Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Ranges from Screening Study
2.2. Response Surface Methodology Statistical Analysis and Model Fitting
0.1150X2X4 + 16.47X3X4 − 25.23X12 − 18.44X22 − 23.29X32 − 15.80X42
2.3. Effects of Processing Parameters on Extraction
2.4. ANN Modeling and ANN Coupled with GA Optimization
2.5. Comparative Analysis of RSM and ANN
3. Materials and Methods
3.1. Materials and Chemicals
3.2. EA Extraction
3.3. EA Content Determination
3.4. Experimental Design and Statistical Analysis of RSM
3.5. Artificial Neural Network Model with Genetic Algorithm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. The Pharmacopoeia of The People’s Republic of China, 1st ed.; China Medical Science Press: Beijing, China, 2020; pp. 194–195. [Google Scholar]
- Kim, M.S.; Dong, Y.L.; Sang, H.S.; Jeon, W.K. Anti-cholinesterase activities of hydrolysable tannins and polyhydroxytriterpenoid derivatives from Terminalia chebula Retz. Fruit. Rec. Nat. Prod. 2018, 12, 285–290. [Google Scholar] [CrossRef]
- Li, K.; Han, X.W.; Li, R.Z.; Xu, Z.R.; Pan, T.W.; Liu, J.; Li, B.; Wang, S.Y.; Diao, Y.P.; Liu, X.G.; et al. Composition, antivirulence activity, and active property distribution of the fruit of Terminalia chebula Retz. J. Food Sci. 2019, 84, 1721–1729. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, A.; Azam, M.; Allemailem, K.S.; Alrumaihi, F.; Almatroudi, A.; Alhumaydhi, F.A.; Azam, F.; Khan, S.H.; Zofair, S.F.F.; et al. Liposomal ellagic acid alleviates cyclophosphamide-induced toxicity and eliminates the systemic Cryptococcus neoformans infection in leukopenic mice. Pharmaceutics 2021, 13, 882. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kaushik, P.; Incerpi, S.; Pedersen, J.Z.; Goel, S.; Prasad, A.K.; Rohil, V.; Parmar, V.S.; Saso, L.; Len, C. Evaluation of the free radical scavenging activities of ellagic acid and ellagic acid peracetate by EPR spectrometry. Molecules 2021, 26, 4800. [Google Scholar] [CrossRef] [PubMed]
- Song, H.J.; Wu, H.; Dong, J.; Huang, S.H.; Ye, J.T.; Liu, R.X. Ellagic acid alleviates rheumatoid arthritis in rats through inhibiting MTA1/HDAC1-mediated Nur77 deacetylation. Mediators Inflamm. 2021, 2021, 6359652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Mehmood, A.; Soliman, M.M.; Iftikhar, A.; Iftikhar, M.; Aboelenin, S.M.; Wang, C.T. Protective effects of ellagic acid against alcoholic liver disease in mice. Front. Nutr. 2021, 8, 44520. [Google Scholar] [CrossRef]
- ALTamimi, J.Z.; Alshammari, G.M.; AlFaris, N.A.; Alagal, R.I.; Aljabryn, D.H.; Albekairi, N.A.; Alkhateeb, M.A.; Yahya, M.A. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocindiabetic rats by activating AMPK. Pharm. Biol. 2022, 60, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Yakobov, S.; Dhingra, R.; Margulets, V.; Dhingra, A.; Crandall, M.; Kirshenbaum, L.A. Ellagic acid inhibits mitochondrial fission protein Drp-1 and cell proliferation in cancer. Mol. Cell. Biochem. 2023, 478, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.T.; Wang, C.Y.; Yang, R.C.; Chu, C.J.; Wu, H.T.; Pang, J.H. Phyllanthus urinaria increases apoptosis and reduces telomerase activity in human nasopharyngeal carcinoma cells. Forsch. Komplementmed. 2009, 16, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Li, Y.; Gao, H.; Yang, D.; He, X.; Fang, Y.; Zhou, B. Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer. Food Funct. 2020, 11, 6332–6339. [Google Scholar] [CrossRef]
- Ni, X.; Shang, F.S.; Wang, T.F.; Wu, D.J.; Chen, D.G.; Zhuang, B. Ellagic acid induces apoptosis and autophagy in colon cancer through the AMPK/mTOR pathway. Tissue Cell 2023, 81, 102032. [Google Scholar] [CrossRef]
- Ceci, C.; Tentori, L.; Atzori, M.G.; Lacal, P.M.; Bonanno, E.; Scimeca, M.; Cicconi, R.; Mattei, M.; Martino, M.G.; Vespasiani, G.; et al. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth. Nutrients 2016, 8, 744. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, M.; Shamsi, A.; Khan, P.; Shahbaaz, M.; AlAjmi, M.F.; Hussain, A.; Hassan, G.M.; Islam, A.; Haque, Q.M.R.; Hassan, M.I. Ellagic Acid Controls Cell Proliferation and Induces Apoptosis in Breast Cancer Cells via Inhibition of Cyclin-Dependent Kinase 6. Int. J. Mol. Sci. 2020, 21, 3526. [Google Scholar] [CrossRef] [PubMed]
- Cheshomi, H.; Bahrami, A.R.; Rafatpanah, H.; Matin, M.M. The effects of ellagic acid and other pomegranate (Punica granatum L.) derivatives on human gastric cancer AGS cells. Hum. Exp. Toxicol. 2022, 41, 9603271211064534. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Zhao, F.Y.; Wu, W.L.; Lyu, L.F.; Li, W.L.; Zhang, C.H. Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity. Int. J. Mol. Sci. 2023, 24, 15228. [Google Scholar] [CrossRef]
- Chen, J.M.; Zhu, Q.Z.; Ju, C.G.; Zhang, Q.; Wang, W. Optimization of the extraction and separation process of chebulagic acid and chebulinic acid. China Pharm. 2022, 33, 2733–2737. [Google Scholar] [CrossRef]
- Hao, J.; Ju, C.G.; Zhang, Q.; An, Y.Y.; Wang, W. Study on processing technology and extraction technology of ellagic acid from Terminalia chebula by sand-scorch. J. Pharm. Res. 2023, 42, 247–250. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Suryawanshi, N.; Naik, S.; Eswari, J.S. Extraction and optimization of exopolysaccharide from Lactobacillus sp. using response surface methodology and artificial neural networks. Prep. Biochem. Biotechnol. 2019, 49, 987–996. [Google Scholar] [CrossRef]
- Shekhar, S.; Prakash, P.; Singha, P.; Prasad, K.; Singh, S.K. Modeling and optimization of ultrasound-assisted extraction of bioactive compounds from Allium sativum leaves using Response Surface Methodology and Artificial Neural Network coupled with Genetic Algorithm. Foods 2023, 12, 1925. [Google Scholar] [CrossRef]
- Karmakar, B.; Saha, S.P.; Chakraborty, R.; Roy, S. Optimization of starch extraction from Amorphophallus paeoniifolius corms using response surface methodology (RSM) and artificial neural network (ANN) for improving yield with tenable chemical attributes. Int. J. Biol. Macromol. 2023, 237, 124183. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Li, Z.; Ma, Q.; Wang, L. Extraction of anthocyanins from haskap using cold plasma-assisted enzyme. J. Sci. Food Agric. 2023, 103, 2186–2195. [Google Scholar] [CrossRef] [PubMed]
- Ilamathi, P.; Selladurai, V.; Balamurugan, K.; Sathyanathan, V.T. ANN-GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler. Clean Technol. Environ. Policy 2013, 15, 125–131. [Google Scholar] [CrossRef]
- Kostić, M.D.; Joković, N.M.; Stamenković, O.S.; Veljković, V.B. Optimization of hampseed oil extraction by n-hexane. Ind. Crops Prod. 2013, 48, 133–143. [Google Scholar] [CrossRef]
- Kundu, P.; Paul, V.; Kumar, V.; Mishra, I.M. Formulation development, modeling and optimization of emulsification process using evolving RSM coupled hybrid ANN-GA framework. Chem. Eng. Res. Des. 2015, 104, 773–790. [Google Scholar] [CrossRef]
- Elboughdiri, N.; Ghernaout, D.; Kriaa, K.; Jamoussi, B. Enhancing the Extraction of Phenolic Compounds from Juniper Berries Using the Box-Behnken Design. ACS Omega 2020, 5, 27990–28000. [Google Scholar] [CrossRef] [PubMed]
- Kiassos, E.; Mylonaki, S.; Makris, D.P.; Kefalas, P. Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innov. Food Sci. Emerg. Technol. 2009, 10, 246–252. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- He, S.; Shi, J.; Walid, E.; Zhang, H.; Ying, M.; Xue, S.J. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology. Food Chem. 2015, 166, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Diao, M.X.; Liang, Y.; Zhao, J.Q.; Zhang, J.; Zhang, T.H. Complexation of ellagic acid with α-lactalbumin and its antioxidant property. Food Chem. 2022, 372, 131307. [Google Scholar] [CrossRef]
- Wu, W.X.; Jiang, S.; Liu, M.M.; Tian, S.G. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. Ultrason. Sonochem. 2021, 80, 105833. [Google Scholar] [CrossRef] [PubMed]
- Kocer, S.; Utku Copur, O.; Ece Tamer, C.; Suna, S.; Kayahan, S.; Uysal, E.; Cavus, S.; Akman, O. Optimization and characterization of chestnut shell pigment extract obtained microwave assisted extraction by response surface methodology. Food Chem. 2024, 443, 138424. [Google Scholar] [CrossRef]
- Anastácio, A.; Silva, R.; Carvalho, I.S. Phenolics extraction from sweet potato peels: Modelling and optimization by response surface modelling and artificial neural network. J. Food Sci. Technol. 2016, 53, 4117–4125. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Kim, S.J.; Eun, J.B. A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract. Food Chem. 2022, 366, 130689. [Google Scholar] [CrossRef] [PubMed]
- CAS 476-66-4. National Institute for Food and Drug Control (Beijing, China). Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ellagic-Acid (accessed on 7 August 2024).
- Dhanani, T.; Shah, S.; Kumar, S. A validated high-performance liquid chromatography method for determination of tannin-related marker constituents gallic acid, corilagin, chebulagic acid, ellagic acid and chebulinic acid in four Terminalia species from India. J. Chromatogr. Sci. 2015, 53, 625–632. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M. Optimisation of ANN topology for predicting the rehydrated apple cubes colour change using RSM and GA. Neural Comput. Appl. 2018, 30, 1795–1809. [Google Scholar] [CrossRef]
Run | Independent Variables | The Yield of Ellagic Acid (mg g−1) | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Actual Values | RSM Predicted | ANN Predicted | |
1 | 40 | 70 | 25 | 90 | 80.05 | 80.12 | 84.78 |
2 | 40 | 90 | 25 | 90 | 87.39 | 81.54 | 88.02 |
3 | 80 | 70 | 25 | 90 | 72.95 | 71.99 | 72.95 |
4 | 80 | 90 | 25 | 90 | 84.64 | 77.75 | 84.23 |
5 | 60 | 80 | 20 | 60 | 89.92 | 79.11 | 90.23 |
6 | 60 | 80 | 30 | 60 | 71.11 | 72.19 | 72.68 |
7 | 60 | 80 | 20 | 120 | 67.61 | 59.72 | 69.70 |
8 | 60 | 80 | 30 | 120 | 114.69 | 118.69 | 114.82 |
9 | 60 | 70 | 25 | 60 | 78.68 | 76.96 | 78.92 |
10 | 60 | 90 | 25 | 60 | 69.51 | 70.46 | 72.41 |
11 | 60 | 70 | 25 | 120 | 78.68 | 80.42 | 81.99 |
12 | 60 | 90 | 25 | 120 | 89.69 | 94.10 | 92.77 |
13 | 40 | 80 | 20 | 90 | 59.01 | 68.56 | 59.54 |
14 | 80 | 80 | 20 | 90 | 63.82 | 65.00 | 63.82 |
15 | 40 | 80 | 30 | 90 | 95.48 | 96.99 | 94.54 |
16 | 80 | 80 | 30 | 90 | 95.48 | 88.62 | 100.85 |
17 | 60 | 70 | 20 | 90 | 56.09 | 58.45 | 58.75 |
18 | 60 | 90 | 20 | 90 | 55.91 | 61.52 | 56.74 |
19 | 60 | 70 | 30 | 90 | 85.45 | 83.96 | 85.66 |
20 | 60 | 90 | 30 | 90 | 86.31 | 88.07 | 87.78 |
21 | 40 | 80 | 25 | 60 | 82.81 | 83.36 | 83.89 |
22 | 80 | 80 | 25 | 60 | 67.67 | 77.63 | 69.01 |
23 | 40 | 80 | 25 | 120 | 102.99 | 97.15 | 106.77 |
24 | 80 | 80 | 25 | 120 | 87.39 | 90.96 | 87.54 |
25 | 60 | 80 | 25 | 90 | 125.46 | 121.52 | 123.39 |
26 | 60 | 80 | 25 | 90 | 123.4 | 121.52 | 123.39 |
27 | 60 | 80 | 25 | 90 | 118.58 | 121.52 | 123.39 |
28 | 60 | 80 | 25 | 90 | 116.52 | 121.52 | 123.39 |
29 | 60 | 80 | 25 | 90 | 123.63 | 121.52 | 123.39 |
Source | Sum of Squares | df | Mean SQUARE | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 11,462.56 | 14 | 818.75 | 16.54 | <0.0001 | Significant |
X1 | 38.7 | 1 | 38.7 | 0.7817 | 0.3916 | |
X2 | 106.68 | 1 | 106.68 | 2.15 | 0.1642 | |
X3 | 2032.16 | 1 | 2032.16 | 41.05 | <0.0001 | |
X4 | 551.49 | 1 | 551.49 | 11.14 | 0.0049 | |
X1X2 | 4.73 | 1 | 4.73 | 0.0956 | 0.7618 | |
X1X3 | 0.2704 | 1 | 0.2704 | 0.0055 | 0.9421 | |
X1X4 | 101.81 | 1 | 101.81 | 2.06 | 0.1735 | |
X2X3 | 5.78 | 1 | 5.78 | 0.1168 | 0.7376 | |
X2X4 | 0.0529 | 1 | 0.0529 | 0.0011 | 0.9744 | |
X3X4 | 1085.37 | 1 | 1085.37 | 21.92 | 0.0004 | |
X12 | 4128.66 | 1 | 4128.66 | 83.39 | <0.0001 | |
X22 | 2205.09 | 1 | 2205.09 | 44.54 | <0.0001 | |
X32 | 3517.75 | 1 | 3517.75 | 71.05 | <0.0001 | |
X42 | 1620.11 | 1 | 1620.11 | 32.72 | <0.0001 | |
Residual | 693.13 | 14 | 49.51 | |||
Lack of Fit | 635.98 | 10 | 63.6 | 4.45 | 0.0816 | Not significant |
Pure Error | 57.15 | 4 | 14.29 | |||
Cor Total | 12,155.69 | 28 |
Optimum Condition | Extraction Yield (mg g−1) | Relative Error | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Actual Value | Predicted Value | ||
RSM ANN | 60 61 | 78 77 | 27 26 | 101 103 | 128.31 130.21 | 125.46 131 | 2.85 0.79 |
Experimental Parameters | Unit | Symbols (Xi) | Coded Values | ||
---|---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |||
Ethanol concentration | % | X1 | 40 | 60 | 80 |
Extraction temperature | °C | X2 | 70 | 80 | 90 |
liquid-solid ratio | mL g−1 | X3 | 20 | 25 | 30 |
Extraction time | min | X4 | 60 | 90 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Yang, F.; Guo, L.; Sheng, Z. Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network. Molecules 2024, 29, 3953. https://doi.org/10.3390/molecules29163953
Wu J, Yang F, Guo L, Sheng Z. Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network. Molecules. 2024; 29(16):3953. https://doi.org/10.3390/molecules29163953
Chicago/Turabian StyleWu, Junkai, Fan Yang, Liyang Guo, and Zunlai Sheng. 2024. "Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network" Molecules 29, no. 16: 3953. https://doi.org/10.3390/molecules29163953
APA StyleWu, J., Yang, F., Guo, L., & Sheng, Z. (2024). Modeling and Optimization of Ellagic Acid from Chebulae Fructus Using Response Surface Methodology Coupled with Artificial Neural Network. Molecules, 29(16), 3953. https://doi.org/10.3390/molecules29163953