Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions
Abstract
:1. Introduction
2. Result and Discussion
2.1. Optical Characterization of DNA-Ag NCs
2.2. Characteristics of A-DNA-Ag NCs
2.3. Optimization of Experimental Conditions for L-Histidine Determination
2.3.1. Response of Different DNA-Ag NCs to L-Histidine
2.3.2. Determination of the Optimization Concentration of Cu2+ and L-Histidine
2.3.3. Determination of Optimization Incubation Time
2.3.4. Optimization of pH
2.4. Assay of L-Histidine
2.5. Selectivity of the Sensor toward L-Histidine
2.6. Detection of L-Histidine in Human Urine
3. Experimental Section
3.1. Materials and Apparatus
3.2. Synthesis of Ag NCs
3.3. Assay of L-Histidine
3.4. Application of the Fluorescence Sensor
3.5. Measurement of the Absolute Photoluminescence Quantum Yield
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Zhang, Q.; Li, F.; Wang, M.; Sun, J.; Zhu, S. Fluorescent DNA-templated silver nanoclusters for highly sensitive detection of D-penicillamine. Spectrochim. Acta A 2021, 253, 119584–119591. [Google Scholar] [CrossRef] [PubMed]
- Jin, R. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565. [Google Scholar] [CrossRef] [PubMed]
- Aikens, C.M. Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R.M. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Yeh, H.-C.; Yoo, H.; Werner, J.H.; Martinez, J.S. A complementary palette of fluorescent silver nanoclusters. Chem. Commun. 2010, 46, 3280–3282. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wang, E. DNA-templated fluorescent silver nanoclusters. Anal. Bioanal. Chem. 2012, 402, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Dong, S.J. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens. Bioelectron. 2009, 24, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Dong, Y.H.; Feng, L.; Wang, S.; Zhang, S.C.; Zhang, X.R. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem. 2011, 83, 1193–1196. [Google Scholar]
- Durgadas, C.V.; Sharma, C.P.; Sreenivasan, K. Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 2011, 136, 933–940. [Google Scholar] [CrossRef]
- Xie, J.P.; Zheng, Y.G.; Ying, J.Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem. Commun. 2010, 46, 961–963. [Google Scholar] [CrossRef]
- Lin, Y.H.; Tseng, W.L. Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal. Chem. 2010, 82, 9194–9200. [Google Scholar] [CrossRef] [PubMed]
- Paau, M.C.; Lo, C.K.; Yang, X.P.; Choi, M.M.F. Synthesis of 1.4 nm α-Cyclodextrin-Protected Gold Nanoparticles for Luminescence Sensing of Mercury(II) with Picomolar Detection Limit. J. Phys. Chem. C 2010, 114, 15995–16003. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, Y.Y.; Luo, L.; Wang, Q.; Huang, J.; Liu, J.B.; Yang, X.H.; Wang, K.M. Ratiometric determination of human papillomavirus-16 DNA by using fluorescent DNA-templated silver nanoclusters and hairpin-blocked DNAzyme-assisted cascade amplification. Microchim. Acta 2019, 186, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Sun, X.M.; Hong, Q.; Li, F. Ratiometric NanoCluster Beacon: A Label-Free and Sensitive Fluorescent DNA Detection Platform. ACS Appl. Mater. Interfaces 2017, 9, 13102–13110. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Sun, X.M.; Hong, Q.; Li, F. Ratiometric Catalyzed-Assembly of NanoCluster Beacons: A Nonenzymatic Approach for Amplified DNA Detection. ACS Appl. Mater. Inter. 2017, 9, 32089–32096. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Ma, J.H.; Zhang, Y.C.; Zhang, Z.L.; He, G.W. A fluorometric method for determination of the activity of T4 polynucleotide kinase by using a DNA-templated silver nanocluster probe. Microchim. Acta 2019, 186, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Zhao, X.E.; Zhang, W.; Liu, Z.Y.; Qi, W.J.; Anjuma, S.; Xu, G.B. Fluorescence detection of glutathione reductase activity based on deoxyribonucleic acid-templated silver nanoclusters. Anal. Chim. Acta 2013, 786, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.Y.; Chen, D.L.; Yang, M.H. DNA-templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatise. Microchim. Acta 2017, 184, 2165–2170. [Google Scholar] [CrossRef]
- Li, J.; Zhong, X.; Zhang, H.; Le, X.C.; Zhu, J.J. Binding-Induced Fluorescence Turn-On Assay Using Aptamer-Functionalized Silver Nanocluster DNA Probes. Anal. Chem. 2012, 84, 5170–5174. [Google Scholar] [CrossRef]
- Liu, J.J.; Song, X.R.; Wang, Y.W.; Zheng, A.X.; Chen, G.N.; Yang, H.H. Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Anal. Chim. Acta 2012, 749, 70–74. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Chang, Y.; Xiong, Z.H.; Huang, C.Z. Highly selective detection of bacterial alarmone ppGpp with an off–on fluorescent probe of copper-mediated silver nanoclusters. Biosens. Bioelectron. 2013, 49, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, H.; Nie, L.; Sun, M.; Xiong, S. A novel fluorescent probe for selective labeling of histidine. Anal. Chim. Acta 2004, 515, 255–260. [Google Scholar] [CrossRef]
- Li, L.D.; Chen, Z.B.; Zhao, H.T.; Guo, L. Electrochemical real-time detection of l-histidine via self-cleavage of DNAzymes. Biosens. Bioelectron. 2011, 26, 2781–2785. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Suliman, M.E.; Qureshi, A.R.; Garcia-Lopez, E.; Bárány, P.; Heimbürger, O.; Stenvinkel, P.; Lindholm, B. Consequences of low plasma histidine in chronic kidney disease patients: Associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 2008, 87, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, J.; Fang, Y.; Qin, Y.; Xu, S.; Liu, Y.; Wang, E. G-quadruplex-based ultrasensitive and selective detection of histidine and cysteine. Biosens. Bioelectron. 2013, 41, 563–568. [Google Scholar] [CrossRef]
- Oliveira, E.; Santos, C.; Poeta, P.; Capelo, J.L.; Lodeiro, C. Turn-on selective vitamin B6 derivative fluorescent probe for histidine detection in biological samples. Analyst 2013, 138, 3642–3645. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yan, N.; Zhang, H.; Zhou, X.; Pu, Q.; Hu, Z. Microwave-accelerated derivatization for capillary electrophoresis with laser-induced fluorescence detection: A case study for determination of histidine, 1- and 3-methylhistidine in human urine. Talanta 2010, 82, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Tateda, N.; Matsuhisa, K.; Hasebe, K.; Kitajima, N.; Miura, T. High-performance liquid chromatographic method for rapid and highly sensitive determination of histidine using postcolumn fluorescence detection with ο-phthaldialdehyde. J. Chromatogr. B 1998, 718, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.K.; Tu, K.X.; Yan, X.P. An indicator-displacement assay for naked-eye detection and quantification of histidine in human urine. Analyst 2012, 137, 2124–2128. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, C.; Zhu, W.; Zeng, B.; Yang, Y.; Xu, Y.; Qian, X. Highly selective, naked-eye and fluorescent “off-on” probe for detection of histidine/histidine-rich proteins and its application in living cell imaging. Org. Biomol. Chem. 2012, 10, 1653–1658. [Google Scholar] [CrossRef]
- Fu, T.; Zhao, X.H.; Bai, H.R.; Zhao, Z.L.; Hu, R.; Kong, R.M.; Zhang, X.B.; Tan, W.; Yu, R.Q. A superquenched DNAzyme–perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors. Chem. Commun. 2013, 9, 6644–6646. [Google Scholar]
- He, H.Z.; Wang, M.; Chan, D.S.; Leung, C.H.; Qiu, J.W.; Ma, D.L. A label-free G-quadruplex-based luminescent switch-on assay for the selective detection of histidine. Methods 2013, 64, 205–211. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, X.; Zhu, J.; Zhong, S.; Song, G. Ni2+-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids. Analyst 2012, 137, 4005–4009. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, T.; Zhang, M.; Shi, G. DNA-scaffolded silver nanoclusters/Cu2+ ensemble: Use as a turn-on fluorescent probe for histidine. Analyst 2014, 139, 3122–3126. [Google Scholar] [CrossRef] [PubMed]
- Hortala, M.A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. Designing the Selectivity of the Fluorescent Detection of Amino Acids: A Chemosensing Ensemble for Histidine. J. Am. Chem. Soc. 2003, 125, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Pu, F.; Huang, Z.Z.; Ren, J.S.; Qu, X.G. DNA/Ligand/Ion-Based Ensemble for Fluorescence Turn on Detection of Cysteine and Histidine with Tunable Dynamic Range. Anal. Chem. 2010, 82, 8211–8216. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Yan, X.P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yao, T.; Zhu, Y.; Shi, S. Cu2+ modulated silver nanoclusters as an on–off–on fluorescence probe for the selective detection of L-histidine. Biosens. Bioelectron. 2014, 66, 103–108. [Google Scholar] [CrossRef]
- Gwinn, E.G.; O’Neill, P.; Guerrero, A.J.; Bouwmeester, D.; Fygenson, D.K. Sequence-Dependent Fluorescence of DNA-Hosted Silver Nanoclusters. Adv. Mater. 2008, 20, 279–283. [Google Scholar] [CrossRef]
- Loo, K.; Degtyareva, N.; Park, J.; Sengupta, B.; Reddish, M.; Rogers, C.C.; Bryant, A.; Petty, J.T. Ag+-Mediated Assembly of 5′-Guanosine Monophosphate. J. Phys. Chem. B 2010, 114, 4320–4326. [Google Scholar] [CrossRef]
- Li, C.; Wei, C. DNA-functionlized silver nanoclusters as label-free fluorescent probe for the highly sensitive detection of biothiols and acetylcholinesterase activity. Sensor Actuat. B 2017, 240, 451–458. [Google Scholar] [CrossRef]
- Li, C.; Wei, C. DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sensor Actuat. B 2017, 242, 563–568. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Z.; Li, Y.; Ma, L.; Li, F.; Lv, X.; Wen, G. A label-free aptasensor for the detection of ATP based on turn-on fluorescence DNA-templated silver nanoclusters. RSC Adv. 2022, 12, 30024–30029. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-R.; Goswami, N.; Yang, H.-H.; Xie, J. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016, 141, 3126–3140. [Google Scholar] [CrossRef] [PubMed]
- Krishnadas, K.R.; Ghosh, A.; Baksi, A.I.; Natarajan, G.; Pradeep, T. Intercluster Reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 2016, 138, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lin, Y.; Xu, M.; Gao, Z.; Yang, H.; Tang, D. Facile Synthesis of Enhanced Fluorescent Gold−Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity. Anal. Chem. 2016, 88, 8886–8892. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Yan, X.-P. Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosens. Bioelectron. 2010, 26, 485–490. [Google Scholar] [CrossRef]
- Elbaz, J.; Shlyahovsky, B.; Willner, I. A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chem. Commun. 2008, 13, 1569–1571. [Google Scholar] [CrossRef]
DNA | Sequences (5′–3′) |
---|---|
A-DNA B-DNA C-DNA D-DNA E-DNA F-DNA | CCCCCCCCCCCC CCCTTAATCCCC CCCTAACTCCCC CCTCCTTCCTCC CCCTCTTAACCC CCCTTTAACCCC |
Samples | Spiked (μM) | Measured (μM) Means a ± SD b | Average Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 2 | 2.1 ± 0.05 | 105.0 | 2.38 |
2 | 4 | 4.1 ± 0.12 | 102.5 | 2.93 |
3 | 6 | 5.9 ± 0.13 | 98.3 | 2.17 |
4 | 8 | 8.3 ± 0.15 | 103.8 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, M.; Hu, L.; Zhang, B. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Molecules 2024, 29, 2167. https://doi.org/10.3390/molecules29102167
Li Y, Li M, Hu L, Zhang B. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Molecules. 2024; 29(10):2167. https://doi.org/10.3390/molecules29102167
Chicago/Turabian StyleLi, Yuxia, Min Li, Liuzhi Hu, and Baozhu Zhang. 2024. "Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions" Molecules 29, no. 10: 2167. https://doi.org/10.3390/molecules29102167
APA StyleLi, Y., Li, M., Hu, L., & Zhang, B. (2024). Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Molecules, 29(10), 2167. https://doi.org/10.3390/molecules29102167