Selectivity Screening and Structure–Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wide Panel of Human Cancer Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structure Elucidation
2.2. Cytotoxic Activity
2.2.1. Prostate Panel
IC50 [μg/mL] | ||||||||
---|---|---|---|---|---|---|---|---|
Du-145 | PC3 | LNCaP | PNT2 | |||||
Comp. | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
CE | 6.7 | 4.3 | 5.6 | 2.9 | >100 | >100 | >100 | >100 |
ChIVa | 22.9 | 9.1 | 45.6 | 22.8 | >100 | >100 | >100 | >100 |
MIc | 5.4 | 2.8 | 5.5 | 3.4 | >100 | >100 | >100 | >100 |
OA | 23.4 | 12.2 | >100 | >100 | >100 | >100 | >100 | >100 |
DOX | 3.2 | >50 | 1.8 | 1.4 |
2.2.2. Breast Panel
IC50 [μg/mL] | ||||||
---|---|---|---|---|---|---|
MDA-MB-231 | MCF7 | MCF10A | ||||
Comp. | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
CE | 69.6 | 23.5 | >100 | 39.5 | >100 | >100 |
ChIVa | >100 | 98.1 | >100 | >100 | >100 | >100 |
MIc | 52.2 | 16.4 | >100 | 29.2 | >100 | >100 |
OA | >100 | 38.5 | >100 | 67.0 | >100 | >100 |
DOX |
2.2.3. Thyroid Panel
IC50 [μg/mL] and (Selectivity Index (SI)) | ||||||||
---|---|---|---|---|---|---|---|---|
FTC133 | 8505C | TPC-1 | Nthy-ori 3-1 | |||||
Comp. | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
CE | 1.9 (38.6) | 1.1 (28.1) | 2.8 (26.9) | 1.8 (16.5) | 8.5 (9.0) | 5.8 (5.1) | 76.0 | 30.1 |
ChIVa | 8.5 (11.76) | 4.0 (25.1) | >100 (NA) | >100 (NA) | >100 (NA) | 81.8 (1.2) | >100 | >100 |
MIc | 3.5 (24.85) | 2.1 (30.7) | 10.6 (8.2) | 5.2 (12.2) | 39.0 (2.2) | 39.0 (1.6) | 86.2 | 64.4 |
OA | 13.5 (6.99) | 4.9 (14.6) | 19.5 (4.8) | 11.3 (6.4) | 36.6 (2.6) | 30.0 (2.4) | 94.4 | 71.6 |
DOX | 4.0 (6.76) | >40 | 3.9 (7.0) | 27.2 |
2.2.4. Gastrointestinal Panel
IC50 [μg/mL] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Caco-2 | HT29 | HepG2 | DLD-1 | HCT116 | CCD 841 CoN | |||||||
Comp. | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
CE | 2.0 | 1.0 | 4.5 | 2.0 | 16.5 | 6.9 | 31.2 | 9.0 | 14.3 | 10.2 | >100 | >100 |
ChIVa | 69.0 | 15.8 | 14.9 | 5.6 | 30.0 | 20.9 | >100 | 50.3 | >100 | 78.2 | >100 | >100 |
MIc | 7.0 | 4.3 | 4.2 | 2.9 | 12.5 | 9.5 | 16.0 | 8.0 | 9.4 | 8.3 | >100 | >100 |
OA | 13.0 | 8.3 | >100 | >100 | 51.5 | 10.7 | 48.7 | 24.5 | 25.6 | 18.5 | >100 | >100 |
DOX | 3.4 | 1.5 | 1.0 | 1.1 | 4.0 | 1.7 |
2.2.5. Skin Panel
IC50 [μg/mL] and (Selectivity Index (SI)) | ||||||||
---|---|---|---|---|---|---|---|---|
HTB-140 | A375 | WM793 | HaCaT | |||||
Comp. | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h |
CE | 2.8 (1.8) | 1.7 (1.1) | 1.8 (2.9) | 0.8 (2.6) | 2.4 (2.1) | 1.2 (1.6) | 5.1 | 2.0 |
ChIVa | 15.0 (0.5) | 8.7 (0.4) | 1.6 (4.6) | 0.6 (2.3) | 18.5 (0.4) | 4.4 (0.7) | 7.3 | 3.1 |
MIc | 7.8 (0.7) | 3.0 (0.9) | 1.9 (2.7) | 0.9 (2.0) | 2.0 (2.6) | 1.0 (2.7) | 5.3 | 2.7 |
OA | 51.4 (0.2) | 29.5 (0.2) | 2.2 (5.2) | 0.9 (1.5) | 2.8 (4.0) | 1.2 (6.0) | 11.2 | 7.5 |
DOX | 5.7 (0.8) | 0.6 (7.9) | >40.0 | 4.7 |
2.3. Chemometric Analysis
2.4. Structure–Activity Relationship
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. General Experimental Procedures
3.3. Plant Material
3.4. Extraction and Isolation
3.5. Structure Elucidation
3.5.1. Compound 1 (CE): Oleanolic Acid-3-O-β-d-Glucuronopyranoside (Caleduloside E)
3.5.2. Compound 2 (ChIVa): 3-O-β-d-Glucuronopyranosyl Oleanolic Acid 28-O-β-d-Glucopyranosyl Ester (Chikusetsusaponin IVa)
3.6. Cell Culture
3.7. Cell Viability Assay
3.8. Selectivity Index
3.9. Chemometric Analysis
3.10. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Bildziukevich, U.; Wimmerová, M.; Wimmer, Z. Saponins of selected triterpenoids as potential therapeutic agents: A review. Pharmaceuticals 2023, 16, 386. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021, 28, 250–272. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants–A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef]
- Sharma, P.; Tyagi, A.; Bhansali, P.; Pareek, S.; Singh, V.; Ilyas, A.; Mishra, R.; Poddar, N.K. Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food Chem. Toxicol. 2021, 150, 112075. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Podolak, I.; Grabowska, K.; Sobolewska, D.; Wróbel-Biedrawa, D.; Makowska-Wąs, J.; Galanty, A. Saponins as cytotoxic agents: An update (2010–2021). Part II—Triterpene saponins. Phytochemistry Rev. 2023, 22, 113–167. [Google Scholar] [CrossRef]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Zheng, S.W.; Xiao, S.Y.; Wang, J.; Hou, W.; Wang, Y.P. Inhibitory effects of ginsenoside Ro on the growth of B16F10 melanoma via its metabolites. Molecules 2019, 24, 2985. [Google Scholar] [CrossRef]
- WFO. World Flora Online. 2024. Available online: http://www.worldfloraonline.org (accessed on 15 May 2024). [CrossRef]
- Rahiminejad, M.R.; Gornall, R.J. Flavonoid evidence for allopolyploidy in the Chenopodium album aggregate (Amaranthaceae). Plant Syst. Evol. 2004, 246, 77–87. [Google Scholar] [CrossRef]
- Bhargava, A.; Rana, T.S.; Shukla, S.; Ohri, D. Seed protein electrophoresis of some cultivated and wild species of Chenopodium. Biol. Plant 2005, 49, 505–511. [Google Scholar] [CrossRef]
- El-Kholy, M.A.; El-Ghamry, A.A.; Kasem, W.T.; Farghal, I.I.; Gaafar, A.S. Taxonomical studies on some Taxa of the Genus Chenopodium (Chenopodiaceae) using pollen grain characters and electrophoretic patterns of seed protein. Taeckholmia 2010, 30, 17–27. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Lv, C.; Xu, T.; Jia, L. Three new triterpenoid saponins from root of Gardenia jasminoides Ellis. Fitoterapia 2012, 83, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.T.; Lin, Y.C.; Zhang, L.J.; Liaw, C.C.; Chen, H.Y.; Hsueh, M.T.; Kuo, Y.H. Anti-Inflammatory and anti-proliferative oleanane-type triterpene glycosides from the vine of Momordica cochinchinensis. Nat. Prod. Res. 2021, 35, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Guan, F.; Wang, Q.; Wang, M.; Shan, Y.; Chen, Y.; Yin, M.; Zhao, Y.; Feng, X.; Liu, F.; Zhang, J. Isolation, identification and cytotoxicity of a new noroleanane-type triterpene saponin from Salicornia bigelovii Torr. Molecules 2015, 20, 6419–6431. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Cheng, J.; Cai, T.; Wu, X.; Cheng, Z.; Qi, S.; Qi, Z. Calunduloside E inhibits HepG2 cell proliferation and migration via p38/JNK-HMGB1 signalling axis. J. Pharmacol. Sci. 2021, 147, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Ding, Y.; Nguyen, H.T.; Kim, J.A.; Boo, H.J.; Kang, H.K.; Nguyen, M.C.; Kim, Y.H. Oleanane-type triterpenoids from Panax stipuleanatus and their anticancer activities. Bioorg Med. Chem. Lett. 2010, 20, 7110–7115. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Q.S.; Meng, F.C.; Tang, Z.H.; Chen, X.; Lin, L.G.; Chen, P.; Qiang, W.A.; Wang, Y.T.; Zhang, Q.W.; et al. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells. Phytomedicine 2016, 23, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.H.; Kwon, S.W.; Park, J.H. The cytotoxic saponin from heat-processed Achyranthes fauriei roots. Biol. Pharm. Bull. 2006, 29, 1053–1055. [Google Scholar] [CrossRef]
- Yen, P.H.; Chuong, N.T.H.; Lien, G.T.K.; Cuc, N.T.; Nhiem, N.X.; Thanh, N.T.V.; Tai, B.H.; Seo, Y.; Namkung, W.; Park, S.; et al. Oleanane-type triterpene saponins from Aralia armata leaves and their cytotoxic activity. Nat. Prod. Res. 2021, 36, 142–149. [Google Scholar] [CrossRef]
- Zhu, W.B.; Tian, F.J.; Liu, L.Q. Chikusetsu (CHI) triggers mitochondria-regulated apoptosis in human prostate cancer via reactive oxygen species (ROS) production. Biomed. Pharmacother. 2017, 90, 446–454. [Google Scholar] [CrossRef]
- Grabowska, K.; Buzdygan, W.; Galanty, A.; Wróbel-Biedrawa, D.; Sobolewska, D.; Podolak, I. Current knowledge on genus Bassia All.: A comprehensive review on traditional use, phytochemistry, pharmacological activity, and nonmedical applications. Phytochem. Rev. 2023, 22, 1197–1246. [Google Scholar] [CrossRef]
- Mi, Y.; Xiao, C.; Du, Q.; Wu, W.; Qi, G.; Liu, X. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways. Free Radic. Biol. Med. 2016, 90, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, L.; Xiao, H.; Xiao, C.; Wang, Y.; Liu, X. Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways. Apoptosis 2013, 18, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, L.; Xiao, H.; Wang, C.; Xiao, C.; Wang, Y.; Liu, X. A novel mechanism for momordin Ic-induced HepG2 apoptosis: Involvement of PI3K-and MAPK-dependent PPARγ activation. Food Funct. 2014, 5, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lei, H.; Zhang, J.; Chen, X.; Tang, C.; Wang, W.; Xu, H.; Xiao, W.; Gu, W.; Wu, Y. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget 2016, 7, 58995. [Google Scholar] [CrossRef] [PubMed]
- Grudzińska, M.; Stachnik, B.; Galanty, A.; Sołtys, A.; Podolak, I. Progress in antimelanoma research of natural triterpenoids and their derivatives: Mechanisms of action, bioavailability enhancement and structure modifications. Molecules 2023, 28, 7763. [Google Scholar] [CrossRef] [PubMed]
- Böttger, S.; Westhof, E.; Siems, K.; Melzig, M.F. Structure–activity relationships of saponins enhancing the cytotoxicity of ribosome-inactivating proteins type I (RIP-I). Toxicon 2013, 73, 144–150. [Google Scholar] [CrossRef]
- Edelmann, M.; Dawid, C.; Hochreiter, K.; Ralla, T.; Stark, T.D.; Salminen, H.; Hofmann, T. Molecularization of foam-active saponins from sugar beet side streams (Beta vulgaris ssp. vulgaris var altissima). J. Agric. Food Chem. 2020, 68, 10962–10974. [Google Scholar] [CrossRef]
- Lavaud, C.; Voutquenne, L.; Bal, P.; Pouny, I. Saponins from Chenopodium album. Fitoterapia 2000, 71, 338–340. [Google Scholar] [CrossRef]
- Yin, M.; Wang, X.; Wang, M.; Chem, Y.; Dong, Y.; Zhao, Y.; Feng, X. A new triterpenoid saponin and other saponins from Salicornia europea. Chem. Nat. Compd. 2012, 48, 258–261. [Google Scholar] [CrossRef]
- Grabowska, K.; Pietrzak, W.; Paśko, P.; Sołtys, A.; Galanty, A.; Żmudzki, P.; Nowak, R.; Podolak, I. Antihyaluronidase and antioxidant potential of Atriplex sagittata Borkh. in relation to phenolic compounds and triterpene saponins. Molecules 2023, 28, 982. [Google Scholar] [CrossRef]
- Guo, P.; Zeng, M.; Liu, M.; Zhang, Y.; Jia, J.; Zhang, Z.; Liang, S.; Zheng, X.; Feng, W. Isolation of Calenduloside E from Achyranthes bidentata Blume and its effects on LPS/D-GalN-induced acute liver injury in mice by regulating the AMPK-SIRT3 signaling pathway. Phytomedicine 2024, 125, 155353. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Wei, H.L.; Qi, L.W.; Chen, J.; Ren, M.T.; Li, P. Characterization and identification of saponins in Achyranthes bidentata by rapid-resolution liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 2975–2985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, H.; Zhou, Y.; Li, Z.; Gou, W.; Meng, Y.; Zheng, W.; Li, J.; Li, Y.; Zhu, W. Identification of potent SENP1 inhibitors that inactivate SENP1/JAK2/STAT signaling pathway and overcome platinum drug resistance in ovarian cancer. Clin. Transl. Med. 2021, 11, e649. [Google Scholar] [CrossRef]
- Bednarczyk-Cwynar, B.; Leśków, A.; Szczuka, I.; Zaprutko, L.; Diakowska, D. The effect of oleanolic acid and its four new semisynthetic derivatives on human MeWo and A375 melanoma cell lines. Pharmaceuticals 2023, 16, 746. [Google Scholar] [CrossRef]
- Duan, L.; Yang, Z.; Jiang, X.; Zhang, J.; Guo, X. Oleanolic acid inhibits cell proliferation migration and invasion and induces SW579 thyroid cancer cell line apoptosis by targeting forkhead transcription factor A. Anticancer. Drugs 2019, 30, 812–820. [Google Scholar] [CrossRef]
- Xianjun, F.; Xirui, X.; Jie, T.; Huiwen, M.; Shaojun, Z.; Qiaoyun, L.; Yunxin, L.; Xuqun, S. Momordin Ic induces G0/1 phase arrest and apoptosis in colon cancer cells by suppressing SENP1/c-MYC signaling pathway. J. Pharmacol. Sci. 2021, 146, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, K.A.; Rocha, G.D.G.; Monção-Ribeiro, L.C.; Fernandes, J.; Takiya, C.M.; Gattass, C.R. Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLoS ONE 2011, 6, e28596. [Google Scholar] [CrossRef]
- Woo, J.S.; Yoo, E.S.; Kim, S.H.; Lee, J.H.; Han, S.H.; Jung, S.H.; Jung, G.H.; Jung, J.Y. Anticancer effects of oleanolic acid on human melanoma cells. Chem. Biol. Interact. 2021, 347, 109619. [Google Scholar] [CrossRef]
- Caunii, A.; Oprean, C.; Cristea, M.; Ivan, A.; Danciu, C.; Tatu, C.; Paunescu, V.; Marti, D.; Tzanakakis, G.; Spandidos, D.A.; et al. Effects of ursolic and oleanolic on SK-MEL-2 melanoma cells: In vitro and in vivo assays. Int. J. Oncol. 2017, 51, 1651–1660. [Google Scholar] [CrossRef]
- Nguyen, M.N.T.; Ho-Huynh, T.D. Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects. BMC Complement. Altern. Med. 2016, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- Badisa, R.B.; Darling-Reed, S.F.; Joseph, P.; Cooperwood, J.S.; Latinwo, L.M.; Goodman, C.B. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer. Res. 2009, 29, 2993–2996. [Google Scholar] [PubMed]
- Luo, M.; Zeng, B.; Wang, H.; Yang, Z.; Peng, Y.; Zhang, Y.; Wang, C. Kochia scoparia saponin momordin Ic modulates HaCaT cell proliferation and apoptosis via the Wnt/β-catenin pathway. Evid. Based Complement. Alternat Med. 2021, 2021, 522164. [Google Scholar] [CrossRef] [PubMed]
- Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochemistry Rev. 2010, 9, 425–474. [Google Scholar] [CrossRef] [PubMed]
- Lanzotti, V.; Termolino, P.; Dolci, M.; Curir, P. Paviosides A–H, eight new oleane type saponins from Aesculus pavia with cytotoxic activity. Bioorg Med. Chem. 2012, 20, 3280–3286. [Google Scholar] [CrossRef] [PubMed]
- Lehbili, M.; Magid, A.A.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Morjani, H.; Harakat, D.; Kabouche, Z. Triterpenoid saponins from Scabiosa stellata collected in North-eastern Algeria. Phytochemistry 2018, 150, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, X.; Gu, G.; Liu, S.; Cui, M.; Lou, H.X. Facile synthesis of triterpenoid saponins bearing β-Glu/Gal-(1→3)-β-GluA methyl ester and their cytotoxic activities. Bioorg Med. Chem. Lett. 2012, 22, 2396–2400. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Z.; Liu, X.F.; Shan, Y.; Guan, F.Q.; Chen, Y.; Wang, X.Y.; Wang, M.; Feng, X. Two new nortriterpenoid saponins from Salicornia bigelovii Torr. and their cytotoxic activity. Fitoterapia 2012, 83, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhou, X.; Liu, Y.L.; Xu, Q.M.; Li, X.R.; Yang, S.L. Four new triterpenoidal saponins from Ilex cornuta and their cytotoxic activities. Phytochem. Lett. 2013, 6, 429–434. [Google Scholar] [CrossRef]
- Li, W.; Ding, Y.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Choi, C.W.; Kim, E.J.; Kang, H.K.; Kim, Y.H. Oleanane-type triterpenoid saponins from the roots of Pulsatilla koreana and their apoptosis-inducing effects on HL-60 human promyelocytic leukemia cells. Arch. Pharm. Res. 2013, 36, 768–774. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, H.; Zhang, L.; Guo, T.; Wang, P.; Geng, M.; Li, Y. Synthesis and antitumor activities of naturally occurring oleanolic acid triterpenoid saponins and their derivatives. Eur. J. Med. Chem. 2013, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Shu, Z.; Xu, Q.M.; Liu, Y.L.; Li, X.R.; Wang, Y.L.; Yang, S.L. Cytotoxic activity of Pulsatilla chinensis saponins and their structure-activity relationship. J. Asian Nat. Prod. Chem. Res. 2013, 15, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Kaennakam, S.; Rassamee, K.; Siripong, P.; Tip-pyang, S. Catomentosaponin, a new triterpene saponin from the roots of Catunaregam tomentosa. Nat. Prod. Res. 2018, 32, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Pecio, Ł.; Galanty, A.; Żmudzki, P.; Oleszek, W.; Podolak, I. Serjanic acid glycosides from Chenopodium hybridum L. with good cytotoxicity and selectivity profile against several panels of human cancer cell lines. Molecules 2021, 26, 4915. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Podolak, I.; Galanty, A.; Żmudzki, P.; Koczurkiewicz, P.; Piska, K.; Pękala, E.; Janeczko, Z. Two new triterpenoid saponins from the leaves of Impatiens parviflora DC. and their cytotoxic activity. Ind. Crops Prod. 2017, 96, 71–79. [Google Scholar] [CrossRef]
- Sołtys, A.; Galanty, A.; Zagrodzki, P.; Grabowska, K.; Malarz, J.; Podolak, I. Sorbus intermedia (EHRH.) PERS. fruits as a novel source of biologically active triterpenoids–Comparative studies of ursolic acid derivatives with cytotoxic potential. Biomed. Pharmacother. 2022, 154, 113592. [Google Scholar] [CrossRef]
- Galanty, A.; Niepsuj, M.; Grudzińska, M.; Zagrodzki, P.; Podolak, I.; Paśko, P. In the search for novel, isoflavone-rich functional foods—Comparative studies of four clover species sprouts and their chemopreventive potential for breast and prostate cancer. Pharmaceuticals 2022, 15, 806. [Google Scholar] [CrossRef]
Correlated Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
t1c1 | t1c2 | t1c3 | t1c4 | t2c1 | t2c2 | t2c3 | t2c4 | ||
Correlated parameters | t1c1 | 0.888 | 0.991 | 0.867 | |||||
t1c2 | 0.888 | 0.941 | 0.999 | ||||||
t1c3 | 0.991 | 0.941 | 0.925 | ||||||
t1c4 | 0.867 | 0.999 | 0.925 | ||||||
t2c1 | −0.972 | 1.000 | −0.986 | ||||||
t2c2 | −0.972 | −0.969 | 0.998 | ||||||
t2c3 | 1.000 | −0.969 | −0.984 | ||||||
t2c4 | −0.986 | 0.998 | −0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowska, K.; Galanty, A.; Pecio, Ł.; Stojakowska, A.; Malarz, J.; Żmudzki, P.; Zagrodzki, P.; Podolak, I. Selectivity Screening and Structure–Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wide Panel of Human Cancer Cell Lines. Molecules 2024, 29, 3794. https://doi.org/10.3390/molecules29163794
Grabowska K, Galanty A, Pecio Ł, Stojakowska A, Malarz J, Żmudzki P, Zagrodzki P, Podolak I. Selectivity Screening and Structure–Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wide Panel of Human Cancer Cell Lines. Molecules. 2024; 29(16):3794. https://doi.org/10.3390/molecules29163794
Chicago/Turabian StyleGrabowska, Karolina, Agnieszka Galanty, Łukasz Pecio, Anna Stojakowska, Janusz Malarz, Paweł Żmudzki, Paweł Zagrodzki, and Irma Podolak. 2024. "Selectivity Screening and Structure–Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wide Panel of Human Cancer Cell Lines" Molecules 29, no. 16: 3794. https://doi.org/10.3390/molecules29163794
APA StyleGrabowska, K., Galanty, A., Pecio, Ł., Stojakowska, A., Malarz, J., Żmudzki, P., Zagrodzki, P., & Podolak, I. (2024). Selectivity Screening and Structure–Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wide Panel of Human Cancer Cell Lines. Molecules, 29(16), 3794. https://doi.org/10.3390/molecules29163794