic, Z. From Magic Bullets to Designed Multiple Ligands. Drug Discov. Today 2004, 9, 641–651. [Google Scholar] [CrossRef]
- Mátyus, P.; Rettegi, T.; Varró, A.; Papp, J.G. New Antiarrhythmic Agents: A Conceptually Novel Approach. Med. Res. Rev. 2000, 20, 294–303. [Google Scholar] [CrossRef]
- Mátyus, P.; Varga, I.; Rettegi, T.; Simay, A.; Kállay, N.; Károlyházy, L.; Kocsis, A.; Varró, A.; Pénzes, I.; Papp, J.G. Novel Antiarrhythmic Compounds with Combined Class IB and Class III Mode of Action. Curr. Med. Chem. 2004, 11, 61–69. [Google Scholar] [CrossRef]
- Mátyus, P.; Chai, C.L.L. Metabolism-Activated Multitargeting (MAMUT): An Innovative Multitargeting Approach to Drug Design and Development. ChemMedChem 2016, 11, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A Perspective on Multi-Target Drug Discovery and Design for Complex Diseases. Clin. Transl. Med. 2018, 7, 3. [Google Scholar] [CrossRef]
- Drent, M.; Bast, A.; Bootsma, H.; Deneer, V. Repositioning “old” Drugs to Treat Rare Diseases: Arguing from the Mechanism of Action. Sarcoidosis Vasc. Diffus. Lung Dis. Off. J. WASOG/World Assoc. Sarcoidosis Other Granulomatous Disord. 2016, 33, 191–194. [Google Scholar]
- Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020, 12, 1058. [Google Scholar] [CrossRef]
- Wang, R.-S.; Loscalzo, J. Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations. Circ. Res. 2023, 132, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S. Chapter 6—Molecular Docking: A Structure-Based Approach for Drug Repurposing. In In Silico Drug Design; Roy, K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 161–189. ISBN 978-0-12-816125-8. [Google Scholar]
- Sadeghi, S.S.; Keyvanpour, M.R. Computational Drug Repurposing: Classification of the Research Opportunities and Challenges. Curr. Comput. Aided Drug Des. 2020, 16, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Parmar, G.; Chudasama, J.M.; Shah, A.; Patel, A. In Silico Pharmacology and Drug Repurposing Approaches. In CADD and Informatics in Drug Discovery; Rudrapal, M., Khan, J., Eds.; Springer Nature: Singapore, 2023; pp. 253–281. ISBN 978-981-9913-16-9. [Google Scholar]
- Gan, J.; Liu, J.; Liu, Y.; Chen, S.; Dai, W.; Xiao, Z.-X.; Cao, Y. DrugRep: An Automatic Virtual Screening Server for Drug Repurposing. Acta Pharmacol. Sin. 2023, 44, 888–896. [Google Scholar] [CrossRef]
- Mohammadi, E.; Dashti, S.; Shafizade, N.; Jin, H.; Zhang, C.; Lam, S.; Tahmoorespur, M.; Mardinoglu, A.; Sekhavati, M.H. Drug Repositioning for Immunotherapy in Breast Cancer Using Single-Cell Analysis. NPJ Syst. Biol. Appl. 2024, 10, 37. [Google Scholar] [CrossRef]
- Pujol, A.; Mosca, R.; Farrés, J.; Aloy, P. Unveiling the Role of Network and Systems Biology in Drug Discovery. Trends Pharmacol. Sci. 2010, 31, 115–123. [Google Scholar] [CrossRef]
- Arany, A.; Bolgar, B.; Balogh, B.; Antal, P.; Matyus, P. Multi-Aspect Candidates for Repositioning: Data Fusion Methods Using Heterogeneous Information Sources. Curr. Med. Chem. 2013, 20, 95–107. [Google Scholar] [CrossRef]
- Masoudi-Sobhanzadeh, Y.; Omidi, Y.; Amanlou, M.; Masoudi-Nejad, A. Drug Databases and Their Contributions to Drug Repurposing. Genomics 2020, 112, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Larsson, P.; De Rosa, M.C.; Righino, B.; Olsson, M.; Florea, B.I.; Forssell-Aronsson, E.; Kovács, A.; Karlsson, P.; Helou, K.; Parris, T.Z. Integrated Transcriptomics- and Structure-Based Drug Repositioning Identifies Drugs with Proteasome Inhibitor Properties. Sci. Rep. 2024, 14, 18772. [Google Scholar] [CrossRef]
- Thorman, A.W.; Reigle, J.; Chutipongtanate, S.; Yang, J.; Shamsaei, B.; Pilarczyk, M.; Fazel-Najafabadi, M.; Adamczak, R.; Kouril, M.; Bhatnagar, S.; et al. Accelerating Drug Discovery and Repurposing by Combining Transcriptional Signature Connectivity with Docking. Sci. Adv. 2024, 10, eadj3010. [Google Scholar] [CrossRef] [PubMed]
- Gönen, M. Predicting Drug-Target Interactions from Chemical and Genomic Kernels Using Bayesian Matrix Factorization. Bioinformatics 2012, 28, 2304–2310. [Google Scholar] [CrossRef]
- Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug Repositioning for Treatment of Movement Disorders: From Serendipity to Rational Discovery Strategies. Curr. Top. Med. Chem. 2013, 13, 2337–2363. [Google Scholar] [CrossRef] [PubMed]
- Boudin, M.; Diallo, G.; Drancé, M.; Mougin, F. The OREGANO Knowledge Graph for Computational Drug Repurposing. Sci. Data 2023, 10, 871. [Google Scholar] [CrossRef]
- Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A Review of Network-Based Approaches to Drug Repositioning. Brief. Bioinform. 2018, 19, 878–892. [Google Scholar] [CrossRef]
- Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A Survey of Current Trends in Computational Drug Repositioning. Brief. Bioinform. 2016, 17, 2–12. [Google Scholar] [CrossRef]
- Ekins, S.; Puhl, A.C.; Zorn, K.M.; Lane, T.R.; Russo, D.P.; Klein, J.J.; Hickey, A.J.; Clark, A.M. Exploiting Machine Learning for End-to-End Drug Discovery and Development. Nat. Mater. 2019, 18, 435–441. [Google Scholar] [CrossRef]
- Ahmad, S.; Qazi, S.; Raza, K. Chapter 10—Translational Bioinformatics Methods for Drug Discovery and Drug Repurposing. In Translational Bioinformatics in Healthcare and Medicine; Raza, K., Dey, N., Eds.; Advances in Ubiquitous Sensing Applications for Healthcare; Academic Press: Cambridge, MA, USA, 2021; Volume 13, pp. 127–139. [Google Scholar]
- Park, J.-H.; Cho, Y.-R. Computational Drug Repositioning with Attention Walking. Sci. Rep. 2024, 14, 10072. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, B.; Liu, A.; Meng, Y.; Tang, X.; Yang, J.; Xu, J. Drug Repositioning Based on Tripartite Cross-Network Embedding and Graph Convolutional Network. Expert Syst. Appl. 2024, 252, 124152. [Google Scholar] [CrossRef]
- Sun, X.; Jia, X.; Lu, Z.; Tang, J.; Li, M. Drug Repositioning with Adaptive Graph Convolutional Networks. Bioinformatics 2024, 40, btad748. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, D.; Zhang, W.; Wang, R.; Lin, Y.-C.-D.; Zuo, H.; Huang, H.-Y.; Huang, H.-D. DrugRepoBank: A Comprehensive Database and Discovery Platform for Accelerating Drug Repositioning. Database 2024, 2024, baae051. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Sanderson, P.E.; Zheng, W. Drug Combination Therapy Increases Successful Drug Repositioning. Drug Discov. Today 2016, 21, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, S.; Skelton, J.; Anastasi, E.; Bernett, J.; Blumenthal, D.B.; Galindez, G.; Salgado-Albarrán, M.; Lazareva, O.; Flanagan, K.; Cockell, S.; et al. Network Medicine for Disease Module Identification and Drug Repurposing with the NeDRex Platform. Nat. Commun. 2021, 12, 6848. [Google Scholar] [CrossRef]
- Bang, D.; Lim, S.; Lee, S.; Kim, S. Biomedical Knowledge Graph Learning for Drug Repurposing by Extending Guilt-by-Association to Multiple Layers. Nat. Commun. 2023, 14, 3570. [Google Scholar] [CrossRef]
- Huang, L.-C.; Soysal, E.; Zheng, W.; Zhao, Z.; Xu, H.; Sun, J. A Weighted and Integrated Drug-Target Interactome: Drug Repurposing for Schizophrenia as a Use Case. BMC Syst. Biol. 2015, 9 (Suppl. 4), S2. [Google Scholar] [CrossRef]
- Yu, M.; Li, W.; Yu, Y.; Zhao, Y.; Xiao, L.; Lauschke, V.M.; Cheng, Y.; Zhang, X.; Wang, Y. Deep Learning Large-Scale Drug Discovery and Repurposing. Nat. Comput. Sci. 2024, 4, 600–614. [Google Scholar] [CrossRef]
- Oprea, T.I.; Overington, J.P. Computational and Practical Aspects of Drug Repositioning. Assay Drug Dev. Technol. 2015, 13, 299–306. [Google Scholar] [CrossRef]
- Tan, G.S.Q.; Sloan, E.K.; Lambert, P.; Kirkpatrick, C.M.J.; Ilomäki, J. Drug Repurposing Using Real-World Data. Drug Discov. Today 2023, 28, 103422. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research; Oncology Center of Excellence. Considerations for the Use of Real-World Data and Real-World Evidence to Support Regulatory Decision-Making for Drug and Biological Products. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-real-world-data-and-real-world-evidence-support-regulatory-decision-making-drug (accessed on 26 July 2024).
- Wu, Y.; Warner, J.L.; Wang, L.; Jiang, M.; Xu, J.; Chen, Q.; Nian, H.; Dai, Q.; Du, X.; Yang, P.; et al. Discovery of Noncancer Drug Effects on Survival in Electronic Health Records of Patients with Cancer: A New Paradigm for Drug Repurposing. JCO Clin. Cancer Inform. 2019, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Mehta, T.A.; Das, A.; Das, A.; Shruthi, N.R.; Pathak, S. Repurposing of Drug: Utility of Animal Models. In Handbook of Animal Models and Its Uses in Cancer Research; Pathak, S., Banerjee, A., Bisgin, A., Eds.; Springer Nature: Singapore, 2023; pp. 155–173. ISBN 978-981-19382-4-5. [Google Scholar]
- Marshall, L.J.; Bailey, J.; Cassotta, M.; Herrmann, K.; Pistollato, F. Poor Translatability of Biomedical Research Using Animals—A Narrative Review. Altern. Lab. Anim. 2023, 51, 102–135. [Google Scholar] [CrossRef] [PubMed]
- Shridhar, D.; Hittalamani, V.; Sunilchandra. Repositioning and Repurposing Therapeutic Drugs; Lambert Academic Publishing: London, UK, 2023; ISBN 978-620-6-78373-2. [Google Scholar]
- Hittalamani, V.M.; Sunilchandra, U.; Shridhar, N.B.; Kavitha Rani, B.; Niranjan, D.; Mohan, B.R. Drug Repurposing with Reference to Veterinary Therapeutics. Pharma Innov. 2022, 11, 36–45. [Google Scholar]
- Roeber, F.; Webster, M. Protecting Dogs and Cats against the Australian Paralysis Tick, Ixodes holocyclus (Acari: Ixodidae): A Review of the Australian Acaricide Registration Process. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100054. [Google Scholar] [CrossRef]
- Sultana, T.; Jan, U.; Lee, J.I. Double Repositioning: Veterinary Antiparasitic to Human Anticancer. Int. J. Mol. Sci. 2022, 23, 4315. [Google Scholar] [CrossRef]
- Kaiser, M.; Mäser, P.; Tadoori, L.P.; Ioset, J.-R.; Brun, R. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS ONE 2015, 10, e0135556. [Google Scholar] [CrossRef]
- Saez-Ayala, M.; Hoffer, L.; Abel, S.; Ben Yaala, K.; Sicard, B.; Andrieu, G.P.; Latiri, M.; Davison, E.K.; Ciufolini, M.A.; Brémond, P.; et al. From a Drug Repositioning to a Structure-Based Drug Design Approach to Tackle Acute Lymphoblastic Leukemia. Nat. Commun. 2023, 14, 3079. [Google Scholar] [CrossRef]
- Liu, T.; Guo, F.; Zhu, X.; He, X.; Xie, L. Thalidomide and Its Analogues: A Review of the Potential for Immunomodulation of Fibrosis Diseases and Opthalmopathy (Review). Exp. Ther. Med. 2017, 14, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Raedler, L.A. Pomalyst (Pomalidomide) Received a New Indication for Patients with Relapsed and/or Refractory Multiple Myeloma. Am. Health Drug Benefits 2016, 9, 111–114. [Google Scholar]
- Brooks, N. What Are Regulatory Data and Market Exclusivity? Drug Approval in Europe. Available online: https://somerville-partners.com/what-are-regulatory-data-and-market-exclusivity-drug-approval-in-europe/ (accessed on 26 July 2024).
- Naylor, S.; Kauppi, M.; Schonfeld, J.M. Therapeutic Drug Repurposing, Repositioning and Rescue: Part II: Business Review. Drug Discov. World 2015, 16, 57–72. [Google Scholar]
- Oronsky, B.; Caroen, S.; Brinkhaus, F.; Reid, T.; Stirn, M.; Kumar, R. Patent and Marketing Exclusivities 101 for Drug Developers. Recent. Pat. Biotechnol. 2023, 17, 257–270. [Google Scholar] [CrossRef]
- Exclusivity and Exclusive Marketing Rights Boilerplate for Use in the Following Documents: Memorandum Recommending Approval, Letter to Applicant, and FOI Summary. Available online: https://www.fda.gov/search?s=EXCLUSIVITY+AND+EXCLUSIVE+MARKETING+RIGHTS+BOILERPLATE+FOR+USE+IN+THE+FOLLOWING+DOCUMENTS%3A+MEMORANDUM+RECOMMENDING+APPROVAL%2C+LETTER+TO+APPLICANT%2C+AND+FREEDOM+OF+INFORMATION+SUMMARY+ (accessed on 26 July 2024).
- Collier, R. Drug Patents: The Evergreening Problem. CMAJ 2013, 185, E385–E386. [Google Scholar] [CrossRef] [PubMed]
- Bansal, Y.; Kaur, M.; Bansal, G. Antimicrobial Potential of Benzimidazole Derived Molecules. Mini Rev. Med. Chem. 2019, 19, 624–646. [Google Scholar] [CrossRef] [PubMed]
- First Medical Use. Second or Further Medical Indications. Available online: https://www.dehns.com/first-medical-use-second-or-further-medical-indications/ (accessed on 26 July 2024).
- Protecting Second Medical Use Inventions in Europe. Available online: https://www.iam-media.com/guide/global-life-sciences/2022/article/protecting-second-medical-use-inventions-in-europe (accessed on 26 July 2024).
- 1 First or Further Medical Use of Known Products. Available online: https://www.epo.org/en/legal/guidelines-epc/2024/g_vi_6_1.html (accessed on 26 July 2024).
- Excluded Subject Matter (7)—1st and 2nd Medical Uses|Simmons & Simmons. Available online: https://www.simmons-simmons.com/en/publications/cklhwpzy9181609317t4kt933/excluded-subject-matter-7-1st-and-2-medical-use,%20february%2023,%202021 (accessed on 26 July 2024).
- Adachi, K. The Patentability of Second and Subsequent Medical Uses in Asia’s Patent Legislation. Asian J. Law Econ. 2023, 14, 59–75. [Google Scholar] [CrossRef]
- Breckenridge, A.; Jacob, R. Overcoming the Legal and Regulatory Barriers to Drug Repurposing. Nat. Rev. Drug Discov. 2019, 18, 1–2. [Google Scholar] [CrossRef]
- Aboy, M.; Liddell, K.; Liddicoat, J.; Crespo, C.; Jordan, M. Mapping the European Patent Landscape for Medical Uses of Known Products. Nat. Biotechnol. 2021, 39, 1336–1343. [Google Scholar] [CrossRef]
- Aboy, M.; Liddell, K.; Jordan, M.; Crespo, C.; Liddicoat, J. European Patent Protection for Medical Uses of Known Products and Drug Repurposing. Nat. Biotechnol. 2022, 40, 465–471. [Google Scholar] [CrossRef]
- Seymore, S. Patenting New Uses for Old Inventions. Vanderbilt Law Rev. 2020, 73, 479. [Google Scholar]
- Center for Veterinary Medicine. Generic Animal Drug and Patent Term Restoration Act (GADPTRA). FDA 2024. Available online: https://www.fda.gov/animal-veterinary/guidance-regulations/generic-animal-drug-and-patent-term-restoration-act-gadptra (accessed on 26 July 2024).
- Gould, J.M. An Overview of Patent Law as Applied to the Field of Veterinary Medicine. AAPS J. 2008, 10, 1–8. [Google Scholar] [CrossRef]
- Ribeiro, S. Presentation—Data Exclusivity, Market Protection, Orphan and Paediatric Rewards. Available online: https://www.ema.europa.eu/en/search?search_api_fulltext=orphan%20and%20paediatric%20rewards%20&f%5B0%5D=ema_search_entity_is_document%3ADocument (accessed on 26 July 2024).
- Exclusivity and Generic Drugs: What Does It Mean? Available online: https://www.fda.gov/search?s=Exclusivity+and+Generic+Drugs%3A+What+Does+It+Mean%3F (accessed on 26 July 2024).
- Franco, P. Orphan Drugs: The Regulatory Environment. Drug Discov. Today 2013, 18, 163–172. [Google Scholar] [CrossRef]
- Orphan Designation: Overview|European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/orphan-designation-overview (accessed on 26 July 2024).
- Jonker, A.H.; O’Connor, D.; Cavaller-Bellaubi, M.; Fetro, C.; Gogou, M.; ’T Hoen, P.A.C.; de Kort, M.; Stone, H.; Valentine, N.; Pasmooij, A.M.G. Drug Repurposing for Rare: Progress and Opportunities for the Rare Disease Community. Front. Med. 2024, 11, 1352803. [Google Scholar] [CrossRef] [PubMed]
- Center for Veterinary Medicine. Minor Use/Minor Species. Available online: https://www.fda.gov/animal-veterinary/development-approval-process/minor-useminor-species (accessed on 26 July 2024).
- Fetro, C.; Scherman, D. Drug Repurposing in Rare Diseases: Myths and Reality. Therapie 2020, 75, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Hechtelt Jonker, A.; Day, S.; Gabaldo, M.; Stone, H.; de Kort, M.; O’Connor, D.J.; Pasmooij, A.M.G. IRDiRC Drug Repurposing Guidebook: Making Better Use of Existing Drugs to Tackle Rare Diseases. Nat. Rev. Drug Discov. 2023, 22, 937–938. [Google Scholar] [CrossRef]
- Avram, S.; Wilson, T.B.; Curpan, R.; Halip, L.; Borota, A.; Bora, A.; Bologa, C.G.; Holmes, J.; Knockel, J.; Yang, J.J.; et al. DrugCentral 2023 Extends Human Clinical Data and Integrates Veterinary Drugs. Nucleic Acids Res. 2023, 51, D1276–D1287. [Google Scholar] [CrossRef]
- Center for Veterinary Medicine. The Ins and Outs of Extra-Label Drug Use in Animals: A Resource for Veterinarians. FDA 2023. Available online: https://www.fda.gov/animal-veterinary/resources-you/ins-and-outs-extra-label-drug-use-animals-resource-veterinarians (accessed on 26 July 2024).
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text with EEA Relevance); Volume 004. 2018. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj (accessed on 30 July 2024).
- Drug Approval Package. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/NDA/98/viagra/viagra_toc.cfm (accessed on 30 July 2024).
- Revatio (Sildenafil Citrate) FDA Approval History. Available online: https://www.drugs.com/history/revatio.html (accessed on 30 July 2024).
- Center for Veterinary Medicine. FDA Proposes New Regulations for Animal Drug Labeling. FDA 2024. Available online: https://www.fda.gov/animal-veterinary/cvm-updates/fda-proposes-new-regulations-animal-drug-labeling (accessed on 26 July 2024).
- Novo Nordisk Ascent: Will Europe’s Biggest Company Continue to Soar? Available online: https://www.euronews.com/business/2023/12/05/novo-nordisk-ascent-will-europes-biggest-company-continue-to-soar (accessed on 26 July 2024).
- Is Semaglutide the “New Statin”? Not So Fast. Available online: https://www.medscape.com/viewarticle/semaglutide-new-statin-not-so-fast-2024a1000ade?ecd=mkm_ret_240623_mscpmrk-OUS_InFocus_etid6609727&uac=427892HG&impID=6609727 (accessed on 26 July 2024).
- Types of Cancer. Available online: https://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts/types-of-cancer (accessed on 26 July 2024).
- IARC. IARC Biennial Report 2022–2023; International Agency for Research on Cancer: Lyon, France, 2023; ISBN 978-92-832-1108-2. [Google Scholar]
- GLOBOCAN 2022: Latest Global Cancer Data Shows Rising Incidence and Stark Inequities|UICC. Available online: https://www.uicc.org/news/globocan-2022-latest-global-cancer-data-shows-rising-incidence-and-stark-inequities (accessed on 26 July 2024).
- Veterinary Oncology Market Analysis by Radiology, Chemotherapy, Combination Therapy, Immunotherapy, and Targeted Therapy from 2023 to 2033. Available online: https://www.factmr.com/report/veterinary-oncology-market (accessed on 26 July 2024).
- Jassim, A.; Rahrmann, E.P.; Simons, B.D.; Gilbertson, R.J. Cancers Make Their Own Luck: Theories of Cancer Origins. Nat. Rev. Cancer 2023, 23, 710–724. [Google Scholar] [CrossRef]
- Oh, J.H.; Cho, J.-Y. Comparative Oncology: Overcoming Human Cancer through Companion Animal Studies. Exp. Mol. Med. 2023, 55, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, J.D.; Breen, M. Comparative Oncology: What Dogs and Other Species Can Teach Us about Humans with Cancer. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140231. [Google Scholar] [CrossRef]
- Weiss, M.C.; Eulo, V.; Van Tine, B.A. Truly Man’s Best Friend: Canine Cancers Drive Drug Repurposing in Osteosarcoma. Clin. Cancer Res. 2022, 28, 571–572. [Google Scholar] [CrossRef]
- About Biomarkers and Qualification. FDA 2024. Available online: https://www.fda.gov/drugs/biomarker-qualification-program/about-biomarkers-and-qualification (accessed on 26 July 2024).
- Kang, K.N.; Koh, E.Y.; Jang, J.Y.; Kim, C.W. Multiple Biomarkers Are More Accurate than a Combination of Carbohydrate Antigen 125 and Human Epididymis Protein 4 for Ovarian Cancer Screening. Obstet. Gynecol. Sci. 2022, 65, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.; Powers, E.; Wu, Y.; Datto, M.B.; Green, M.F.; Strickler, J.H.; Ready, N.E.; Zhang, T.; Clarke, J.M. Predictive Value of Combining Biomarkers for Clinical Outcomes in Advanced Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, 500–509. [Google Scholar] [CrossRef]
- Oliver, A.; Greenberg, C.C. Measuring Outcomes in Oncology Treatment: The Importance of Patient-Centered Outcomes. Surg. Clin. N. Am. 2009, 89, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Market Research Future. Market Research Future: Industry Analysis Report, Business Consulting and Research. Available online: https://www.marketresearchfuture.com (accessed on 26 July 2024).
- Pet Cancer Therapeutics Market Size & Share Report, 2023–2032. Available online: https://www.gminsights.com/industry-analysis/pet-cancer-therapeutics-market (accessed on 26 July 2024).
- Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Nelson, S.J.; Oprea, T.I. DrugCentral: Online Drug Compendium. Nucleic Acids Res. 2017, 45, D932–D939. [Google Scholar] [CrossRef]
- Center for Veterinary Medicine. Approved Animal Drug Products (Green Book). Available online: https://www.fda.gov/animal-veterinary/products/approved-animal-drug-products-green-book (accessed on 26 July 2024).
- Klingemann, H. Immunotherapy for Dogs: Running Behind Humans. Front. Immunol. 2018, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Biller, B.; Berg, J.; Garrett, L.; Ruslander, D.; Wearing, R.; Abbott, B.; Patel, M.; Smith, D.; Bryan, C. 2016 AAHA Oncology Guidelines for Dogs and Cats. J. Am. Anim. Hosp. Assoc. 2016, 52, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Alfarouk, K.O.; Stock, C.-M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; et al. Resistance to Cancer Chemotherapy: Failure in Drug Response from ADME to P-Gp. Cancer Cell Int. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Klopfleisch, R.; Kohn, B.; Gruber, A.D. Mechanisms of Tumour Resistance against Chemotherapeutic Agents in Veterinary Oncology. Vet. J. 2016, 207, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Zandvliet, M.; Teske, E. Mechanisms of Drug Resistance in Veterinary Oncology—A Review with an Emphasis on Canine Lymphoma. Vet. Sci. 2015, 2, 150–184. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, X. Drug Resistance and Combating Drug Resistance in Cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef]
- Lim, G.-H.; An, J.-H.; Park, S.-M.; Youn, G.-H.; Oh, Y.-I.; Seo, K.-W.; Youn, H.-Y. Macrophage Induces Anti-Cancer Drug Resistance in Canine Mammary Gland Tumor Spheroid. Sci. Rep. 2023, 13, 10394. [Google Scholar] [CrossRef]
- Karthika, C.; Sureshkumar, R.; Zehravi, M.; Akter, R.; Ali, F.; Ramproshad, S.; Mondal, B.; Tagde, P.; Ahmed, Z.; Khan, F.S.; et al. Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life 2022, 12, 897. [Google Scholar] [CrossRef]
- Mealey, K.L.; Fidel, J. P-Glycoprotein Mediated Drug Interactions in Animals and Humans with Cancer. J. Vet. Intern. Med. 2015, 29, 1–6. [Google Scholar] [CrossRef]
- Gramer, I.; Leidolf, R.; Döring, B.; Klintzsch, S.; Krämer, E.-M.; Yalcin, E.; Petzinger, E.; Geyer, J. Breed Distribution of the Nt230(Del4) MDR1 Mutation in Dogs. Vet. J. 2011, 189, 67–71. [Google Scholar] [CrossRef]
- Maddison, J.E.; Page, S.W. Chapter 3—Adverse Drug Reactions. In Small Animal Clinical Pharmacology (Second Edition); Maddison, J.E., Page, S.W., Church, D.B., Eds.; W.B. Saunders: Edinburgh, UK, 2008; pp. 41–58. ISBN 978-0-7020-2858-8. [Google Scholar]
- Moses, L.; Niemi, S.; Karlsson, E. Pet Genomics Medicine Runs Wild. Nature 2018, 559, 470–472. [Google Scholar] [CrossRef]
- Wu, K.; Rodrigues, L.; Post, G.; Harvey, G.; White, M.; Miller, A.; Lambert, L.; Lewis, B.; Lopes, C.; Zou, J. Analyses of Canine Cancer Mutations and Treatment Outcomes Using Real-World Clinico-Genomics Data of 2119 Dogs. NPJ Precis. Oncol. 2023, 7, 8. [Google Scholar] [CrossRef]
- Chon, E.; Sakthikumar, S.; Tang, M.; Hamilton, M.J.; Vaughan, A.; Smith, A.; Sommer, B.; Robat, C.; Manley, C.; Mullin, C.; et al. Novel Genomic Prognostic Biomarkers for Dogs with Cancer. J. Vet. Intern. Med. 2023, 37, 2410–2421. [Google Scholar] [CrossRef] [PubMed]
- Hezkiy, E.E.; Kumar, S.; Gahramanov, V.; Yaglom, J.; Hesin, A.; Jadhav, S.S.; Guzev, E.; Patel, S.; Avinery, E.; Firer, M.A.; et al. Search for Synergistic Drug Combinations to Treat Chronic Lymphocytic Leukemia. Cells 2022, 11, 3671. [Google Scholar] [CrossRef]
- Irie, N.; Mizoguchi, K.; Warita, T.; Nakano, M.; Sasaki, K.; Tashiro, J.; Osaki, T.; Ishikawa, T.; Oltvai, Z.N.; Warita, K. Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin–Dipyridamole Combination Treatment in Melanoma Cell Lines. Biomedicines 2024, 12, 698. [Google Scholar] [CrossRef]
- Jin, H.; Wang, L.; Bernards, R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234. [Google Scholar] [CrossRef]
- Giuliano, A.; Horta, R.S.; Vieira, R.A.M.; Hume, K.R.; Dobson, J. Repurposing Drugs in Small Animal Oncology. Animals 2023, 13, 139. [Google Scholar] [CrossRef]
- Vazquez, E.; Lipovka, Y.; Cervantes-Arias, A.; Garibay-Escobar, A.; Haby, M.M.; Queiroga, F.L.; Velazquez, C. Canine Mammary Cancer: State of the Art and Future Perspectives. Animals 2023, 13, 3147. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.-W.; Yamamoto, H.; Morita, S.; Fukushima, R.; Elbadawy, M.; Usui, T.; Sasaki, K. Comparative Pharmacokinetics of Tyrosine Kinase Inhibitor, Lapatinib, in Dogs and Cats Following Single Oral Administration. J. Vet. Med. Sci. 2024, 86, 317–321. [Google Scholar] [CrossRef]
- Rao, P.; Knaus, E.E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. J. Pharm. Pharm. Sci. 2008, 11, 81s–110s. [Google Scholar] [CrossRef]
- Takahashi, T.; Kozaki, K.; Yatabe, Y.; Achiwa, H.; Hida, T. Increased Expression of COX-2 in the Development of Human Lung Cancers. JEP(T) 2002, 21, 21.2. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Pountos, I.; Georgouli, T.; Bird, H.; Giannoudis, P.V. Nonsteroidal Anti-Inflammatory Drugs: Prostaglandins, Indications, and Side Effects. Int. J. Interferon Cytokine Mediat. Res. 2011, 3, 19–27. [Google Scholar] [CrossRef]
- Mizuno, H.; Sakamoto, C.; Matsuda, K.; Wada, K.; Uchida, T.; Noguchi, H.; Akamatsu, T.; Kasuga, M. Induction of Cyclooxygenase 2 in Gastric Mucosal Lesions and Its Inhibition by the Specific Antagonist Delays Healing in Mice. Gastroenterology 1997, 112, 387–397. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, E.L.; Song, Y. Adverse Effects of Cyclooxygenase 2 Inhibitors on Renal and Arrhythmia Events: Meta-Analysis of Randomized Trials. JAMA 2006, 296, 1619–1632. [Google Scholar] [CrossRef]
- Anderson, K.L.; Zulch, H.; O’Neill, D.G.; Meeson, R.L.; Collins, L.M. Risk Factors for Canine Osteoarthritis and Its Predisposing Arthropathies: A Systematic Review. Front. Vet. Sci. 2020, 7, 220. [Google Scholar] [CrossRef]
- Previcox|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/previcox#authorisation-details (accessed on 26 July 2024).
- Trocoxil|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/trocoxil#authorisation-details (accessed on 26 July 2024).
- Onsior|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/onsior#authorisation-details (accessed on 26 July 2024).
- Cimalgex|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/cimalgex (accessed on 26 July 2024).
- Deramaxx Receives FDA Approval for Canine Osteoarthritis. Available online: https://www.dvm360.com/view/deramaxx-receives-fda-approval-canine-osteoarthritis (accessed on 26 July 2024).
- Daxocox|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/daxocox#authorisation-details (accessed on 26 July 2024).
- Botha, J.H.; Robinson, K.M.; Ramchurren, N.; Reddi, K.; Norman, R.J. Human Esophageal Carcinoma Cell Lines: Prostaglandin Production, Biological Properties, and Behavior in Nude Mice23. JNCI J. Natl. Cancer Inst. 1986, 76, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Jara-Gutiérrez, Á.; Baladrón, V. The Role of Prostaglandins in Different Types of Cancer. Cells 2021, 10, 1487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; He, D.; Song, E.; Jiang, M.; Song, Y. Celecoxib Enhances the Sensitivity of Non-Small-Cell Lung Cancer Cells to Radiation-Induced Apoptosis through Downregulation of the Akt/mTOR Signaling Pathway and COX-2 Expression. PLoS ONE 2019, 14, e0223760. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Wei, Y.-T.; Mu, L.-L.; Wen, G.-R.; Zhao, K. The Molecular Mechanisms of Celecoxib in Tumor Development. Medicine 2020, 99, e22544. [Google Scholar] [CrossRef] [PubMed]
- Curry, J.M.; Besmer, D.M.; Erick, T.K.; Steuerwald, N.; Roy, L.D.; Grover, P.; Rao, S.; Nath, S.; Ferrier, J.W.; Reid, R.W.; et al. Indomethacin Enhances Anti-Tumor Efficacy of a MUC1 Peptide Vaccine against Breast Cancer in MUC1 Transgenic Mice. PLoS ONE 2019, 14, e0224309. [Google Scholar] [CrossRef]
- Karai, E.; Szebényi, K.; Windt, T.; Fehér, S.; Szendi, E.; Dékay, V.; Vajdovich, P.; Szakács, G.; Füredi, A. Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines. Cancers 2020, 12, 1117. [Google Scholar] [CrossRef]
- Patel, V.A.; Dunn, M.J.; Sorokin, A. Regulation of MDR-1 (P-Glycoprotein) by Cyclooxygenase-2. J. Biol. Chem. 2002, 277, 38915–38920. [Google Scholar] [CrossRef]
- Wu, K.; Fukuda, K.; Xing, F.; Zhang, Y.; Sharma, S.; Liu, Y.; Chan, M.D.; Zhou, X.; Qasem, S.A.; Pochampally, R.; et al. Roles of the Cyclooxygenase 2 Matrix Metalloproteinase 1 Pathway in Brain Metastasis of Breast Cancer. J. Biol. Chem. 2015, 290, 9842–9854. [Google Scholar] [CrossRef]
- Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals 2018, 11, 101. [Google Scholar] [CrossRef]
- Search|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/search (accessed on 30 July 2024).
- Center for Veterinary Medicine. Get the Facts about Pain Relievers for Pets. FDA 2022. Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/get-facts-about-pain-relievers-pets (accessed on 30 July 2024).
- Atiportal. Available online: https://atiportal.nebih.gov.hu/moengallatgykesz.html (accessed on 30 July 2024).
- Silva, I.C.; Maia, C.A.A.; Raymundo, A.C.; Prata, M.N.L.; Romero, T.R.L.; Duarte, I.D.G.; Manrique, W.G.; Perez, A.C.; Belo, M.A.A. Meta-Analysis of the Therapeutic Use of Dipyrone in Dogs: Pharmacological Effects and Clinical Safety. Ars Vet. 2021, 37, 21–30. [Google Scholar] [CrossRef]
- Chandrasekharan, N.V.; Dai, H.; Roos, K.L.T.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a Cyclooxygenase-1 Variant Inhibited by Acetaminophen and Other Analgesic/Antipyretic Drugs: Cloning, Structure, and Expression. Proc. Natl. Acad. Sci. USA 2002, 99, 13926–13931. [Google Scholar] [CrossRef]
- Streppa, H.K.; Jones, C.J.; Budsberg, S.C. Cyclooxygenase Selectivity of Nonsteroidal Anti-Inflammatory Drugs in Canine Blood. Am. J. Vet. Res. 2002, 63, 91–94. [Google Scholar] [CrossRef]
- Gierse, J.K.; Staten, N.R.; Casperson, G.F.; Koboldt, C.M.; Trigg, J.S.; Reitz, B.A.; Pierce, J.L.; Seibert, K. Cloning, Expression, and Selective Inhibition of Canine Cyclooxygenase-1 and Cyclooxygenase-2. Vet. Ther. 2002, 3, 270–280. [Google Scholar]
- Brideau, C.; Staden, C.V.; Chan, C.C. In Vitro Effects of Cyclooxygenase Inhibitors in Whole Blood of Horses, Dogs, and Cats. Am. J. Vet. Res. 2001, 62, 1755–1760. [Google Scholar] [CrossRef]
- Kay-Mugford, P. In Vitro Evaluation of the Effects of Nonsteroidal Anti-Inflammatory Drugs on Cyclooxygenase-1 and -2 in the Dog; University of Guelph: Guelph, ON, Canada, 1999. [Google Scholar]
- Kay-Mugford, P.; Benn, S.J.; LaMarre, J.; Conlon, P. In Vitro Effects of Nonsteroidal Anti-Inflammatory Drugs on Cyclooxygenase Activity in Dogs. Am. J. Vet. Res. 2000, 61, 802–810. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. New Insights into the Mode of Action of Anti-Inflammatory Drugs. Inflamm. Res. 1995, 44, 1–10. [Google Scholar] [CrossRef]
- Ricketts, A.P.; Lundy, K.M.; Seibel, S.B. Evaluation of Selective Inhibition of Canine Cyclooxygenase 1 and 2 by Carprofen and Other Nonsteroidal Anti-Inflammatory Drugs. Am. J. Vet. Res. 1998, 59, 1441–1446. [Google Scholar] [CrossRef]
- McCann, M.E.; Andersen, D.R.; Zhang, D.; Brideau, C.; Black, W.C.; Hanson, P.D.; Hickey, G.J. In Vitro Effects and in Vivo Efficacy of a Novel Cyclooxygenase-2 Inhibitor in Dogs with Experimentally Induced Synovitis. Am. J. Vet. Res. 2004, 65, 503–512. [Google Scholar] [CrossRef]
- Wilson, J.E.; Chandrasekharan, N.V.; Westover, K.D.; Eager, K.B.; Simmons, D.L. Determination of Expression of Cyclooxygenase-1 and -2 Isozymes in Canine Tissues and Their Differential Sensitivity to Nonsteroidal Anti-Inflammatory Drugs. Am. J. Vet. Res. 2004, 65, 810–818. [Google Scholar] [CrossRef]
- Lees, P.; Landoni, M.F.; Armstrong, S.; Frean, S. New Insights into Inflammation with Particular Reference to the Role of COX Enzymes. In Proceedings of the 8th International Congress of the European Association for Veterinary Pharmacology and Toxicology, Jerusalem, Israel, 30 July–3 August 2000. [Google Scholar]
- King, J.N.; Rudaz, C.; Borer, L.; Jung, M.; Seewald, W.; Lees, P. In Vitro and Ex Vivo Inhibition of Canine Cyclooxygenase Isoforms by Robenacoxib: A Comparative Study. Res. Vet. Sci. 2010, 88, 497–506. [Google Scholar] [CrossRef]
- Giraudel, J.; Toutain, P.-L.; Lees, P. Development of in Vitro Assays for the Evaluation of Cyclooxygenase Inhibitors and Application for Predicting the Selectivity of NSAIDs in the Cat. Am. J. Vet. Res. 2005, 66, 700–709. [Google Scholar] [CrossRef]
- Schmid, V.B.; Seewald, W.; Lees, P.; King, J.N. In Vitro and Ex Vivo Inhibition of COX Isoforms by Robenacoxib in the Cat: A Comparative Study. J. Vet. Pharmacol. Ther. 2010, 33, 444–452. [Google Scholar] [CrossRef]
- Pelligand, L.; King, J.N.; Hormazabal, V.; Toutain, P.L.; Elliott, J.; Lees, P. Differential Pharmacokinetics and Pharmacokinetic/Pharmacodynamic Modelling of Robenacoxib and Ketoprofen in a Feline Model of Inflammation. J. Vet. Pharmacol. Ther. 2014, 37, 354–366. [Google Scholar] [CrossRef]
- Wibberley, A.; McCafferty, G.P.; Evans, C.; Edwards, R.M.; Hieble, J.P. Dual, but Not Selective, COX-1 and COX-2 Inhibitors, Attenuate Acetic Acid-Evoked Bladder Irritation in the Anaesthetised Female Cat. Br. J. Pharmacol. 2006, 148, 154–161. [Google Scholar] [CrossRef]
- Cuniberti, B.; Odore, R.; Barbero, R.; Cagnardi, P.; Badino, P.; Girardi, C.; Re, G. In Vitro and Ex Vivo Pharmacodynamics of Selected Non-Steroidal Anti-Inflammatory Drugs in Equine Whole Blood. Vet. J. 2012, 191, 327–333. [Google Scholar] [CrossRef]
- Toutain, P.L.; Cester, C.C.; Haak, T.; Metge, S. Pharmacokinetic Profile and in Vitro Selective Cyclooxygenase-2 Inhibition by Nimesulide in the Dog. J. Vet. Pharmacol. Ther. 2001, 24, 35–42. [Google Scholar] [CrossRef]
- Previcox|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/previcox (accessed on 30 July 2024).
- Lees, P.; Pelligand, L.; Elliott, J.; Toutain, P.-L.; Michels, G.; Stegemann, M. Pharmacokinetics, Pharmacodynamics, Toxicology and Therapeutics of Mavacoxib in the Dog: A Review. J. Vet. Pharmacol. Ther. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Lees, P.; Alexander-Bowman, S.; Hummel, B.; Kubiak, T.; Michels, G.; Krautmann, M.; Cox, S.; Toutain, P.-L.; Stegemann, M. Pharmacokinetics and Pharmacodynamics of Mavacoxib in the Dog. 2009. Available online: https://www.researchgate.net/publication/295167267_Pharmacokinetics_and_pharmacodynamics_of_mavacoxib_in_the_dog (accessed on 30 July 2024).
- Onsior|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/onsior (accessed on 30 July 2024).
- Giraudel, J.M.; Toutain, P.-L.; King, J.N.; Lees, P. Differential Inhibition of Cyclooxygenase Isoenzymes in the Cat by the NSAID Robenacoxib. J. Vet. Pharmacol. Ther. 2009, 32, 31–40. [Google Scholar] [CrossRef]
- Innes, J.; O’Neill, T.; Lascelles, D. Use of Non-Steroidal Anti-Inflammatory Drugs for the Treatment of Canine Osteoarthritis. Practice 2010, 32, 126–137. [Google Scholar] [CrossRef]
- Pelligand, L.; King, J.N.; Toutain, P.L.; Elliott, J.; Lees, P. Pharmacokinetic/Pharmacodynamic Modelling of Robenacoxib in a Feline Tissue Cage Model of Inflammation. J. Vet. Pharmacol. Ther. 2012, 35, 19–32. [Google Scholar] [CrossRef]
- Wagemakers, M.; van der Wal, G.E.; Cuberes, R.; Álvarez, I.; Andrés, E.M.; Buxens, J.; Vela, J.M.; Moorlag, H.; Mooij, J.J.A.; Molema, G. COX-2 Inhibition Combined with Radiation Reduces Orthotopic Glioma Outgrowth by Targeting the Tumor Vasculature. Transl. Oncol. 2009, 2, 1–7. [Google Scholar] [CrossRef]
- Cendrós, J.-M.; Salichs, M.; Encina, G.; Vela, J.M.; Homedes, J.M. Pharmacology of Enflicoxib, a New Coxib Drug: Efficacy and Dose Determination by Clinical and Pharmacokinetic-Guided Approach for the Treatment of Osteoarthritis in Dogs Based on an Acute Arthritis Induction Model. Vet. Med. Sci. 2022, 8, 31–45. [Google Scholar] [CrossRef]
- Solà, J.; Menargues, À.; Homedes, J.; Salichs, M.; Álvarez, I.; Romero, L.; Vela, J.M. Selective Inhibition of Cyclooxygenase-2 by Enflicoxib, Its Enantiomers and Its Main Metabolites in Vitro in Canine Blood. J. Vet. Pharmacol. Ther. 2022, 45, 235–244. [Google Scholar] [CrossRef]
- Pang, L.Y.; Gatenby, E.L.; Kamida, A.; Whitelaw, B.A.; Hupp, T.R.; Argyle, D.J. Global Gene Expression Analysis of Canine Osteosarcoma Stem Cells Reveals a Novel Role for COX-2 in Tumour Initiation. PLoS ONE 2014, 9, e83144. [Google Scholar] [CrossRef]
- Pang, L.Y.; Argyle, S.A.; Kamida, A.; Morrison, K.O.; Argyle, D.J. The Long-Acting COX-2 Inhibitor Mavacoxib (TrocoxilTM) Has Anti-Proliferative and pro-Apoptotic Effects on Canine Cancer Cell Lines and Cancer Stem Cells in Vitro. BMC Vet. Res. 2014, 10, 184. [Google Scholar] [CrossRef]
- Seo, K.; Coh, Y.; Rebhun, R.B.; Ahn, J.; Han, S.-M.; Lee, H.; Youn, H.-Y. Antitumor Effects of Celecoxib in COX-2 Expressing and Non-Expressing Canine Melanoma Cell Lines. Res. Vet. Sci. 2014, 96, 482–486. [Google Scholar] [CrossRef]
- Rathore, K.; Alexander, M.; Cekanova, M. Piroxicam Inhibits Masitinib-Induced Cyclooxygenase 2 Expression in Oral Squamous Cell Carcinoma Cells in Vitro. Transl. Res. 2014, 164, 158–168. [Google Scholar] [CrossRef]
- Saito, T.; Tamura, D.; Asano, R. Usefulness of Selective COX-2 Inhibitors as Therapeutic Agents against Canine Mammary Tumors. Oncol. Rep. 2014, 31, 1637–1644. [Google Scholar] [CrossRef]
- Vahidi, R.; Safi, S.; Farsinejad, A.; Panahi, N. Citrate and Celecoxib Induce Apoptosis and Decrease Necrosis in Synergistic Manner in Canine Mammary Tumor Cells. Cell Mol. Biol. (Noisy-le-grand) 2015, 61, 22–28. [Google Scholar] [CrossRef]
- Arenas, C.; Peña, L.; Granados-Soler, J.L.; Pérez-Alenza, M.D. Adjuvant Therapy for Highly Malignant Canine Mammary Tumours: Cox-2 Inhibitor versus Chemotherapy: A Case–Control Prospective Study. Vet. Rec. 2016, 179, 125. [Google Scholar] [CrossRef]
- Yoshitake, R.; Saeki, K.; Watanabe, M.; Nakaoka, N.; Ong, S.M.; Hanafusa, M.; Choisunirachon, N.; Fujita, N.; Nishimura, R.; Nakagawa, T. Molecular Investigation of the Direct Anti-Tumour Effects of Nonsteroidal Anti-Inflammatory Drugs in a Panel of Canine Cancer Cell Lines. Vet. J. 2017, 221, 38–47. [Google Scholar] [CrossRef]
- Hurst, E.A.; Pang, L.Y.; Argyle, D.J. The Selective Cyclooxygenase-2 Inhibitor Mavacoxib (Trocoxil) Exerts Anti-Tumour Effects in Vitro Independent of Cyclooxygenase-2 Expression Levels. Vet. Comp. Oncol. 2019, 17, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Miguel, D.; Valdivia, G.; García-San José, P.; Alonso-Diez, Á.; Clares, I.; Portero, M.; Peña, L.; Pérez-Alenza, M.D. Clinical Outcome of Dogs Diagnosed with Canine Inflammatory Mammary Cancer Treated with Metronomic Cyclophosphamide, a Cyclooxygenase-2 Inhibitor and Toceranib Phosphate. Vet. Comp. Oncol. 2022, 20, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Brandi, A.; de Faria Lainetti, P.; Elias, F.; Rodrigues, M.M.P.; Fagundes Moraes, L.; Laufer-Amorim, R.; de Camargo, L.S.; Salles Gomes, C.D.O.M.; Fonseca-Alves, C.E. Firocoxib as a Potential Neoadjuvant Treatment in Canine Patients with Triple-Negative Mammary Gland Tumors. Animals 2023, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- CDC about One Health. Available online: https://www.cdc.gov/one-health/about/index.html (accessed on 26 July 2024).
- Zhu, G.; Yin, J.; Cuny, G.D. Current Status and Challenges in Drug Discovery against the Globally Important Zoonotic Cryptosporidiosis. Anim. Dis. 2021, 1, 3. [Google Scholar] [CrossRef]
- Stroud, C.; Dmitriev, I.; Kashentseva, E.; Bryan, J.N.; Curiel, D.T.; Rindt, H.; Reinero, C.; Henry, C.J.; Bergman, P.J.; Mason, N.J.; et al. A One Health Overview, Facilitating Advances in Comparative Medicine and Translational Research. Clin. Transl. Med. 2016, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; McKinnon, M.; Jeggo, M. One Health: From Concept to Practice. In Confronting Emerging Zoonoses: The One Health Paradigm; Yamada, A., Kahn, L.H., Kaplan, B., Monath, T.P., Woodall, J., Conti, L., Eds.; Springer: Tokyo, Japan, 2014; pp. 163–189. ISBN 978-4-431-55120-1. [Google Scholar]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach—Why Is It So Important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, K.H.; Aljofan, M.; Blin, O.; Cornel, J.H.; Rongen, G.A.; Woestelandt, A.-G.; Spedding, M. Drug Repurposing of Generic Drugs: Challenges and the Potential Role for Government. Appl. Health Econ. Health Policy 2023, 21, 831–840. [Google Scholar] [CrossRef]
- Cleary, E.; Jackson, M.J.; Ledley, F. Government as the First Investor in Biopharmaceutical Innovation: Evidence from New Drug Approvals 2010–2019. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3731819 (accessed on 26 July 2024).
- Asker-Hagelberg, C.; Boran, T.; Bouygues, C.; Eskola, S.M.; Helmle, L.; Hernández, C.; Houýez, F.; Lee, H.; Lingri, D.D.; Louette, L.; et al. Repurposing of Medicines in the EU: Launch of a Pilot Framework. Front. Med. 2022, 8, 817663. [Google Scholar] [CrossRef]
- One Health Drugs. Available online: https://onehealthdrugs.com/ (accessed on 30 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mag, P.; Nemes-Terényi, M.; Jerzsele, Á.; Mátyus, P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules 2024, 29, 4475. https://doi.org/10.3390/molecules29184475
Mag P, Nemes-Terényi M, Jerzsele Á, Mátyus P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules. 2024; 29(18):4475. https://doi.org/10.3390/molecules29184475
Chicago/Turabian StyleMag, Patrik, Melinda Nemes-Terényi, Ákos Jerzsele, and Péter Mátyus. 2024. "Some Aspects and Convergence of Human and Veterinary Drug Repositioning" Molecules 29, no. 18: 4475. https://doi.org/10.3390/molecules29184475
APA StyleMag, P., Nemes-Terényi, M., Jerzsele, Á., & Mátyus, P. (2024). Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules, 29(18), 4475. https://doi.org/10.3390/molecules29184475