Encoding CO2 Adsorption in Sodium Zirconate by Neutron Diffraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction
2.2. Neutron Diffraction Analysis
2.3. TGA-DTG Analysis
3. Materials and Methods
3.1. Materials
3.1.1. Original Synthesis Method (OSM)
- Method One—A heating rate of 1 °C /min up to a maximum temperature of 900 °C, then held at this temperature for two hours.
- Method Two—A heating rate of 10 °C /min up to a maximum temperature of 900 °C, then held at this temperature for two hours.
3.1.2. Improved Synthesis Method (ISM)
3.2. X-ray Diffraction
3.3. Neutron Diffraction (ND)
3.3.1. Experiments Conducted on Sample Synthesised with 1 °C/min Heating Rate
3.3.2. Experiments Conducted on Sample Synthesised with 10 °C/min Heating Rate
3.3.3. ND Data Analysis
3.4. Thermogravimetric Analysis
- Under the presence of pure nitrogen gas, heating until 900 °C and holding at this temperature initially for 27 min until the material stabilises.
- Under 20 mol% CO2 (balanced by nitrogen), where the temperature is reduced to 700 °C and held for 5 min.
- Under pure nitrogen, the temperature is again increased to 900 °C and held for 5 min.
3.5. Derivative Thermogravimetry (DTG)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin-Roberts, E.; Scott, V.; Flude, S.; Johnson, G.; Haszeldine, R.S.; Gilfillan, S. Carbon capture and storage at the end of a lost decade. One Earth 2021, 4, 1569–1584. [Google Scholar] [CrossRef]
- Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Wang, Y.; Memon, M.Z.; Seelro, M.A.; Fu, W.; Gao, Y.; Dong, Y.; Ji, G. A review of CO2 sorbents for promoting hydrogen production in the sorption-enhanced steam reforming process. Int. J. Hydrogen Energy 2021, 46, 23358–23379. [Google Scholar] [CrossRef]
- Barrulas, R.V.; López-Iglesias, C.; Zanatta, M.; Casimiro, T.; Mármol, G.; Carrott, M.R.; García-González, C.A.; Corvo, M.C. The AEROPILs Generation: Novel Poly(Ionic Liquid)-Based Aerogels for CO2 Capture. Int. J. Mol. Sci. 2022, 23, 200. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.G.; Samy, M.M.; Mansoure, T.H.; Li, C.-J.; Li, W.-C.; Chen, J.-H.; Zhang, K.; Kuo, S.-W. Microporous Carbon and Carbon/Metal Composite Materials Derived from Bio-Benzoxazine-Linked Precursor for CO2 Capture and Energy Storage Applications. Int. J. Mol. Sci. 2022, 23, 347. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wu, C.; Gao, W.; Li, H.; Ma, Y.; Liu, S.; Yang, D. CO2 Absorption Mechanism by the Deep Eutectic Solvents Formed by Monoethanolamine-Based Protic Ionic Liquid and Ethylene Glycol. Int. J. Mol. Sci. 2022, 23, 1893. [Google Scholar] [CrossRef] [PubMed]
- Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 2016, 380, 93–99. [Google Scholar] [CrossRef]
- Ji, G.; Yang, H.; Memon, M.Z.; Gao, Y.; Qu, B.; Fu, W.; Olguin, G.; Zhao, M.; Li, A. Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures. Appl. Energy 2020, 267, 114874. [Google Scholar] [CrossRef]
- Grasso, M.L.; Blanco, M.V.; Cova, F.; Gonzalez, J.A.; Arnedo Larochette, P.; Gennari, F.C. Evaluation of the formation and carbon dioxide capture by Li4SiO4 using in situ synchtron powder X-ray diffraction studies. Phys. Chem. Chem. Phys. 2018, 20, 26570. [Google Scholar] [CrossRef]
- Mendoza-Nieto, J.A.; Martinez-Hernandez, H.; Pfeiffer, H.; Gomez-Garcia, J.F. A new kinetic model for CO2 capture on sodium zirconate (Na2ZrO3): An analysis under different flow rates. J. CO2 Utiliz. 2022, 56, 101862. [Google Scholar] [CrossRef]
- Peltzer, D.; Hoyos, L.A.S.; Faroldi, B.; Munera, J.; Cornaglia, L. Comparative study of lithium-based CO2 sorbents at high temperature: Experimental and modeling kinetic analysis of the carbonation reaction. J. Environ. Chem. Eng. 2020, 8, 104173. [Google Scholar] [CrossRef]
- Peltzer, D.; Munera, J.; Cornaglia, L. The effect of the Li:Na molar ratio on the structural and sorption properties of mixed zirconates for CO2 capture at high temperature. J. Environ. Chem. Eng. 2019, 7, 102927. [Google Scholar] [CrossRef]
- Bamiduro, F. Synthesis and Characterisation of Zinc Oxide and Sodium Zirconate particles. Ph.D. Thesis, University of Leeds, Leeds, UK, 2015. Available online: https://etheses.whiterose.ac.uk/11647/ (accessed on 2 February 2024).
- Alcanter-Vazquez, B.; Duan, Y.; Pfieffer, H. CO Oxidation and Subsequent CO2 Chemisorption on Alkaline Zirconates: Li2ZrO3 and Na2ZrO3. Ind. Eng. Chem. Res. 2016, 55, 9880–9886. [Google Scholar] [CrossRef]
- Alcerra-Corte, L.; Fregoso-Isreal, E.; Pfieffer, H. CO2 Absorption on Na2ZrO3: A Kinetic Analysis of the Chemisorption and Diffusion Processes, J. Phys. Chem. 2008, 112, 6520–6525. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Y.; Memon, M.Z.; Fu, W.; Wu, Z.; Sheng, S.; Zhang, H.; Ji, G. The Effect of Na2ZrO3 Synthesis Method on the CO2 Sorption Kinetics at High Temperature. Carbon Capture Sci. Technol. 2022, 3, 100050. [Google Scholar] [CrossRef]
- Munro, S.; Ahlen, M.; Cheung, O.; Sanna, A. Tuning Na2ZrO3 for fast and stable CO2 adsorption by solid state synthesis. Chem. Eng. J. 2020, 388, 124284. [Google Scholar] [CrossRef]
- Ampian, S.G. X-Ray and Optical Crystallographic Data for Na2ZrO3. J. Am. Ceram. Soc. 1968, 51, 607–608. [Google Scholar] [CrossRef]
- Bastow, T.J.; Hobday, M.E.; Smith, M.E.; Whitfield, H.J. Structural Characterisation of Na2ZrO3. Solid State Nucl. Magn. Reson. 1994, 3, 49–57. [Google Scholar] [CrossRef]
- Cortes-Palacios, L.; Collins, V.I.; Diaz, A.; Lopez, A. New Mechanism of Sodium Zirconate Formation. Chem. Mater. Res. 2012, 2, 31–40. [Google Scholar]
- Ji, G.; Memon, M.Z.; Zhuo, H.; Zhao, M. Experimental study on CO2 capture mechanisms using Na2ZrO3 sorbents synthesized by soft chemistry method. Chem. Eng. J. 2017, 313, 646–654. [Google Scholar] [CrossRef]
- Pavan, A.F.; Ling, C.D. Phase Formation and Degradation of Na2ZrO3 under CO2 Cycling Studied by Ex Situ and In Situ Diffraction. Inorg. Chem. 2022, 61, 6555–6561. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Menon, A.S.; Svensson Grape, E.; Broqvist, P.; Inge, A.K.; Cheung, O. Rethinking the existence of hexagonal sodium zirconate CO2 sorbent. J. Mater. Chem. A 2024, 12, 15858–15865. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database. Physical Sciences Data Science Service. Available online: https://www.psds.ac.uk/icsd (accessed on 10 April 2024).
- Bos, J.-W.; Hesse, F.; Sanna, A.; Quinn, R.; Gammie, C.; Kennedy, B. Determination of the Accurate Crystal Structure of Na2ZrO3 and Its Conversion to Na2CO3 upon CO2 Uptake, STFC ISIS Neutron and Muon Source. 2019. Available online: https://data.isis.stfc.ac.uk/doi/STUDY/108682279/ (accessed on 7 May 2024). [CrossRef]
Sample | Na2ZrO3 wt% | ZrO2 wt% | Na2CO3 wt% |
---|---|---|---|
1 DCPM–OSM | 66.9 | 21.4 | 11.6 |
10 DCPM–OSM | 67.3 | 23.6 | 9.1 |
1 DCPM–ISM | 84.7 | 0.8 | 14.5 |
10 DCPM–ISM | 100 | 0 | 0 |
Sample | CO2 Uptake Capacity after 1st Cycle, wt% | % Decrease after 1st Cycle | CO2 Uptake Capacity after 2nd Cycle, wt% | % Decrease after 2nd Cycle |
---|---|---|---|---|
ISM-1 °C/min | 18.89% | 13.92% | 13.40% | 10.83% |
ISM-10 °C/min | 12.77% | 9.64% | 9.69% | 7.93% |
Sample | Space Group | Unit Cell Parameters | ||||
---|---|---|---|---|---|---|
a | b | c | Beta | Volume | ||
Sodium Zirconate | C 1 2/c 1 | 5.68623 | 9.85403 | 11.33008 | 99.903 | 625.391 |
Sodium Carbonate (low Temperature) | C 1 2/m 1 | 8.91799 | 5.2497 | 6.06909 | 100.949 | 278.693 |
Sodium Carbonate (High Temperature) | p 63/m m c | 5.22204 | 6.71301 | - | - | 158.563 |
Zirconium Dioxide (Low Temperature) | p 1 21/c 1 | 5.20052 | 5.16255 | 5.32503 | 99.978 | 140.805 |
Zirconium Dioxide (High Temperature) | F m −3 m | 5.11885 | - | - | - | 134.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gammie, C.; Hesse, F.; Kennedy, B.; Bos, J.-W.G.; Sanna, A. Encoding CO2 Adsorption in Sodium Zirconate by Neutron Diffraction. Molecules 2024, 29, 3798. https://doi.org/10.3390/molecules29163798
Gammie C, Hesse F, Kennedy B, Bos J-WG, Sanna A. Encoding CO2 Adsorption in Sodium Zirconate by Neutron Diffraction. Molecules. 2024; 29(16):3798. https://doi.org/10.3390/molecules29163798
Chicago/Turabian StyleGammie, Connor, Fabian Hesse, Blair Kennedy, Jan-Willem G. Bos, and Aimaro Sanna. 2024. "Encoding CO2 Adsorption in Sodium Zirconate by Neutron Diffraction" Molecules 29, no. 16: 3798. https://doi.org/10.3390/molecules29163798
APA StyleGammie, C., Hesse, F., Kennedy, B., Bos, J. -W. G., & Sanna, A. (2024). Encoding CO2 Adsorption in Sodium Zirconate by Neutron Diffraction. Molecules, 29(16), 3798. https://doi.org/10.3390/molecules29163798