Next Issue
Volume 29, September-1
Previous Issue
Volume 29, August-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 29, Issue 16 (August-2 2024) – 266 articles

Cover Story (view full-size image): Cyclo[n]carbons (Cn), one type of all-carbon allotropes, hold great potential for the next-generation electronic devices. Herein, we theoretically investigate their aromaticity-dependent electronic transport properties after being connected to two bulk gold electrodes. For the doubly aromatic C14 and C18 molecules, slightly deformed complexes at the singlet state arise after bonding with one Au atom at each side, and thus spin-unpolarized transmission functions with a large transmission coefficient at the Fermi level are obtained. In contrast, the orbital reordering observed in the doubly anti-aromatic C16 and C20 molecules leads to heavily deformed asymmetric complexes at the triplet state, and spin-polarized transmission appears in the Au-C16/20-Au junctions together with a much lower transmission coefficient at the Fermi level. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 2502 KiB  
Article
Broad-Spectrum Legionaminic Acid-Specific Antibodies in Pooled Human IgGs Revealed by Glycan Microarrays with Chemoenzymatically Synthesized Nonulosonosides
by Anoopjit Singh Kooner, Hai Yu, Shani Leviatan Ben-Arye, Vered Padler-Karavani and Xi Chen
Molecules 2024, 29(16), 3980; https://doi.org/10.3390/molecules29163980 - 22 Aug 2024
Viewed by 904
Abstract
The presence and the level of antibodies in human sera against bacterial glycans are indications of prior encounters with similar antigens and/or the bacteria that express them by the immune system. An increasing number of pathogenic bacteria that cause human diseases have been [...] Read more.
The presence and the level of antibodies in human sera against bacterial glycans are indications of prior encounters with similar antigens and/or the bacteria that express them by the immune system. An increasing number of pathogenic bacteria that cause human diseases have been shown to express polysaccharides containing a bacterial nonulosonic acid called 5,7-di-N-acetyllegionaminic acid (Leg5,7Ac2). To investigate the immune recognition of Leg5,7Ac2, which is critical for the fight against bacterial infections, a highly effective chemoenzymatic synthon strategy was applied to construct a library of α2–3/6-linked Leg5,7Ac2-glycans via their diazido-derivatives (Leg5,7diN3-glycans) formed by efficient one-pot three-enzyme (OP3E) synthetic systems from a diazido-derivative of a six-carbon monosaccharide precursor. Glycan microarray studies using this synthetic library of a Leg5,7Ac2-capped collection of diverse underlying glycan carriers and their matched sialoside counterparts revealed specific recognition of Leg5,7Ac2 by human IgG antibodies pooled from thousands of healthy donors (IVIG), suggesting prior human encounters with Leg5,7Ac2-expressing pathogenic bacteria at the population level. These biologically relevant Leg5,7Ac2-glycans and their immune recognition assays are important tools to begin elucidating their biological roles, particularly in the context of infection and host–pathogen interactions. Full article
Show Figures

Figure 1

12 pages, 5407 KiB  
Article
Waste Point Identification of Frying Oil Based on Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)
by Lin Ye, Lijun Song, Li Zhang and Ruiguo Cui
Molecules 2024, 29(16), 3979; https://doi.org/10.3390/molecules29163979 - 22 Aug 2024
Viewed by 649
Abstract
This study described the quality detection and rapid identification of frying oil waste points based on gas chromatography–ion mobility spectrometry (GC-IMS). A total of 48 volatile substances were identified, among which the levels of 11 components, including 2-pentylfuran, 2-butylfuran, and 2-hexanone, increased with [...] Read more.
This study described the quality detection and rapid identification of frying oil waste points based on gas chromatography–ion mobility spectrometry (GC-IMS). A total of 48 volatile substances were identified, among which the levels of 11 components, including 2-pentylfuran, 2-butylfuran, and 2-hexanone, increased with prolonged frying time after 40 h in cottonseed oil. Conversely, the levels of hexanal, heptanal, and E,E-2,4-heptadienal decreased as frying time extended. Correlation analysis revealed a significant association between volatile substances of the oil and acid value (p < 0.05) and polar components with volatile substances (p < 0.05). Furthermore, significant differences in the types and contents of flavor substances were observed in cottonseed oil at different frying times (including before and after reaching the discard point) (p < 0.05). Subsequently, principal component analysis (PCA) results clearly showed that the cottonseed oil samples at different frying times were well distinguished by the volatile compounds; moreover, discriminant model analysis indicated a model accuracy rate of 100%. These results showed the potential of GC-IMS-based approaches in discriminating the waste points of frying oil. Full article
Show Figures

Figure 1

31 pages, 3353 KiB  
Review
Chemical-Assisted CO2 Water-Alternating-Gas Injection for Enhanced Sweep Efficiency in CO2-EOR
by Pengwei Fang, Qun Zhang, Can Zhou, Zhengming Yang, Hongwei Yu, Meng Du, Xinliang Chen, Yuxuan Song, Sicai Wang, Yuan Gao, Zhuoying Dou and Meiwen Cao
Molecules 2024, 29(16), 3978; https://doi.org/10.3390/molecules29163978 - 22 Aug 2024
Viewed by 1930
Abstract
CO2-enhanced oil recovery (CO2-EOR) is a crucial method for CO2 utilization and sequestration, representing an important zero-carbon or even negative-carbon emission reduction technology. However, the low viscosity of CO2 and reservoir heterogeneity often result in early gas [...] Read more.
CO2-enhanced oil recovery (CO2-EOR) is a crucial method for CO2 utilization and sequestration, representing an important zero-carbon or even negative-carbon emission reduction technology. However, the low viscosity of CO2 and reservoir heterogeneity often result in early gas breakthrough, significantly reducing CO2 utilization and sequestration efficiency. A water-alternating-gas (WAG) injection is a technique for mitigating gas breakthrough and viscous fingering in CO2-EOR. However, it encounters challenges related to insufficient mobility control in highly heterogeneous and fractured reservoirs, resulting in gas channeling and low sweep efficiency. Despite the extensive application and research of a WAG injection in oil and gas reservoirs, the most recent comprehensive review dates back to 2018, which focuses on the mechanisms of EOR using conventional WAG. Herein, we give an updated and comprehensive review to incorporate the latest advancements in CO2-WAG flooding techniques for enhanced sweep efficiency, which includes the theory, applications, fluid displacement mechanisms, and control strategies of a CO2-WAG injection. It addresses common challenges, operational issues, and remedial measures in WAG projects by covering studies from experiments, simulations, and pore-scale modeling. This review aims to provide guidance and serve as a reference for the application and research advancement of CO2-EOR techniques in heterogeneous and fractured reservoirs. Full article
(This article belongs to the Special Issue Advanced Chemical Approaches and Technologies in Water Treatment)
Show Figures

Figure 1

13 pages, 3568 KiB  
Article
Study on the Rapid Limit Test for Six Sulfonamide Residues in Food Based on the TLC-SERS Method
by Yukun Ma, Min Zhang, Li Li, Jicheng Liu, Feng Xu, Yuanrui Wang, Bo Song, Tao Xu, Yue Hong and Honglian Zhang
Molecules 2024, 29(16), 3977; https://doi.org/10.3390/molecules29163977 - 22 Aug 2024
Viewed by 702
Abstract
Sulfonamides are not only widely applied in clinics but also highly valued in animal husbandry. Recently, it has become common for sulfonamide residues to exceed the standard limits in food, which can affect human health. Current regulations limit these residues. Therefore, we constructed [...] Read more.
Sulfonamides are not only widely applied in clinics but also highly valued in animal husbandry. Recently, it has become common for sulfonamide residues to exceed the standard limits in food, which can affect human health. Current regulations limit these residues. Therefore, we constructed a new limit test method to rapidly determine the levels of sulfonamide residues. Six sulfonamides were detected using the latest method called TLC-SERS, namely, sulfamethasone (A), sulfamethazine (B), sulfadoxine (C), sulfamethoxydiazine (D), sulfamethoxazole (E), and sulfathiazole (F). The optimal conditions for SERS detection were investigated for these six drugs, and the separation effects of different TLC spreaders on them were compared. Then, we successfully established a separation system using dichloromethane–methanol–ammonia in a ratio of 5:1:0.25 (v/v/v), which provided good separation effects on the six drugs. The residues were preliminarily separated via TLC. A silver sol solution was added to the spot on the silica gel G plate at the corresponding specific shift values, and SERS detection was performed. The sample solution was placed on the spot under a 532 nm laser, and the SERS spectrum was collected and analyzed for the six sulfonamides. The results showed obvious variations in the SERS spectrum among the six sulfonamides, with the LODs being 12.5, 6.4, 6.3, 7.1, 18.8, and 6.2 ng/mL from A to F, respectively, and an RSD of <3.0%. Within 48 h, the SERS signal for each sulfonamide drug was kept stable, with an RSD of <3.0%. The detection results of 20 samples using the TLC-SERS method were consistent with those obtained by UPLC-MS/MS. The established TLC-SERS method is simple and fast, providing a useful reference for the rapid detection of residue limits in food. Full article
Show Figures

Figure 1

11 pages, 5644 KiB  
Article
The Anti-Melanogenic Effects of Ganodermanontriol from the Medicinal Mushroom Ganoderma lucidum through the Regulation of the CREB and MAPK Signaling Pathways in B16F10 Cells
by Che-Hwon Park, Youn-Lee Oh, Ju-Hyeon Shin and Young-Jin Park
Molecules 2024, 29(16), 3976; https://doi.org/10.3390/molecules29163976 - 22 Aug 2024
Viewed by 795
Abstract
Ganoderma lucidum, a member of the Basidiomycetes family, is attracting attention for its medicinal potential due to its biological activity and the presence of numerous bioactive compounds. Although it is known that extracts of this mushroom inhibit melanin production, there are few [...] Read more.
Ganoderma lucidum, a member of the Basidiomycetes family, is attracting attention for its medicinal potential due to its biological activity and the presence of numerous bioactive compounds. Although it is known that extracts of this mushroom inhibit melanin production, there are few reports on a single substance associated with this effect. In this study, we identified ganodermanontriol (GT), a novel compound from G. lucidum, that effectively inhibited melanin biosynthesis in B16F10 cells. GT inhibits melanin production by suppressing the expression of cellular tyrosinase proteins and microphthalmia-related transcription factor (MITF). Furthermore, GT affects the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling molecules, which are involved in melanogenesis in B16F10 cells. Finally, the biosynthesis of GT and other substances by G. lucidum was evaluated using HPLC analysis. Thus, this study revealed the mechanism by which GT in G. lucidum inhibits melanin production in B16F10 cells, and these findings will contribute to promoting the potential use of this mushroom in the future. Full article
Show Figures

Figure 1

13 pages, 4371 KiB  
Article
Investigating the Discoloration of Leaves of Dioscorea polystachya Using Developed Atomic Absorption Spectrometry Methods for Manganese and Molybdenum
by David Krüger, Alexander Weng and Daniel Baecker
Molecules 2024, 29(16), 3975; https://doi.org/10.3390/molecules29163975 - 22 Aug 2024
Viewed by 700
Abstract
The Chinese yam (Dioscorea polystachya, DP) is promising for the food and pharmaceutical industries due to its nutritional value and pharmaceutical potential. Its proper cultivation is therefore of interest. An insufficient supply of minerals necessary for plant growth can be manifested [...] Read more.
The Chinese yam (Dioscorea polystachya, DP) is promising for the food and pharmaceutical industries due to its nutritional value and pharmaceutical potential. Its proper cultivation is therefore of interest. An insufficient supply of minerals necessary for plant growth can be manifested by discoloration of the leaves. In our earlier study, magnesium deficiency was excluded as a cause. As a follow-up, this work focused on manganese and molybdenum. To quantify both minerals in leaf extracts of DP, analytical methods based on atomic absorption spectrometry (AAS) using the graphite furnace sub-technique were devised. The development revealed that the quantification of manganese works best without using any of the investigated modifiers. The optimized pyrolysis and atomization temperatures were 1300 °C and 1800 °C, respectively. For the analysis of molybdenum, calcium proved to be advantageous as a modifier. The optimum temperatures were 1900 °C and 2800 °C, respectively. Both methods showed satisfactory linearity for analysis. Thus, they were applied to quantify extracts from normal and discolored leaves of DP concerning the two minerals. It was found that discolored leaves had higher manganese levels and a lower molybdenum content. With these results, a potential explanation for the discoloration could be found. Full article
(This article belongs to the Special Issue Application of Spectroscopy for Drugs)
Show Figures

Graphical abstract

18 pages, 6201 KiB  
Review
Advances in Aptamer-Based Biosensors for the Detection of Foodborne Mycotoxins
by Yangyang Li, Dan Zhang, Xiaoyuan Zeng, Cheng Liu, Yan Wu and Cuicui Fu
Molecules 2024, 29(16), 3974; https://doi.org/10.3390/molecules29163974 - 22 Aug 2024
Cited by 1 | Viewed by 1022
Abstract
Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high [...] Read more.
Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high cost, that limit their large-scale applications. In recent years, aptamer-based biosensors have become a new tool for food safety risk assessment and monitoring due to their high affinity, good specificity, and fast response. In this review, we focus on the progress of single-mode and dual-mode aptasensors in basic research and device applications over recent years. Furthermore, we also point out some problems in the current detection strategies, with the aim of stimulating future toxin detection systems for a transition toward ease of operation and rapid detection. Full article
(This article belongs to the Special Issue Raman Spectroscopy for Biological Applications)
Show Figures

Graphical abstract

24 pages, 7613 KiB  
Review
The Application of Hydrogen Sulfide Fluorescent Probe in Food Preservation, Detection and Evaluation
by Sitong Chen, Xiongjie Zhao and Liyi Zhou
Molecules 2024, 29(16), 3973; https://doi.org/10.3390/molecules29163973 - 22 Aug 2024
Viewed by 863
Abstract
This work primarily reviewed the response mechanism of fluorescent probes for H2S detection in foodstuffs in recent years, as well as the methodologies employed for detecting foodstuffs. Firstly, the significance of studying H2S gas as an important signaling molecule [...] Read more.
This work primarily reviewed the response mechanism of fluorescent probes for H2S detection in foodstuffs in recent years, as well as the methodologies employed for detecting foodstuffs. Firstly, the significance of studying H2S gas as an important signaling molecule is introduced. Subsequently, a review of the response mechanism of the scientific community on how to detect H2S in foodstuffs samples by fluorescent probe technology is carried out. Secondly, the methods commonly used for detecting foodstuffs samples are discussed, including the test strip method and the spiking recovery methods. Nevertheless, despite the significant advancements in this field, there remain some research gaps. Finally, the article identifies the remaining issues that require further attention in current research and proposes avenues for future investigation. More importantly, this work identifies the current limitations of research in this field and proposes future applications of fluorescent probes for H2S in assessing food freshness and determining food spoilage. Therefore, this review will provide robust technical support for the protection of consumer health and the advancement of the sustainable development of the food industry and also put forward some new ideas and suggestions for future research. Full article
Show Figures

Figure 1

12 pages, 1892 KiB  
Article
Comparison between Electropolymers of 3,5-Dihydroxybenzoic Acid and 2′,6′-Dihydroxyacetophenone in Dimethyl Sulfoxide and Their Analytical Performance towards Selected Analytes with the Role of the Washing Liquid
by László Kiss, Heng Li, Hui Yan and Sándor Kunsági-Máté
Molecules 2024, 29(16), 3972; https://doi.org/10.3390/molecules29163972 - 22 Aug 2024
Viewed by 553
Abstract
In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2′,6′-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two [...] Read more.
In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2′,6′-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two electrode materials. The acetophenone derivative formed electropolymer remnants at the electrodes, while in the case of the benzoic acid derivative, practically no passivation occurred, and the scanning electron microscopic results reinforced this. A few stackings adsorbed only after electropolymerization from a highly concentrated solution of dihydroxybenzoic acid. As a modifying layer on the platinum and glassy carbon electrodes, the prepared films from 2′,6′-dihydroxyacetophenone were tested for tributylamine in acetonitrile and in an aqueous solution of a redox-active compound, hydroquinone, during the stirring of the solution. More stable amperometric current signals could be reached with modified platinum than with glassy carbon, and the significant influence of the organic washing liquid after deposition was established via the study of noise level. In this respect, acetone was the best choice. The amperometric signals with the modified platinum obtained upon the addition of aliquots of the stock solution resulted in a 3.29 μM detection limit. Full article
Show Figures

Figure 1

16 pages, 3065 KiB  
Article
Utilizing Morphological and Physiological Parameters of Lemna minor for Assessing Tetracyclines’ Removal
by Łukasz Sikorski, Agnieszka Bęś, Kazimierz Warmiński, Wojciech Truszkowski and Przemysław Kowal
Molecules 2024, 29(16), 3971; https://doi.org/10.3390/molecules29163971 - 22 Aug 2024
Viewed by 662
Abstract
Antibiotics with significant environmental toxicity, e.g., tetracyclines (TCs), are often used in large quantities worldwide, with 50–80% of the applied dose ending up in the environment. This study aimed to investigate the effects of exposure to tetracycline hydrochloride (TC) and minocycline hydrochloride (MIN) [...] Read more.
Antibiotics with significant environmental toxicity, e.g., tetracyclines (TCs), are often used in large quantities worldwide, with 50–80% of the applied dose ending up in the environment. This study aimed to investigate the effects of exposure to tetracycline hydrochloride (TC) and minocycline hydrochloride (MIN) on L. minor. Our research evaluated the phytotoxicity of the TCs by analyzing plant growth and biomass and evaluating assimilation pigment levels and fluorescence. The research was extended with the ability potential of duckweed as a tool for removing TCs from water/wastewater. The results demonstrated that both TCs influenced Ir, Iy, biomass, and photosynthetic efficiency. The uptake of TC and MIN by duckweed was proportional to the concentration in the growth medium. The TC was absorbed more readily, reaching up to 8.09 mg × g−1 of dry weight (DW) at the highest concentration (19.2 mg × L−1), while MIN reached 6.01 mg × g−1 of DW. As indicated, the consequences of the influence of TC on plants were slightly smaller, in comparison to MIN, while the plants could biosorb this drug, even at the lowest tested concentration. This study has shown that using plants for drug biosorption can be an effective standalone or complementary method for water and wastewater treatment. Full article
Show Figures

Figure 1

17 pages, 3890 KiB  
Article
Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery
by Xinfeng Cheng, Huixian Li, Xiaomeng Sun, Tianxu Xu, Zhenzhen Guo, Xianchao Du, Shuai Li, Xuyang Li, Xiaojing Xing and Dongfang Qiu
Molecules 2024, 29(16), 3970; https://doi.org/10.3390/molecules29163970 - 22 Aug 2024
Viewed by 853
Abstract
To synthesize an effective and versatile nano-platform serving as a promising carrier for controlled drug delivery, visible-light-induced diselenide-crosslinked polyurethane micelles were designed and prepared for ROS-triggered on-demand doxorubicin (DOX) release. A rationally designed amphiphilic block copolymer, poly(ethylene glycol)-b-poly(diselenolane diol-co-isophorone diisocyanate)-b [...] Read more.
To synthesize an effective and versatile nano-platform serving as a promising carrier for controlled drug delivery, visible-light-induced diselenide-crosslinked polyurethane micelles were designed and prepared for ROS-triggered on-demand doxorubicin (DOX) release. A rationally designed amphiphilic block copolymer, poly(ethylene glycol)-b-poly(diselenolane diol-co-isophorone diisocyanate)-b-poly(ethylene glycol) (PEG-b-PUSe-b-PEG), which incorporates dangling diselenolane groups within the hydrophobic PU segments, was initially synthesized through the polycondensation reaction. In aqueous media, this type of amphiphilic block copolymer can self-assemble into micellar aggregates and encapsulate DOX within the micellar core, forming DOX-loaded micelles that are subsequently in situ core-crosslinked by diselenides via a visible-light-triggered metathesis reaction of Se-Se bonds. Compared with the non-crosslinked micelles (NCLMs), the as-prepared diselenide-crosslinked micelles (CLMs) exhibited a smaller particle size and improved colloidal stability. In vitro release studies have demonstrated suppressed drug release behavior for CLMs in physiological conditions, as compared to the NCLMs, whereas a burst release of DOX occurred upon exposure to an oxidation environment. Moreover, MTT assay results have revealed that the crosslinked polyurethane micelles displayed no significant cytotoxicity towards HeLa cells. Cellular uptake analyses have suggested the effective internalization of DOX-loaded crosslinked micelles and DOX release within cancer cells. These findings suggest that this kind of ROS-triggered reversibly crosslinked polyurethane micelles hold significant potential as a ROS-responsive drug delivery system. Full article
(This article belongs to the Special Issue Molecular Approaches to Drug Discovery and Development)
Show Figures

Figure 1

12 pages, 4152 KiB  
Article
Exploring Molecular Heteroencoders with Latent Space Arithmetic: Atomic Descriptors and Molecular Operators
by Xinyue Gao, Natalia Baimacheva and Joao Aires-de-Sousa
Molecules 2024, 29(16), 3969; https://doi.org/10.3390/molecules29163969 - 22 Aug 2024
Viewed by 793
Abstract
A variational heteroencoder based on recurrent neural networks, trained with SMILES linear notations of molecular structures, was used to derive the following atomic descriptors: delta latent space vectors (DLSVs) obtained from the original SMILES of the whole molecule and the SMILES of the [...] Read more.
A variational heteroencoder based on recurrent neural networks, trained with SMILES linear notations of molecular structures, was used to derive the following atomic descriptors: delta latent space vectors (DLSVs) obtained from the original SMILES of the whole molecule and the SMILES of the same molecule with the target atom replaced. Different replacements were explored, namely, changing the atomic element, replacement with a character of the model vocabulary not used in the training set, or the removal of the target atom from the SMILES. Unsupervised mapping of the DLSV descriptors with t-distributed stochastic neighbor embedding (t-SNE) revealed a remarkable clustering according to the atomic element, hybridization, atomic type, and aromaticity. Atomic DLSV descriptors were used to train machine learning (ML) models to predict 19F NMR chemical shifts. An R2 of up to 0.89 and mean absolute errors of up to 5.5 ppm were obtained for an independent test set of 1046 molecules with random forests or a gradient-boosting regressor. Intermediate representations from a Transformer model yielded comparable results. Furthermore, DLSVs were applied as molecular operators in the latent space: the DLSV of a halogenation (H→F substitution) was summed to the LSVs of 4135 new molecules with no fluorine atom and decoded into SMILES, yielding 99% of valid SMILES, with 75% of the SMILES incorporating fluorine and 56% of the structures incorporating fluorine with no other structural change. Full article
(This article belongs to the Special Issue QSAR and QSPR: Recent Developments and Applications, 4th Edition)
Show Figures

Graphical abstract

16 pages, 262 KiB  
Review
The Chemical Residues in Secondary Beekeeping Products of Environmental Origin
by Joanna Wojtacka
Molecules 2024, 29(16), 3968; https://doi.org/10.3390/molecules29163968 - 22 Aug 2024
Viewed by 749
Abstract
Natural products of bee origin, despite their complex composition and difficulties in standardization, have been of high interest among scientists representing various disciplines from basic sciences to industrial and practical implementation. As long as their use is monitored and they do not impact [...] Read more.
Natural products of bee origin, despite their complex composition and difficulties in standardization, have been of high interest among scientists representing various disciplines from basic sciences to industrial and practical implementation. As long as their use is monitored and they do not impact human health, they can be considered valuable sources of many chemical compounds and are potentially useful in medicine, food processing, nutrition, etc. However, apart from honey, the general turnover of bee products lacks precise and detailed legal requirements ensuring their quality. The different residues in these products constitute a problem, which has been reported in numerous studies. All products derived from beekeeping are made by bees, but they are also influenced by the environment. Such a dual pathway requires detailed surveillance of hazards stemming from outside and inside the apiary. This should be ensured via harmonized requirements arising from the binding legal acts, especially in international and intercontinental trade zones. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Graphical abstract

14 pages, 5927 KiB  
Article
A Strategic Synthesis of Orange Waste-Derived Porous Carbon via a Freeze-Drying Method: Morphological Characterization and Cytocompatibility Evaluation
by Angela S. Kaloudi, Panagiota Zygouri, Konstantinos Spyrou, Antrea-Maria Athinodorou, Eirini Papanikolaou, Mohammed Subrati, Dimitrios Moschovas, K. K. R. Datta, Zili Sideratou, Apostolos Avgeropoulos, Yannis V. Simos, Konstantinos I. Tsamis, Dimitrios Peschos, Ioannis V. Yentekakis and Dimitrios P. Gournis
Molecules 2024, 29(16), 3967; https://doi.org/10.3390/molecules29163967 - 22 Aug 2024
Viewed by 1071
Abstract
Porous carbon materials from food waste have gained growing interest worldwide for multiple applications due to their natural abundance and the sustainability of the raw materials and the cost-effective synthetic processing. Herein, orange waste-derived porous carbon (OWPC) was developed through a freeze-drying method [...] Read more.
Porous carbon materials from food waste have gained growing interest worldwide for multiple applications due to their natural abundance and the sustainability of the raw materials and the cost-effective synthetic processing. Herein, orange waste-derived porous carbon (OWPC) was developed through a freeze-drying method to prevent the demolition of the original biomass structure and then was pyrolyzed to create a large number of micro, meso and macro pores. The novelty of this work lies in the fact of using the macro-channels of the orange waste in order to create a macroporous network via the freeze-drying method which remains after the pyrolysis steps and creates space for the development of different types of porous in the micro and meso scale in a controlled way. The results showed the successful preparation of a porous carbon material with a high specific surface area of 644 m2 g−1 without any physical or chemical activation. The material’s cytocompatibility was also investigated against a fibroblast cell line (NIH/3T3 cells). OWPC triggered a mild intracellular reactive oxygen species production without initiating apoptosis or severely affecting cell proliferation and survival. The combination of their physicochemical characteristics and high cytocompatibility renders them promising materials for further use in biomedical and pharmaceutical applications. Full article
(This article belongs to the Collection Porous Materials)
Show Figures

Figure 1

14 pages, 5137 KiB  
Communication
Nickel–Molybdenum-Based Three-Dimensional Nanoarrays for Oxygen Evolution Reaction in Water Splitting
by Zhi Lu, Shilin Li, Yuxin Wang, Jiefeng Wang, Yifan Guo, Jiaqi Ding, Kun Tang, Yingzi Ren, Long You, Hongbo Meng and Guangxin Wang
Molecules 2024, 29(16), 3966; https://doi.org/10.3390/molecules29163966 - 22 Aug 2024
Viewed by 640
Abstract
Water splitting is an important approach to hydrogen production. But the efficiency of the process is always controlled by the oxygen evolution reaction process. In this study, a three-dimensional nickel–molybdenum binary nanoarray microstructure electrocatalyst is successfully synthesized. It is grown uniformly on Ni [...] Read more.
Water splitting is an important approach to hydrogen production. But the efficiency of the process is always controlled by the oxygen evolution reaction process. In this study, a three-dimensional nickel–molybdenum binary nanoarray microstructure electrocatalyst is successfully synthesized. It is grown uniformly on Ni foam using a hydrothermal method. Attributed to their unique nanostructure and controllable nature, the Ni-Mo-based nanoarray samples show superior reactivity and durability in oxygen evolution reactions. The series of Ni-Mo-based electrocatalysts presents a competitive overpotential of 296 mV at 10 mA·cm−2 for an OER in 1.0 M KOH, corresponding with a low Tafel slope of 121 mV dec−1. The three-dimensional nanostructure has a large double-layer capacitance and plenty of channels for ion transfer, which demonstrates more active sites and improved charge transmission. This study provides a valuable reference for the development of non-precious catalysts for water splitting. Full article
Show Figures

Figure 1

13 pages, 2941 KiB  
Article
Thermoacid Behavior of Serpentinite of the Zhitikarinsky Deposit (Kazakhstan)
by Abdrazak Auyeshov, Kazhymuhan Arynov, Chaizada Yeskibayeva, Kurmanbek Alzhanov and Yerkebulan Raiymbekov
Molecules 2024, 29(16), 3965; https://doi.org/10.3390/molecules29163965 - 22 Aug 2024
Viewed by 495
Abstract
Thermoacid behavior of serpentinite from the Zhitikarinsky field (g. Zhitikara, Kazakhstan). The character of dissolution of heat-treated serpentinite in a narrow temperature range of 600–750 °C is investigated, where the crystal lattice of the structural structure of chrysotile in sulfuric acid is destroyed. [...] Read more.
Thermoacid behavior of serpentinite from the Zhitikarinsky field (g. Zhitikara, Kazakhstan). The character of dissolution of heat-treated serpentinite in a narrow temperature range of 600–750 °C is investigated, where the crystal lattice of the structural structure of chrysotile in sulfuric acid is destroyed. The X-ray and chemical analysis of the products of dissolution of heat-treated serpentinite at 600 °C, 725 °C and 750 °C in sulfuric acid solution show that the reason for the increase in the reactivity of heat-treated serpentinite at 725 °C and 750 °C with respect to the acidic medium and the degree of magnesium extraction into sulfate solution is the formation of periclase (MgO) in the serpentinite composition after heat treatment of them within a temperature range of 600–750 °C. The results were discussed using data obtained by conducting a thermodynamic evaluation of probable reactions during the thermoacid treatment of serpentinite, phase compressions of heat-treated serpentinite at 600–750 °C, and after its acid treatment at 1.0 M H2SO4. Full article
(This article belongs to the Special Issue Analytical Chemistry in Asia)
Show Figures

Figure 1

12 pages, 3885 KiB  
Article
Cascade Hydroxyl Radical-Generating and Ferroptosis-Inducing Nanofiber System for the Therapy of Oral Squamous Cell Carcinoma
by JiHye Park, Qiaojun Hao, Da In Jeong, Hyun-Jin Kim, Sungyun Kim, Song Yi Lee, Seongnam Chu, Usok Hyun and Hyun-Jong Cho
Molecules 2024, 29(16), 3964; https://doi.org/10.3390/molecules29163964 - 22 Aug 2024
Cited by 1 | Viewed by 676
Abstract
Nanofiber (NF) membrane systems that can provide cascade catalytic reaction and ferroptosis induction were developed for oral cancer therapy. Glucose oxidase (GOx) and aminoferrocene (AF) were introduced into the NF system for glucose deprivation/H2O2 generation and OH radical generation, respectively. [...] Read more.
Nanofiber (NF) membrane systems that can provide cascade catalytic reaction and ferroptosis induction were developed for oral cancer therapy. Glucose oxidase (GOx) and aminoferrocene (AF) were introduced into the NF system for glucose deprivation/H2O2 generation and OH radical generation, respectively. GOx offers starvation therapy and AF (including iron) provides chemodynamic therapy/ferroptosis for combating oral cancer. GOx (water-soluble) and AF (poorly water-soluble) molecules were successfully entrapped in the NF membrane via an electrospinning process. GOx and AF were incorporated into the polyvinyl alcohol (PVA)-based NF, resulting in PVA/GOx/AF NF with fast disintegration and immediate drug-release properties. In oral squamous cell carcinoma (YD-9 cells), the PVA/GOx/AF NF group exhibited higher cytotoxicity, antiproliferation potential, cellular ROS level, apoptosis induction, lipid ROS level, and malondialdehyde level compared to the other NF groups. The electrospun PVA/GOx/AF NF can be directly applied to oral cancer without causing pain, offering starvation/chemodynamic therapy and ferroptosis induction. Full article
Show Figures

Figure 1

21 pages, 18571 KiB  
Article
Hydrogen Production from Methanol Steam Reforming over Fe-Modified Cu/CeO2 Catalysts
by Grzegorz Słowik, Marek Rotko, Janusz Ryczkowski and Magdalena Greluk
Molecules 2024, 29(16), 3963; https://doi.org/10.3390/molecules29163963 - 22 Aug 2024
Viewed by 1019
Abstract
Fe-modified Cu catalysts with CeO2 support, prepared by the impregnation method, were subjected to physicochemical analysis and catalytic tests in the steam reforming of methanol (SRM). Physicochemical studies of the catalysts were carried out using the XRF, TEM, STEM-EDS, XRD, TPR and [...] Read more.
Fe-modified Cu catalysts with CeO2 support, prepared by the impregnation method, were subjected to physicochemical analysis and catalytic tests in the steam reforming of methanol (SRM). Physicochemical studies of the catalysts were carried out using the XRF, TEM, STEM-EDS, XRD, TPR and nitrogen adsorption/desorption methods. XRD, TEM studies and catalytic tests of the catalysts were carried out at two reduction temperatures, 260 °C and 400 °C, to determine the relationship between the form and oxidation state of the active phase of the catalysts and the catalytic properties of these systems in the SRM. Additionally, the catalysts after the reaction were analysed for the changes in the structure and morphology using TEM methods. The presented results show that the composition of the catalysts, morphology, structure, form and oxidation state of the Cu and Fe active metals in the catalysts and the reaction temperature significantly impact their activity, selectivity and stability in the SRM process. The gradual deactivation of the studied catalysts under SRM conditions could result from the forming of carbon deposits and/or the gradual oxidation of the copper and iron phases under the reaction conditions. Full article
Show Figures

Graphical abstract

13 pages, 2772 KiB  
Article
Low-Cost Ni-W Catalysts Supported on Glucose/Carbon Nanotube Hybrid Carbons for Sustainable Ethylene Glycol Synthesis
by Rafael G. Morais, Lucília S. Ribeiro, José J. M. Órfão and Manuel Fernando R. Pereira
Molecules 2024, 29(16), 3962; https://doi.org/10.3390/molecules29163962 - 22 Aug 2024
Viewed by 787
Abstract
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, [...] Read more.
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, a series of low-cost Ni-W bimetallic catalysts supported on glucose/carbon nanotube hybrid carbons were synthesised for the first time and employed to transform cellulose into EG. Two different strategies were combined for the preparation of the carbons: the activation and addition of carbon nanotubes (CNTs) to obtain a hybrid material (AG-CNT). The catalytic conversion process proceeded through cellulose hydrolysis to glucose, followed by glucose retro-aldol condensation to glycolaldehyde and its subsequent hydrogenation to EG. Through the optimisation of the catalyst’s properties, particularly the metals’ content, a good synergistic effect of C-C bond cleavage and hydrogenation capabilities was assured, resulting in the highly selective production of EG. The balance between Ni and W active sites was confirmed to be a crucial parameter. Thus, total cellulose conversion (100%) was achieved with EG yields of 60–62%, which are amongst the best yields ever reported for the catalytic conversion of cellulose into EG via carbon-supported catalysts. Full article
Show Figures

Graphical abstract

16 pages, 2541 KiB  
Article
Antibacterial Efficacy and Characterization of Silver Nanoparticles Synthesized via Methanolic Extract of Fomes fomentarius L. Fr.
by Valentina Pavić, Elvira Kovač-Andrić, Ivan Ćorić, Stella Rebić, Zvonimir Užarević and Vlatka Gvozdić
Molecules 2024, 29(16), 3961; https://doi.org/10.3390/molecules29163961 - 22 Aug 2024
Viewed by 812
Abstract
Green synthesis employs environmentally friendly, biodegradable substances for the production of nanomaterials. This study aims to develop an innovative method for synthesizing silver nanoparticles (AgNPs) using a methanolic extract of Fomes fomentarius L. Fr. as the reducing agent and to assess the potential [...] Read more.
Green synthesis employs environmentally friendly, biodegradable substances for the production of nanomaterials. This study aims to develop an innovative method for synthesizing silver nanoparticles (AgNPs) using a methanolic extract of Fomes fomentarius L. Fr. as the reducing agent and to assess the potential antibacterial properties of the resulting nanoparticles. The successful synthesis of AgNPs was confirmed through characterization techniques such as UV-visible (UV-Vis) spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD). The UV-Vis analysis revealed an absorption peak at 423 nm, while FT-IR identified key phytochemical compounds involved in the reduction process. PXRD analysis indicated a face-centered cubic (fcc) structure with prominent peaks observed at 2θ = 38°, 44.6°, 64.6°, and 78°, confirming the crystalline nature of the AgNPs, with a crystallite diameter of approximately 24 nm, consistent with TEM analysis. The synthesized AgNPs demonstrated significant antibacterial activity, particularly against S. aureus, with higher efficacy against gram-positive bacteria. Full article
Show Figures

Figure 1

19 pages, 5518 KiB  
Article
Agroprospecting of Biowastes: Globe Artichoke (Cynara scolymus L. Cultivar Tema, Asteraceae) as Potential Source of Bioactive Compounds
by Jorge M. Alves-Silva, Mónica Zuzarte, Lígia Salgueiro, Emma Cocco, Valentina Ghiani, Danilo Falconieri, Delia Maccioni and Andrea Maxia
Molecules 2024, 29(16), 3960; https://doi.org/10.3390/molecules29163960 - 22 Aug 2024
Viewed by 894
Abstract
Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but they generate significant waste during their production, harvesting, and processing, which poses sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke biowaste (TB) into valuable resources, [...] Read more.
Artichokes (Cynara scolymus L.) are valuable foods, thanks to their health benefits, but they generate significant waste during their production, harvesting, and processing, which poses sustainability issues. This study applied an agroprospecting approach to convert Tema artichoke biowaste (TB) into valuable resources, starting from a global perspective of the production chain to the targeted applications based on chemical and biological analysis. The major TB was identified in the outer bracts of the immature flower heads, which were collected throughout the harvesting season, extracted, and analyzed. The most abundant compounds were phenolic acids including chlorogenic acid and caffeoylquinic derivatives. Among flavonoids, cynaroside was the most abundant compound. Multivariate analysis distinguished batches by collection period, explaining 77.7% of the variance, with most compounds increasing in concentration later in the harvest season. Subsequently, TB extracts were analyzed for their potential in wound healing and anti-aging properties. Fibroblasts were used to assess the effect of selected extracts on cell migration through a scratch wound assay and on cellular senescence induced by etoposide. The results show a significant decrease in senescence-associated β-galactosidase activity, γH2AX nuclear accumulation, and both p53 and p21 protein levels. Overall, this study ascribes relevant anti-skin aging effects to TB, thus increasing its industrial value in cosmeceutical and nutraceutical applications. Full article
(This article belongs to the Special Issue Advances in Functional Foods)
Show Figures

Figure 1

14 pages, 4852 KiB  
Article
Multi-Functional Repair and Long-Term Preservation of Paper Relics by Nano-MgO with Aminosilaned Bacterial Cellulose
by Hongyan Mou, Ting Wu, Xingxiang Ji, Hongjie Zhang, Xiao Wu and Huiming Fan
Molecules 2024, 29(16), 3959; https://doi.org/10.3390/molecules29163959 - 22 Aug 2024
Viewed by 759
Abstract
Paper relics, as carrieres of historical civilization’s records and inheritance, could be severely acidic and brittle over time. In this study, the multi-functional dispersion of nanometer magnesium oxide (MgO) carried by 3-aminopropyl triethoxysilane-modified bacterial cellulose (KH550-BC) was applied in the impregnation process to [...] Read more.
Paper relics, as carrieres of historical civilization’s records and inheritance, could be severely acidic and brittle over time. In this study, the multi-functional dispersion of nanometer magnesium oxide (MgO) carried by 3-aminopropyl triethoxysilane-modified bacterial cellulose (KH550-BC) was applied in the impregnation process to repair aged paper, aiming at solving the key problems of anti-acid and strength recovery in the protection of ancient books. The KH550-BC/MgO treatment demonstrated enhanced functional efficacy in repairing aged paper, attributed to the homogeneous and stable distribution of MgO within the nanofibers of BC networks, with minimal impact on the paper’s wettability and color. Furthermore, the treatment facilitated the formation of adequate alkali reserves and hydrogen bonding, resulting in superior anti-aging properties in the treated paper during prolonged preservation. Even after 30 days of hygrothermal aging tests, the paper repaired by KH550-BC/MgO was still in a gently alkaline environment (pH was about 7.56), alongside a 32.18% elevation compared to the untreated paper regarding the tear index. The results of this work indicate that KH550-BC/MgO is an effective reinforcement material for improving the long-term restoration of ancient books. Full article
(This article belongs to the Special Issue Chemical Conservation of Paper-Based Cultural Heritage)
Show Figures

Figure 1

27 pages, 3246 KiB  
Article
Exclusive Solvent-Controlled Regioselective Catalytic Synthesis of Potentially Bioactive Imidazolidineiminodithiones: NMR Analysis, Computational Studies and X-ray Crystal Structures
by Ziad Moussa, Sara Saada, Alejandro Perez Paz, Ahmed Alzamly, Zaher M. A. Judeh, Aaesha R. Alshehhi, Aisha Khudhair, Salama A. Almheiri, Harbi Tomah Al-Masri and Saleh A. Ahmed
Molecules 2024, 29(16), 3958; https://doi.org/10.3390/molecules29163958 - 22 Aug 2024
Viewed by 973
Abstract
Herein, we describe the first consistent regiospecific reaction of isothiocyanates with a variety of substituted N-arylcyanothioformamides in a 1:1 molar ratio to generate a series of imidazolidineiminodithiones decorated with a multitude of functional groups on both aromatic rings. The reaction is carried [...] Read more.
Herein, we describe the first consistent regiospecific reaction of isothiocyanates with a variety of substituted N-arylcyanothioformamides in a 1:1 molar ratio to generate a series of imidazolidineiminodithiones decorated with a multitude of functional groups on both aromatic rings. The reaction is carried out at room temperature using a 20 mol% catalytic amount of triethylamine with DMF as the solvent to selectively form the mentioned products with exclusive regioselectivity. The methodology features wide substrate scope, no requirement for chromatography, and good to high reaction yields. The products were isolated by simple ether/brine extraction and the structures were verified by multinuclear NMR spectroscopy and high accuracy mass measurements. The first conclusive molecular structure elucidation of the observed regioisomer was established by single-crystal X-ray diffraction analysis. Likewise, the tautomer of the N-arylcyanothioformamide reactant was proven by X-ray diffraction analysis. Density functional theory computations at the B3LYP-D4/def2-TZVP level in implicit DMF solvent were conducted to support the noted regiochemical outcome and proposed mechanism. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 1279 KiB  
Review
The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential
by Mamoru Takeda, Yukito Sashide, Ryou Toyota and Haruka Ito
Molecules 2024, 29(16), 3957; https://doi.org/10.3390/molecules29163957 - 21 Aug 2024
Cited by 1 | Viewed by 987
Abstract
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side [...] Read more.
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side effects. Quercetin is a flavonoid that is widely found in fruits and vegetables. Since recent studies have demonstrated that quercetin can modulate neuronal excitability in the nervous system, including nociceptive sensory transmission via mechanoreceptors and voltage-gated ion channels, and inhibit the cyclooxygenase-2-cascade, it is possible that quercetin could be a complementary alternative medicine candidate; specifically, a therapeutic agent against nociceptive and pathological pain. The focus of this review is to elucidate the neurophysiological mechanisms underlying the modulatory effects of quercetin on nociceptive neuronal activity under nociceptive and pathological conditions, without inducing side effects. Based on the results of our previous research on trigeminal pain, we have confirmed in vivo that the phytochemical, quercetin, demonstrates (i) a local anesthetic effect on nociceptive pain, (ii) a local anesthetic effect on pain related to acute inflammation, and (iii) an anti-inflammatory effect on chronic pain. In addition, we discuss the contribution of quercetin to the relief of nociceptive and inflammatory pain and its potential clinical application. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, Volume III)
Show Figures

Figure 1

16 pages, 20293 KiB  
Article
Physicochemical Characteristics of Residual Carbon and Inorganic Minerals in Coal Gasification Fine Slag
by Le Li, Jing Liu, Xiangyang Li, Zeyu Peng, Chun Han, Wenhao Lian, Bin Xue, Chenmin Gao, Qian Zhang and Wei Huang
Molecules 2024, 29(16), 3956; https://doi.org/10.3390/molecules29163956 - 21 Aug 2024
Viewed by 737
Abstract
Investigating the physicochemical properties and embedding forms of residual carbon (RC) and slag particles (SPs) in coal gasification fine slag (FS) is the basis for achieving its separation and utilization. An in-depth understanding of their compositional characteristics allows for targeted treatment and utilization [...] Read more.
Investigating the physicochemical properties and embedding forms of residual carbon (RC) and slag particles (SPs) in coal gasification fine slag (FS) is the basis for achieving its separation and utilization. An in-depth understanding of their compositional characteristics allows for targeted treatment and utilization programs for different components. In this work, the physicochemical properties and embedding forms of RC and SPs in FS were systematically investigated. An innovative calculation method is proposed to determine the mass fraction of dispersed carbon particles, dispersed mineral-rich particles, and carbon–ash combined particles by using a high-temperature heating stage coupled with an optical microscope. The unburned RC with a rough, loose surface and a well-developed pore structure acted as a framework in which the smaller spherical SPs with a smooth surface were embedded. In addition, the sieving pretreatment process facilitated the enrichment of the RC. Moreover, the RC content showed significant dependencies according to the FS particle size. For FS with a particle size of 0.075–0.150 mm, the mass proportions of dispersed carbon, ash particles, and the carbon–ash combination were 15.19%, 38.72%, and 46.09%, respectively. These findings provide basic data and reliable technical support for the subsequent carbon and ash separation process and the comprehensive utilization of coal gasification slag. Full article
Show Figures

Figure 1

17 pages, 5810 KiB  
Article
Complexes of Hydrogen Peroxide, the Simplest Chiral Molecule, with L- and D-Serine Enantiomers and Their Clusters: MP2 and DFT Calculations
by Yurii A. Borisov, Sergey S. Kiselev, Mikhail I. Budnik and Lubov V. Snegur
Molecules 2024, 29(16), 3955; https://doi.org/10.3390/molecules29163955 - 21 Aug 2024
Viewed by 619
Abstract
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it [...] Read more.
The interaction between natural amino acids and hydrogen peroxide is of paramount importance due to the widespread use of hydrogen peroxide in biological and environmentally significant processes. Given that both amino acids and hydrogen peroxide occur in nature in two enantiomeric forms, it is crucial to investigate the formation of complexes between them, considering the role of molecular chirality. In this work, we report a theoretical study on the hydrogen peroxide enantiomers and their interactions with L- and S-serine and their clusters. We aimed to evaluate the non-covalent interactions between each hydrogen peroxide enantiomer and the L- and D-enantiomers of the non-essential amino acid serine and their clusters. First, the potential energy surfaces (PES) of transitions between enantiomers of the simplest chiral molecule, hydrogen peroxide, in the gas phase and in aqueous solution were studied using the Møller–Plesset theory method MP2/aug-cc-pVDZ. The activation energies of such transitions were calculated. The interactions of both hydrogen peroxide enantiomers (P and M) with L- and D-serine enantiomers were analyzed by density functional theory (DFT) with ωb97xd/6-311+G**, B3Lyp/6-311+G**, B3P86/6-311+G**, and M06/6-311+G** functionals. We found that both enantiomers of hydrogen peroxide bind more strongly to L-serine and its clusters than to D-serine, especially highlighting that the L form is the predominant natural form of this and other chiral amino acids. The optimized geometric parameters, interaction energies, and HOMO-LUMO energies for various complexes were estimated. Furthermore, circular dichroism (CD) spectra, which are optical chirality characteristics, were simulated for all the complexes under study. Full article
Show Figures

Figure 1

24 pages, 442 KiB  
Review
Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease
by Karma Yeshi, Tenzin Jamtsho and Phurpa Wangchuk
Molecules 2024, 29(16), 3954; https://doi.org/10.3390/molecules29163954 - 21 Aug 2024
Cited by 1 | Viewed by 1253
Abstract
Inflammatory bowel disease (IBD) is a chronic, lifelong disorder characterized by inflammation of the gastrointestinal (GI) tract. The exact etiology of IBD remains incompletely understood due to its multifaceted nature, which includes genetic predisposition, environmental factors, and host immune response dysfunction. Currently, there [...] Read more.
Inflammatory bowel disease (IBD) is a chronic, lifelong disorder characterized by inflammation of the gastrointestinal (GI) tract. The exact etiology of IBD remains incompletely understood due to its multifaceted nature, which includes genetic predisposition, environmental factors, and host immune response dysfunction. Currently, there is no cure for IBD. This review discusses the available treatment options and the challenges they present. Importantly, we examine emerging therapeutics, such as biologics and immunomodulators, that offer targeted treatment strategies for IBD. While many IBD patients do not respond adequately to most biologics, recent clinical trials combining biologics with small-molecule drugs (SMDs) have provided new insights into improving the IBD treatment landscape. Furthermore, numerous novel and specific therapeutic targets have been identified. The high cost of IBD drugs poses a significant barrier to treatment, but this challenge may be alleviated with the development of more affordable biosimilars. Additionally, emerging point-of-care protein biomarkers from serum and plasma are showing potential for enhancing the precision of IBD diagnosis and prognosis. Several natural products (NPs), including crude extracts, small molecules, and peptides, have demonstrated promising anti-inflammatory activity in high-throughput screening (HTS) systems and advanced artificial intelligence (AI)-assisted platforms, such as molecular docking and ADMET prediction. These platforms are advancing the search for alternative IBD therapies derived from natural sources, potentially leading to more affordable and safer treatment options with fewer side effects. Full article
Show Figures

Figure 1

11 pages, 2161 KiB  
Article
Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network
by Junkai Wu, Fan Yang, Liyang Guo and Zunlai Sheng
Molecules 2024, 29(16), 3953; https://doi.org/10.3390/molecules29163953 - 21 Aug 2024
Cited by 1 | Viewed by 571
Abstract
The dried ripe fruit of Terminalia chebula Retz. is a common Chinese materia medica, and ellagic acid (EA), isolated from the plant, is an important bioactive component for medicinal purposes. This study aimed to delineate the optimal extraction parameters for extracting the EA [...] Read more.
The dried ripe fruit of Terminalia chebula Retz. is a common Chinese materia medica, and ellagic acid (EA), isolated from the plant, is an important bioactive component for medicinal purposes. This study aimed to delineate the optimal extraction parameters for extracting the EA content from Chebulae Fructus (CF), focusing on the variables of ethanol concentration, extraction temperature, liquid–solid ratio, and extraction time. Utilizing a combination of the response surface methodology (RSM) and an artificial neural network (ANN), we systematically investigated these parameters to maximize the EA extraction efficiency. The extraction yields for EA obtained under the predicted optimal conditions validated the efficacy of both the RSM and ANN models. Analysis using the ANN-predicted data showed a higher coefficient of determination (R2) value of 0.9970 and a relative error of 0.79, compared to the RSM’s 2.85. The optimal conditions using the ANN are an ethanol concentration of 61.00%, an extraction temperature of 77 °C, a liquid–solid ratio of 26 mL g−1 and an extraction time of 103 min. These findings significantly enhance our understanding of the industrial-scale optimization process for EA extraction from CF. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

18 pages, 5667 KiB  
Article
Theoretical Investigation of the Pyridinium-Inspired Catalytic Dehydration of Heptafluoro-Iso-Butyramide for the Synthesis of Environmentally Friendly Insulating Gas Heptafluoro-Iso-Butyronitrile
by Jiageng Xiong, Hua Hou and Baoshan Wang
Molecules 2024, 29(16), 3952; https://doi.org/10.3390/molecules29163952 - 21 Aug 2024
Viewed by 593
Abstract
Heptafluoro-iso-butyronitrile (i-C3F7CN) represents a feasible eco-friendly replacement gas for the most potent greenhouse gas sulfur hexafluoride in various high-voltage power transmission equipment. The reaction mechanisms for the in situ synthesis of i-C3F7CN [...] Read more.
Heptafluoro-iso-butyronitrile (i-C3F7CN) represents a feasible eco-friendly replacement gas for the most potent greenhouse gas sulfur hexafluoride in various high-voltage power transmission equipment. The reaction mechanisms for the in situ synthesis of i-C3F7CN from heptafluoro-iso-butyramide [i-C3F7C(O)NH2] in the presence of trifluoroacetic anhydride (TFAA) and pyridine (Py) in dimethylformamide solution have been studied within density functional theory with M06-2X exchange–correlation functional with the 6-311++G(d,p) basis set and the high-level ab initio complete basis set quadratic CBS-QB3 method. It is revealed that the unimolecular dehydration of i-C3F7C(O)NH2 can be catalyzed efficiently by TFAA in terms of both kinetic and thermodynamic aspects, producing i-C3F7CN and trifluoroacetic acid (TFA). Furthermore, Py is capable of reducing the energy barrier of the rate-determining step through hydrogen abstraction to form pyridinium hydrogen. The synergic effect of the TFAA/Py co-catalyst plays a pivotal role in the production of i-C3F7CN as the Gibbs free energy barrier can be lowered by more than 40 kcal/mol with the ratio of TFAA:2Py, in accordance with the experimental observation. The present theoretical work provides new insights into the rational design on the novel catalysts for large-scale synthesis of the perfluorinated nitriles. Full article
Show Figures

Graphical abstract

16 pages, 2048 KiB  
Article
Castanea sativa Mill. By-Products: Investigation of Potential Anti-Inflammatory Effects in Human Intestinal Epithelial Cells
by Carola Pozzoli, Giulia Martinelli, Marco Fumagalli, Chiara Di Lorenzo, Nicole Maranta, Luca Colombo, Stefano Piazza, Mario Dell’Agli and Enrico Sangiovanni
Molecules 2024, 29(16), 3951; https://doi.org/10.3390/molecules29163951 - 21 Aug 2024
Viewed by 801
Abstract
Castanea sativa Mill. (C. sativa) processing and pruning generate several by-products, including leaves, burs, and shells (inner and outer teguments), which are considered an important source of high-value phytochemicals. Ellagitannins from C. sativa leaf extracts have been described to impair H. [...] Read more.
Castanea sativa Mill. (C. sativa) processing and pruning generate several by-products, including leaves, burs, and shells (inner and outer teguments), which are considered an important source of high-value phytochemicals. Ellagitannins from C. sativa leaf extracts have been described to impair H. pylori viability and inflammation in gastric cells. Furthermore, chestnut shells showed an important anti-inflammatory effect in gastric epithelial cells. Dietary polyphenols, including tannins, have been reported to interfere with targets of inflammation, including the nuclear factor κB (NF-κB). A promising role as a further therapeutical target for gut disorders has been recently proposed for the regulatory subunit of hypoxia-inducible factor (HIF-1α), as a potential stabilizer of intestinal barrier integrity. Therefore, the main objective of this work is the chemical characterization of several chestnut by-products (bud, spiny bur, wood, pericarp and episperm), together with the exploitation of their anti-inflammatory properties in intestinal cells, scavenging capacity, and stability following gastrointestinal digestion. The chemical characterization confirmed the presence of bioactive polyphenols in the extracts, including ellagitannins. In CaCo-2 cells stimulated by an IL-1β-IFN-γ cocktail, nearly all chestnut by-products (50 µg/mL) inhibited the release of proinflammatory mediators (CXCL-10, IL-8, MCP-1, ICAM), along with the NF-κB-driven transcription, and induced the HRE-driven transcription. The stability of the most promising extracts, identified through PCA and cluster analysis, was addressed by in vitro gastrointestinal digestion. Despite the significant reduction in total polyphenol index of chestnut bud and wood after gastric and intestinal digestion, the activity of these extracts on both scavenging and anti-inflammatory parameters remained promising. These data contribute to exploit the potential of chestnut by-products as sources of dietary polyphenols with anti-inflammatory properties at the intestinal level. Moreover, this study could represent an important step to encourage the recycling and valorization of chestnut by-products, promoting the circular economy and reducing the environmental impact related to the management of agriculture waste. Full article
(This article belongs to the Special Issue Advances in Functional Foods)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop