DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules
Abstract
:1. Introduction
2. Results and Discussions
2.1. Properties of XH3 Adsorbates and the MnPc Adsorbent
2.2. Adsorption of XH3 on MnPc
2.3. UV-Vis Spectra Analysis
2.4. Thermodynamic Analysis
2.5. Effect of the EF on the Adsorption of XH3 on MnPc
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.; Bhat, C.; Jain, S.K.; Mishra, P.K.; Brajpuriya, R. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas. J. Mol. Model. 2015, 21, 39. [Google Scholar] [CrossRef] [PubMed]
- Ammar, H.; Badran, H.; Eid, K. TM-doped B12N12 nano-cage (TM = Mn, Fe) as a sensor for CO, NO, and NH3 gases: A DFT and TD-DFT study. Mater. Today Commun. 2020, 25, 101681. [Google Scholar] [CrossRef]
- Badran, H.; Eid, K.; Ammar, H. A DFT study on the effect of the external electric field on ammonia interaction with boron nitride nano-cage. J. Phys. Chem. Solids 2020, 141, 109399. [Google Scholar] [CrossRef]
- Habibi-Yangjeh, A.; Basharnavaz, H.; Kamali, S.H.; Nematollahzadeh, A. A first-principles investigation of PH3 gas adsorption on the graphitic carbon nitride sheets modified with V/P, Nb/P, and Ta/P elements. Mater. Chem. Phys. 2021, 269, 124282. [Google Scholar] [CrossRef]
- Sagisaka, K.; Marz, M.; Fujita, D.; Bowler, D. Adsorption of phosphorus molecules evaporated from an InP solid source on the Si(100) surface. Phys. Rev. B 2013, 87, 155316–155324. [Google Scholar] [CrossRef]
- Buasaeng, P.; Rakrai, W.; Wanno, B.; Tabtimsai, C. DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes. Appl. Surf. Sci. 2017, 400, 506–514. [Google Scholar] [CrossRef]
- Holleman, A.F.; Wiberg, E. Inorganic Chemistry; Academic Press: San Diego, CA, USA, 2001; ISBN 0123526515. [Google Scholar]
- Luo, H.; Zhang, L.; Xu, S.; Shi, M.; Wu, W.; Zhang, K. NH3, PH3 and AsH3 adsorption on alkaline earth metal (Be-Sr) doped graphenes: Insights from DFT calculations. Appl. Surf. Sci. 2021, 537, 147542. [Google Scholar] [CrossRef]
- Luo, H.; Xu, K.; Gong, Z.; Li, N.; Zhang, K.; Wu, W. NH3, PH3, AsH3 adsorption and sensing on rare earth metal doped graphene: DFT insights. Appl. Surf. Sci. 2021, 566, 150390. [Google Scholar] [CrossRef]
- Ranea, V.A.; Quiña, P.L.D.; Yalet, N.M. General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5(0 0 1) surface including the van der Waals interaction. Chem. Phys. Lett. 2019, 720, 58–63. [Google Scholar] [CrossRef]
- Winder, E.J.; Moore, D.E.; Neu, D.R.; Ellis, A.B.; Geisz, J.F.; Kuech, T.F. Detection of ammonia, phosphine, and arsine gases by reversible modulation of cadmium selenide photoluminescence intensity. J. Cryst. Growth 1995, 148, 63–69. [Google Scholar] [CrossRef]
- Keleş, T.; Biyiklioglu, Z.; Özel, A. A comparative study on DNA/BSA binding, DNA photocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3-pyridin-3-ylpropoxy-substituted Mn(III), Cu(II) phthalocyanines. Dye. Pigment. 2017, 139, 575–586. [Google Scholar] [CrossRef]
- Ndebele, N.; Nyokong, T. Electrocatalytic behaviour of chalcone substituted Co, Cu, Mn and Ni phthalocyanines towards the detection of nitrite. J. Electroanal. Chem. 2022, 926, 116951. [Google Scholar] [CrossRef]
- Soliman, I.M.; El-Nahass, M.M.; Eid, K.M.; Ammar, H.Y. Vibrational spectroscopic analysis of aluminum phthalocyanine chloride. experimental and DFT study. Phys. B 2016, 491, 98–103. [Google Scholar] [CrossRef]
- Caliskan, S.; Laref, A. Manipulation of quantum spin transport of TM (Mn, Fe, Co, and Ni) (II) phthalocyanines coupled to carbon nanotube leads applicable in spintronic devices. Diam. Relat. Mater. 2023, 139, 110274. [Google Scholar] [CrossRef]
- Yalazan, H.; Maden, Y.E.; Koca, A.; Kantekin, H. Multi-step syntheses, electrochemistry and spectroelectrochemistry of peripheral CoII, CuII and MnIII Cl phthalocyanines bearing pyrazoline. J. Mol. Struct. 2022, 1269, 133788. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, P. Molecular logic gates based on spin caloritronic transport properties of Mn phthalocyanine nanoribbon. Phys. Lett. A 2020, 384, 126256. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, J.; Peng, W.; Li, H.; Qian, L.; Yang, W.; Liu, J. A DFT study on selective adsorption of NH3 from ammonia synthesis tail gas with typical aromatic boranes. Mater. Today Commun. 2023, 37, 107495. [Google Scholar] [CrossRef]
- Larki, S.; Shakerzadeh, E.; Anota, E.C.; Behjatmanesh-Ardakani, R. The Al, Ga and Sc dopants effect on the adsorption performance of B12N12 nanocluster toward pnictogen hydrides. Chem. Phys. 2019, 526, 110424. [Google Scholar] [CrossRef]
- Janczak, J.; Kubiak, R.; Sledz, M.; Borrmann, H.; Grin, Y. Synthesis, structural investigations and magnetic properties of dipyridinated manganese phthalocyanine, MnPc(py)2. Polyhedron 2003, 22, 2689–2697. [Google Scholar] [CrossRef]
- Zouaghi, M.O.; Arfaoui, Y.; Champagne, B. Density functional theory investigation of the electronic and optical properties of metallo-phthalocyanine derivatives. Opt. Mater. 2021, 120, 111315. [Google Scholar] [CrossRef]
- Shalabi, A.S.; Aal, S.A.; Assem, M.M.; Soliman, K.A. Metallophthalocyanine and Metallophthalocyanine–fullerene complexes as potential dye sensitizers for solar cells DFT and TD-DFT calculations. Org. Electron. 2012, 13, 2063–2074. [Google Scholar] [CrossRef]
- Caplins, B.W.; Mullenbach, T.K.; Holmes, R.J.; Blank, D.A. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films. Phys. Chem. Chem. Phys. 2016, 18, 11454–11459. [Google Scholar] [CrossRef] [PubMed]
- Serra, O.A.; Iamamoto, Y. Chromophores: Porphyrin-Based Materials, Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1227–1229. [Google Scholar] [CrossRef]
- Eid, K.; Ammar, H. Adsorption of SO2 on Li atoms deposited on MgO (100) surface: DFT calculations. Appl. Surf. Sci. 2011, 257, 6049–6058. [Google Scholar] [CrossRef]
- AShalabi, S.; Aal, S.A.; Kamel, M.A.; Taha, H.O.; Ammar, H.Y.; Halim, W.S.A. The role of oxidation states in FA1 Tln+ (n = 1, 3) lasers and CO interactions at the (1 0 0) surface of NaCl: An ab initio study. Chem. Phys. 2006, 328, 8–16. [Google Scholar] [CrossRef]
- Shalabi, A.S.; Aal, S.A.; Halim, W.S.A.; Ammar, H.Y. Artificial polarization effects on FA1:Sr2+ lasers and NO interactions at NaCl (001) surface: First principles calculations. J. Mol. Struct. Theochem 2007, 823, 47–58. [Google Scholar] [CrossRef]
- Ziółkowski, M.; Grabowski, S.J.; Leszczynski, J. Cooperativity in Hydrogen-Bonded Interactions: Ab Initio and “atoms in molecules” analyses. J. Phys. Chem. A 2006, 110, 6514–6521. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Tanış, E. Toxic potential of poly-hexamethylene biguanide hydrochloride (PHMB): A DFT, AIM and NCI analysis study with solvent effects. Comput. Theor. Chem. 2022, 1212, 113709. [Google Scholar] [CrossRef]
- Srivastava, A.K. DFT and QTAIM studies on the reduction of carbon monoxide by superalkalis. J. Mol. Graph. Model. 2021, 102, 107765. [Google Scholar] [CrossRef] [PubMed]
- Ammar, H.Y.; Badran, H.M. Effect of CO adsorption on properties of transition metal doped porphyrin: A DFT and TD-DFT study. Heliyon 2019, 5, e02545. [Google Scholar] [CrossRef]
- Jigang, W.; Ji, L.; Yong, D.; Yan, Z.; Lihui, M.; Asadi, H. Effect of platinum on the sensing performance of ZnO nanocluster to CO gas. Solid State Commun. 2020, 316–317, 113954. [Google Scholar] [CrossRef]
- Sconza, A.; Torzo, G. An undergraduate laboratory experiment for measuring the energy gap in semiconductors. Eur. J. Phys. 1989, 10, 123–126. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 216–226. [Google Scholar]
- Kasap, S.O. Principles of Electronic Materials and Devices; McGraw-Hill: Boston, UK, 2006; pp. 378–405. [Google Scholar]
- Ammar, H.Y.; Badran, H.M.; Umar, A.; Fouad, H.; Alothman, O.Y. ZnO nanocrystal-based chloroform detection: Density Functional Theory (DFT) study. Coatings 2019, 9, 769. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Li, T.T.; Zhang, W.X. Electric field-modulated high sensitivity and selectivity for NH3 on α-C2N2 nanosheet: Insights from DFT calculations. Appl. Surf. Sci. 2020, 505, 144619. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Li, T.; Zhang, W. A novel C6N2 monolayer as a potential material for charge-controlled CO2 capture. J. Mater. Chem. C 2020, 8, 6542–6551. [Google Scholar] [CrossRef]
- Ammar, H.Y.; Eid, K.M.; Badran, H.M. TM-doped Mg12O12 nano-cages for hydrogen storage applications: Theoretical study. Results Phys. 2022, 35, 105349. [Google Scholar] [CrossRef]
- Abbasi, M.; Nemati-Kande, E.; Mohammadi, M.D. Doping of the first row transition metals onto B12N12 nanocage: A DFT study. Comput. Theor. Chem. 2018, 1132, 1–11. [Google Scholar] [CrossRef]
- Alam, M.S.; Lee, D. Molecular structure, spectral (FT-IR, FT-Raman, Uv-Vis, and fluorescent) properties and quantum chemical analyses of azomethine derivative of 4-aminoantipyrine. J. Mol. Struct. 2021, 1227, 129512. [Google Scholar] [CrossRef]
- Airam, S.V.; Ramesh, S. Engineering Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 1965, 140, 1133. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-Type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef]
- Yang, H.; Bashir, B.; Luo, G. Towards superior metal phthalocyanine catalysts for electrochemical oxygen reduction: A comprehensive screening under experimental conditions. Chem. Eng. J. 2023, 473, 145101. [Google Scholar] [CrossRef]
- Badran, H.M.; Eid, K.M.; Ammar, H.Y. DFT and TD-DFT studies of halogens adsorption on cobalt-doped porphyrin: Effect of the external electric field. Results Phys. 2021, 23, 103964. [Google Scholar] [CrossRef]
- Badran, H.M.; Eid, K.M.; Al-Nadary, H.O.; Ammar, H.Y. DFT and TD-DFT calculations for electronic, magnetic, and optical characteristics of the 3d transition metal complexes for hexaazabipyH2. Comput. Theor. Chem. 2023, 1226, 114215. [Google Scholar] [CrossRef]
- Roy, D.R.; Shah, E.V.; Roy, S.M. Optical activity of Co-porphyrin in the light of IR and Raman spectroscopy: A critical DFT investigation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA 1986, 2683, 8440–8441. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Guo, C.; Wang, C. A theoretical study on cage-like clusters (C12-Ti6 and C12-Ti62+) for dihydrogen storage. Int. J. Hydrogen Energy 2019, 44, 10763–10769. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- O’Boyle, N.M.; Tenderholt, A.L. cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. Natural Bond Orbital; Version 3.1; Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin: Madison, WI, USA, 1998. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Pc | MnPc | |
---|---|---|
HOMO (α) | −5.305 | −5.242 |
LUMO (α) | −3.185 | −3.117 |
HOMO (β) | −5.305 | −4.798 |
LUMO (β) | −3.185 | −3.410 |
Eg | 2.120 | 1.388 |
Eb | −5.402 | −5.474 |
QTM | - | 0.954 |
IP | 5.305 | 4.798 |
µ | 4.245 | 4.104 |
η | 1.06 | 0.694 |
ω | 8.499 | 12.134 |
D | 0.021 | 0.010 |
Mode 1 | Mode 2 | |||||
---|---|---|---|---|---|---|
NH3/MnPc | PH3/MnPc | AsH3/MnPc | NH3/MnPc | PH3/MnPc | AsH3/MnPc | |
Eads | −0.777 | −0.414 | −0.370 | −0.307 | −0.340 | −0.344 |
dX-Mn | 2.333 | 2.786 | 2.954 | 2.995 | 3.542 | 3.612 |
HOMO (α) | −5.079 | −5.136 | −5.163 | −5.285 | −5.250 | −5.229 |
LUMO (α) | −2.984 | −3.035 | −3.058 | −3.176 | −3.133 | −3.111 |
HOMO (β) | −4.427 | −4.582 | −4.628 | −4.794 | −4.781 | −4.755 |
LUMO (β) | −3.230 | −3.312 | −3.340 | −3.459 | −3.418 | −3.396 |
Eg | 1.196 | 1.271 | 1.288 | 1.335 | 1.363 | 1.359 |
QM | 0.827 | 0.830 | 0.767 | 0.988 | 0.880 | 0.898 |
0.177 | 0.324 | 0.226 | 0.084 | 0.100 | 0.101 | |
D | 3.130 | 2.083 | 1.576 | 0.949 | 0.228 | 0.213 |
Adsorption Mode | Complex | BCP | ρ | ∇2ρ | G(r) | V(r) | H(r) | −G(r)/V(r) |
---|---|---|---|---|---|---|---|---|
1 | NH3/MnPc | N–Mn | 0.045 | 0.171 | 0.045 | −0.047 | −0.002 | 0.952 |
PH3/MnPc | P–Mn | 0.032 | 0.064 | 0.021 | −0.026 | −0.005 | 0.813 | |
AsH3/MnPc | As–Mn | 0.025 | 0.046 | 0.015 | −0.018 | −0.003 | 0.833 | |
2 | NH3/MnPc | N–Mn | 0.013 | 0.030 | 0.008 | −0.009 | −0.001 | 0.897 |
PH3/MnPc | P–Mn | 0.008 | 0.020 | 0.005 | −0.004 | 0.000 | 1.097 | |
H–N | 0.007 | 0.019 | 0.004 | −0.004 | 0.001 | 1.155 | ||
AsH3/MnPc | As–Mn | 0.007 | 0.019 | 0.004 | −0.004 | 0.000 | 1.109 | |
H–N | 0.007 | 0.017 | 0.004 | −0.003 | 0.001 | 1.197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, H.M.; Eid, K.M.; Al-Nadary, H.O.; Ammar, H.Y. DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules. Molecules 2024, 29, 2168. https://doi.org/10.3390/molecules29102168
Badran HM, Eid KM, Al-Nadary HO, Ammar HY. DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules. Molecules. 2024; 29(10):2168. https://doi.org/10.3390/molecules29102168
Chicago/Turabian StyleBadran, Heba Mohamed, Khaled Mahmoud Eid, Hatim Omar Al-Nadary, and Hussein Youssef Ammar. 2024. "DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules" Molecules 29, no. 10: 2168. https://doi.org/10.3390/molecules29102168
APA StyleBadran, H. M., Eid, K. M., Al-Nadary, H. O., & Ammar, H. Y. (2024). DFT-D3 and TD-DFT Studies of the Adsorption and Sensing Behavior of Mn-Phthalocyanine toward NH3, PH3, and AsH3 Molecules. Molecules, 29(10), 2168. https://doi.org/10.3390/molecules29102168