The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Recrystallization Attempts and Morphology
2.2. Crystal Structure of 4-Methylcatechol
2.3. Hydroxyls Geometric Optimization and Hydrogen Bond Framework Analysis
2.4. Hirshfeld Surface Analysis: Differences between the Two Molecules in the Asymmetric Unit
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Structure Solution by X-ray Powder Diffraction
3.3. First Principles Calculations
3.4. Hirshfeld Surface and the Energy Frameworks Analyses
3.5. Infrared Analysis
3.6. Scanning Electron Microscopy and Optical Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrubša, M.; Konečný, L.; Paclíková, M.; Parvin, M.S.; Skořepa, P.; Musil, F.; Karlíčková, J.; Javorská, L.; Matoušová, K.; Krčmová, L.K.; et al. The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action. Nutrients 2022, 14, 4798. [Google Scholar] [CrossRef] [PubMed]
- Pourová, J.; Najmanová, I.; Vopršalová, M.; Migkos, T.; Pilařová, V.; Applová, L.; Nováková, L.; Mladěnka, P. Two flavonoid metabolites, 3, 4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vasc. Pharmacol. 2018, 111, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, G.E.; Huntsman, W.D. A Field Bioassay of Beaver Castoreum and Some of Its Components. Am. Midl. Nat. 1988, 120, 144–149. [Google Scholar] [CrossRef]
- Walro, J.M.; Svendsen, G.E. Castor sacs and anal glands of the north american beaver (Castor canadensis): Their histology, development, and relationship to scent communication. J. Chem. Ecol. 1982, 8, 809–819. [Google Scholar] [CrossRef]
- Groom, N. The Perfume Handbook; 1992 ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Burdock, G.A. Safety Assessment of Castoreum Extract as a Food Ingredient. Int. J. Toxicol. 2007, 26, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, J.; Rutherford, S.; Sandberg, L.A. (Eds.) Methodological Challenges in Nature-Culture and Environmental History Research, 1st ed.; Routledge Environmental Humanities; Routledge: London, UK, 2016. [Google Scholar]
- Smith, L.O. The Absolut Group. Available online: https://theabsolutgroup.com/brands/absolut-vodka/lo-smith-svenska/ (accessed on 14 March 2024).
- Fujita, R.; Inagaki, M.; Chida, M.; Sugyo, M.; Muto, H.; Sasakawa, K. Flavorant-Carrying Adsorbent Particle, Cigarette Filter, Filter-Tipped Cigarette, and Method for Producing Flavorant-Carrying Adsorbent Particle. 2014. Available online: https://patents.google.com/patent/US20140123991 (accessed on 5 May 2024).
- Danilewicz, J.C.; Seccombe, J.T.; Whelan, J. Mechanism of Interaction of Polyphenols, Oxygen, and Sulfur Dioxide in Model Wine and Wine. Am. J. Enol. Vitic. 2008, 59, 128–136. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Waterhouse, A.L. A Method To Quantify Quinone Reaction Rates with Wine Relevant Nucleophiles: A Key to the Understanding of Oxidative Loss of Varietal Thiols. J. Agric. Food Chem. 2012, 60, 8484–8491. [Google Scholar] [CrossRef] [PubMed]
- Danilewicz, J.C. Reactions Involving Iron in Mediating Catechol Oxidation in Model Wine. Am. J. Enol. Vitic. 2013, 64, 316–324. [Google Scholar] [CrossRef]
- Vámos-Vigyázó, L.; Haard, N.F. Polyphenol oxidases and peroxidases in fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1981, 15, 49–127. [Google Scholar] [CrossRef]
- Siddiq, M.; Dolan, K. Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chem. 2017, 218, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.Y.; Liu, F.; Li, M.; Wang, K.L.; Ni, Y.Y. Comparison of biochemical properties of membrane-bound and soluble polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh.). Food Chem. 2019, 289, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Garro, A.; Gasull, E. Characterization of polyphenoloxidase from 2 peach (Prunus persica L.) varieties grown in Argentina. Food Sci. Biotechnol. 2010, 19, 627–632. [Google Scholar] [CrossRef]
- Öztürk, C.; Aksoy, M.; Küfrevioǧlu, O.I. Purification of tea leaf (Camellia sinensis) polyphenol oxidase by using affinity chromatography and investigation of its kinetic properties. J. Food Meas. Charact. 2019, 14, 31–38. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Złotek, U.; Świeca, M. Characterization of polyphenol oxidase from butter lettuce (Lactuca sativa var. capitata L.). Food Chem. 2008, 107, 129–135. [Google Scholar] [CrossRef]
- Bravo, K.; Osorio, E. Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chem. 2016, 197, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Benaceur, F.; Gouzi, H.; Meddah, B.; Neifar, A.; Guergouri, A. Purification and characterization of catechol oxidase from Tadela (Phoenix dactylifera L.) date fruit. Int. J. Biol. Macromol. 2019, 125, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Waqar, K.; Engholm-Keller, K.; Joehnke, M.S.; Chatterton, D.E.; Poojary, M.M.; Lund, M.N. Covalent bonding of 4-methylcatechol to β-lactoglobulin results in the release of cysteine-4-methylcatechol adducts after in vitro digestion. Food Chem. 2022, 397, 133775. [Google Scholar] [CrossRef] [PubMed]
- Arsad, S.S.; Zainudin, M.A.M.; De Gobba, C.; Jongberg, S.; Larsen, F.H.; Lametsch, R.; Andersen, M.L.; Lund, M.N. Quantitation of Protein Cysteine–Phenol Adducts in Minced Beef Containing 4-Methyl Catechol. J. Agric. Food Chem. 2020, 68, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Zainudin, M.A.M.; Jongberg, S.; Lund, M.N. Combination of light and oxygen accelerates formation of covalent protein-polyphenol bonding during chill storage of meat added 4-methyl catechol. Food Chem. 2021, 334, 127611. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Lund, M.N.; Waterhouse, A.L.; Skibsted, L.H. 4-Methylcatechol Inhibits Protein Oxidation in Meat but Not Disulfide Formation. J. Agric. Food Chem. 2011, 59, 10329–10335. [Google Scholar] [CrossRef]
- Jongberg, S.; Utrera, M.; Morcuende, D.; Lund, M.N.; Skibsted, L.H.; Estévez, M. Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin. J. Agric. Food Chem. 2015, 63, 8501–8509. [Google Scholar] [CrossRef] [PubMed]
- Bota, O.; Fodor, L. The influence of drugs on peripheral nerve regeneration. Drug Metab. Rev. 2019, 51, 266–292. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh-Goudarzi, G.; Haghi-Daredeh, S.; Ehterami, A.; Rahmati, M.; Nazarnezhad, S.; Hashemi, S.F.; Niyakan, M.; Vaez, A.; Salehi, M. Evaluating effect of alginate/chitosan hydrogel containing 4-Methylcatechol on peripheral nerve regeneration in rat model. Int. J. Polym. Mater. Polym. Biomater. 2020, 70, 1248–1257. [Google Scholar] [CrossRef]
- Ishikawa, K.; Yasuda, S.; Fukuhara, K.; Iwanaga, Y.; Ida, Y.; Ishikawa, J.; Yamagata, H.; Ono, M.; Kakeda, T.; Ishikawa, T. 4-Methylcatechol prevents derangements of brain-derived neurotrophic factor and TrkB-related signaling in anterior cingulate cortex in chronic pain with depression-like behavior. NeuroReport 2014, 25, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Majidi Ghatar, J.; Ehterami, A.; Nazarnezhad, S.; Hassani, M.S.; Rezaei Kolarijani, N.; Mahami, S.; Salehi, M. A novel hydrogel containing 4-methylcatechol for skin regeneration: In vitro and in vivo study. Biomed. Eng. Lett. 2023, 13, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Applová, L.; Karlíčková, J.; Warncke, P.; Macáková, K.; Hrubša, M.; Macháček, M.; Tvrdý, V.; Fischer, D.; Mladěnka, P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019, 63, 1900261. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhian, S.; Rastgar, S. Investigation of the electrochemical behavior of catechol and 4-methylcatechol in the presence of methyl mercapto thiadiazol as a nucleophile: Application to electrochemical synthesis. J. Appl. Electrochem. 2009, 40, 115–122. [Google Scholar] [CrossRef]
- Knecht, L.A.; Guthrie, E.J.; Jorgenson, J.W. On-column electrochemical detector with a single graphite fiber electrode for open-tubular liquid chromatography. Anal. Chem. 1984, 56, 479–482. [Google Scholar] [CrossRef]
- Michael, A.C.; Justice, J.B. Oxidation of dopamine and 4-methylcatechol at carbon fiber disk electrodes. Anal. Chem. 1987, 59, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Strein, T.G.; Ewing, A.G. In situ laser activation of carbon fiber microdisk electrodes. Anal. Chem. 1991, 63, 194–198. [Google Scholar] [CrossRef]
- Taylor, R.; Wood, P.A. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem. Rev. 2019, 119, 9427–9477. [Google Scholar] [CrossRef] [PubMed]
- Rumble, J. (Ed.) CRC Handbook of Chemistry and Physics, 101st ed.; CRC Press: London, UK, 2020. [Google Scholar]
- Guo, X.; Liu, L.; Wang, W.; Zhang, J.; Wang, Y.; Yu, S.H. Controlled crystallization of hierarchical and porous calcium carbonate crystals using polypeptide type block copolymer as crystal growth modifier in a mixed solution. CrystEngComm 2011, 13, 2054. [Google Scholar] [CrossRef]
- Zhang, X.L.; Chen, Y.; Cant, A.M.; Huang, F.; Cheng, Y.; Amal, R. Crystalline TiO2 Nanorod Aggregates: Template-Free Fabrication and Efficient Light Harvesting in Dye-Sensitized Solar Cell Applications. Part. Part. Syst. Charact. 2013, 30, 754–758. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Liu, J.; Wang, C. A Comparative Study of MFI Zeolite Derived from Different Silica Sources: Synthesis, Characterization and Catalytic Performance. Catalysts 2018, 9, 13. [Google Scholar] [CrossRef]
- Brown, C.J. The crystal structure of catechol. Acta Crystallogr. 1966, 21, 170–174. [Google Scholar] [CrossRef]
- Wunderlich, H.; Mootz, D. Die Kristallstruktur von Brenzcatechin: Eine Neubestimmung. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971, 27, 1684–1686. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π − π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. [Google Scholar] [CrossRef]
- Chernyshev, V.V. Structural Characterization of Pharmaceutical Cocrystals with the Use of Laboratory X-ray Powder Diffraction Patterns. Crystals 2023, 13, 640. [Google Scholar] [CrossRef]
- An, Q.; Liu, L.; Li, Y.; Shi, J.; Zhang, Y.; Liu, Y.; Zhang, H.; Wang, Y.; Zhang, X. Exploring the differences in crystal structure landscapes and physicochemical properties of enrofloxacin through the number of -OH in coformers: A case study. J. Mol. Struct. 2024, 1309, 138176. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Ugliengo, P.; Viterbo, D.; Chiari, G. MOLDRAW: Molecular graphics on a personal computer. Z. Für Krist.-Cryst. Mater. 1993, 207, 9–23. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09 (Revision A02); Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Boese, A.D. Density Functional Theory and Hydrogen Bonds: Are We There Yet? ChemPhysChem 2015, 16, 978–985. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Jayatilaka, D.; Grimwood, D.J. Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 142–151. [Google Scholar] [CrossRef]
- Thomas, S.P.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. J. Chem. Theory Comput. 2018, 14, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
Chemical formula | C7H8O2 | Formula weight | 124.13 g mol−1 |
Crystal system | monoclinic | Space Group | P /c |
a | Å | 90° | |
b | Å | ° | |
c | Å | 90° | |
Volume | Z | 8 | |
T | Å | ||
−3 | −1 | ||
528.0 | 529.74 | ||
7.7857 | 10.9931 | ||
CCDC number | 2342610 |
Level of Theory | Box1 Energy (kJ mol−1) | Box2 Energy (kJ mol−1) |
---|---|---|
HF/3-21G | 0.0 | +34.4 |
B3LYP/6-31G(d,p)//HF/3-21G | 0.0 | +39.9 |
B3LYP/6-31G(d,p) | 0.0 | +43.7 |
B3LYP-GD3/def2PVTZ | 0.0 | +45.7 |
ZPE-corrected B3LYP/6-31G(d,p) | 0.0 | +43.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopresti, M.; Palin, L.; Calegari, G.; Milanesio, M. The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study. Molecules 2024, 29, 2173. https://doi.org/10.3390/molecules29102173
Lopresti M, Palin L, Calegari G, Milanesio M. The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study. Molecules. 2024; 29(10):2173. https://doi.org/10.3390/molecules29102173
Chicago/Turabian StyleLopresti, Mattia, Luca Palin, Giovanni Calegari, and Marco Milanesio. 2024. "The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study" Molecules 29, no. 10: 2173. https://doi.org/10.3390/molecules29102173
APA StyleLopresti, M., Palin, L., Calegari, G., & Milanesio, M. (2024). The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study. Molecules, 29(10), 2173. https://doi.org/10.3390/molecules29102173