Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Existing IBD Treatments and Challenges
3. Therapeutic Drugs for IBD in the Pipeline
Types of Treatment | Drugs | Route of Administration | Drug Target | Clinical Trial Phase | References |
---|---|---|---|---|---|
Anti-adhesion/anti-trafficking molecules | Abrilumab (AMG181) | SC | α4β7-integrin | CD: II; UC: II | [31] |
AJM 347 | Oral | α4β7-integrin | UC: I/II | [31] | |
Alicaforsen | Oral | ICAM-1 mRNA | CD: III; UC: II | [31] | |
Carotegrast methyl (AJM 300) | Oral | α4-integrin | UC: III | [46] | |
Etrolizumab | IV, SC | α4β7, αEβ7, and β7-integrins | CD: III; UC: III | [46,47,48] | |
GSK1605786A | Oral | CCR9 | CD: III | [31] | |
Natalizumab | IV | α4-integrin | CD: III | [31] | |
Ontamalimab (PF-00547659) | SC | MAdCAM | CD: II; UC: II | [31] | |
Ontamalimab (SHP647) | SC | MAdCAM-1 | CD: III; UC: III | [31] | |
PN-943 | Oral | α4β7-integrin (gut restricted) | UC: II | [31] | |
PTG-100 | Oral | α4β7-integrin | UC: 11a | [31] | |
Vedolizumab SC | SC | α4β7-integrin | CD: III; UC: III | [49] | |
Anti-TNF | CT-P13 | SC | TNF | CD: III; UC: III | [31] |
OPRX-106 | Oral | TNF | UC: II | [31] | |
IL-10 fusion biologic | AAMT-101 | Oral | IL-10 | UC: Ia | [31] |
IL-12/IL-23 inhibitors | Brazikumab | IV, SC | p19 subunit of IL-23 | CD: I; UC: I | [42] |
Guselkumab | SC | p19 subunit of IL-23 | CD: III; UC: III | [43] | |
Mirikizumab | IV, SC | p19 subunit of IL-23 | CD: III; UC: III | [40,41] | |
Risankizumab | IV | Cytochrome p450 | CD: I; UC: I | [31] | |
Risankizumab | IV, SC | p19 subunit of IL-23 | UC: III | [39,41] | |
IL-36 inhibitor | Spesolimab | IV | IL-36R | CD: II; UC: III | [31] |
Immunosuppressants | GSK2831781 | IV | LAG3 | UC: II | [31] |
Ravagalimab (ABBV-323) | IV, SC | CD40 | UC: IIa | [31] | |
JAK inhibitors | Brepocitinib (PF-06700841) | Oral | TYK2/JAK1 | CD: IIa; UC: IIb | [50] |
Deucravacitinib (BMS-986165) | Oral | TYK2 | CD: II; UC: II | [31] | |
Filgotinib | Oral | JAK1 | CD: III | [35] | |
Ivarmacitinib | Oral | JAK1 | UC: II | [31] | |
Izencitinib (TD-1473) | Oral | Gut-selective pan-JAK | UC: III | [31] | |
Peficitinib | Oral | JAK3 | UC: IIb | [31] | |
Ritlecitinib (PF-06651600) | Oral | JAK3/TEC kinase | CD: II; UC: II | [50] | |
SHR-0302 | Oral | JAK1 | CD: II; UC: II | [31] | |
Tofacitinib | Oral | JAK1/JAK3 | CD: II | [31] | |
Upadacitinib | Oral | JAK1 | CD: III | [33,34] | |
PDE4 inhibitor | Apremilast | Oral | PDE4 | UC: II | [51] |
S1P receptor modulators | Amiselimod (MT-1303) | Oral | S1PR1,5 | CD: II; UC: II | [31] |
CBP-307 | Oral | S1PR1 | UC: II | [31] | |
Etrasimod | Oral | S1PR1/S1PR4/S1PR5 | CD: III; UC: III | [31] | |
Ozanimod | Oral | S1PR1/S1PR5 | CD: III | [36] | |
Smad7 antisense oligonucleotide | Laquinimod | Oral | NF-κB | CD: IIa | [31] |
Mongersen (GED-0301) | Oral | Smad7 | UC: II | [31] | |
Thalidomide | Oral | CRBN | CD: II; Pediatric IBD: III | [31] | |
Spore-based microbiome | SER-287 | Oral | Firmicutes | UC: Ib | [52] |
TLI1A agonist | PF-06480605 | SC | TL1A/TNFSF15 | UC: II | [31] |
TLR9 agonist | Cobitolimod | Topical (enema) | TLR9 | UC: III | [31] |
NP-derived | Curcumin and artesunate | Oral | NA | CD: IIa | [31] |
Mastiha | Oral | NA | UC: II | [31] | |
Saffron extract | Oral | NA | UC: II | [31] | |
Trichuris suis ova (TSO) | Oral | NA | UC: II | [31] |
4. Natural Products as Potential Anti-Inflammatories for Treating IBD
4.1. Plants—Higher Plants, Fungi, and Medicinal Plants
4.2. Animals—Helminths
4.3. Microbial Sources
5. Advances in Artificial Intelligence-Guided Drug Discovery for IBD Treatments
6. Limitations and Challenges of Using AI in Drug Discovery from Natural Products
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Yuan, Z.; Wu, J.; He, Y.; Lu, G.; Zhang, D.; Zhao, Y.; Wu, R.; Lv, Y.; Cai, K.; et al. An Orally-Administered Nanotherapeutics with Carbon Monoxide Supplying for Inflammatory Bowel Disease Therapy by Scavenging Oxidative Stress and Restoring Gut Immune Homeostasis. ACS Nano 2023, 17, 21116–21133. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, D.; Haritunians, T.; Ruan, Y.; Daly, M.J.; Huang, H.; McGovern, D.P.B. Profiling the inflammatory bowel diseases using genetics, serum biomarkers, and smoking information. iScience 2023, 26, 108053. [Google Scholar] [CrossRef]
- Piotrowska, M.; Binienda, A.; Fichna, J. The role of fatty acids in Crohn’s disease pathophysiology—An overview. Mol. Cell. Endocrinol. 2021, 538, 111448. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, M.; Yan, X.; Zhang, L.; Lu, N.; Ma, Y.; Zhang, Y.; Cui, M.; Zhang, M.; Zhang, M. Oral Nanotherapeutics of Andrographolide/Carbon Monoxide Donor for Synergistically Anti-inflammatory and Pro-resolving Treatment of Ulcerative Colitis. ACS Appl. Mater. Interfaces 2023, 15, 36061–36075. [Google Scholar] [CrossRef]
- Boaz, E.; Bar-Gil Shitrit, A.; Schechter, M.; Goldin, E.; Reissman, P.; Yellinek, S.; Koslowsky, B. Inflammatory bowel disease in families with four or more affected first-degree relatives. Scand. J. Gastroenterol. 2023, 58, 20–24. [Google Scholar] [CrossRef]
- Dong, S.; Xiang, X.; Zhang, Y.; Liu, R.; Ye, L.; Cao, Q. Differences of clinical phenotype between familial and sporadic Crohn’s disease in East China. Int. J. Color. Dis. 2024, 39, 107. [Google Scholar] [CrossRef]
- Hu, S.; Uniken Venema, W.T.; Westra, H.J.; Vich Vila, A.; Barbieri, R.; Voskuil, M.D.; Blokzijl, T.; Jansen, B.H.; Li, Y.; Daly, M.J.; et al. Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease. Nat. Commun. 2021, 12, 1122. [Google Scholar] [CrossRef]
- Brand, E.C.; Klaassen, M.A.Y.; Gacesa, R.; Vich Vila, A.; Ghosh, H.; de Zoete, M.R.; Boomsma, D.I.; Hoentjen, F.; Horjus Talabur Horje, C.S.; van de Meeberg, P.C.; et al. Healthy Cotwins Share Gut Microbiome Signatures With Their Inflammatory Bowel Disease Twins and Unrelated Patients. Gastroenterology 2021, 160, 1970–1985. [Google Scholar] [CrossRef]
- Liu, H.; Gao, P.; Jia, B.; Lu, N.; Zhu, B.; Zhang, F. IBD-Associated Atg16L1T300A Polymorphism Regulates Commensal Microbiota of the Intestine. Front. Immunol. 2021, 12, 772189. [Google Scholar] [CrossRef]
- Zhang, B.; Gulati, A.; Alipour, O.; Shao, L. Relapse From Deep Remission After Therapeutic De-escalation in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. J. Crohns Colitis 2020, 14, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Di, B.; Xu, L.L. Recent advances in the treatment of IBD: Targets, mechanisms and related therapies. Cytokine Growth Factor. Rev. 2023, 71–72, 1–12. [Google Scholar] [CrossRef]
- Hussenbux, A.; Silva, A.D. Steroids in inflammatory bowel disease: A clinical review. J. Prescr. Pract. 2021, 3, 107–111. [Google Scholar] [CrossRef]
- Cao, R.H.; Grimm, M.C. Pregnancy and medications in inflammatory bowel disease. Obstet. Med. 2021, 14, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Fujii, T.; Kinoshita, K.; Kawamoto, A.; Hibiya, S.; Takenaka, K.; Saito, E.; Nagahori, M.; Ohtsuka, K.; Watanabe, M.; et al. Intravenous tacrolimus is a superior induction therapy for acute severe ulcerative colitis compared to oral tacrolimus. BMC Gastroenterol. 2021, 21, 494. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 1–33. [Google Scholar] [CrossRef]
- Ward, D.; Nyboe Andersen, N.; Gørtz, S.; Thorn Iversen, A.; Højgaard Allin, K.; Beaugerie, L.; Kirchgesner, J.; Jess, T. Tumor Necrosis Factor Inhibitors in Inflammatory Bowel Disease and Risk of Immune Mediated Inflammatory Diseases. Clin. Gastroenterol. Hepatol. 2024, 22, 135–143.e8. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Sandborn, W.J.; Panaccione, R.; Domènech, E.; Pouillon, L.; Siegmund, B.; Danese, S.; Ghosh, S. Tumour necrosis factor inhibitors in inflammatory bowel disease: The story continues. Ther. Adv. Gastroenterol. 2021, 14, 17562848211059954. [Google Scholar] [CrossRef]
- Goll, R.; Moe, Ø.K.; Johnsen, K.-M.; Meyer, R.; Friestad, J.; Gundersen, M.D.; Kileng, H.; Johnsen, K.; Florholmen, J.R. Pharmacodynamic mechanisms behind a refractory state in inflammatory bowel disease. BMC Gastroenterol. 2022, 22, 464. [Google Scholar] [CrossRef]
- Chu, X.; Biao, Y.; Liu, C.; Zhang, Y.; Liu, C.; Ma, J.-Z.; Guo, Y.; Gu, Y. Network meta-analysis on efficacy and safety of different biologics for ulcerative colitis. BMC Gastroenterol. 2023, 23, 346. [Google Scholar] [CrossRef]
- Sands, B.E.; Feagan, B.G.; Sandborn, W.J.; Shipitofsky, N.; Marko, M.; Sheng, S.; Johanns, J.; Germinaro, M.; Vetter, M.; Panés, J.; et al. OP36 Efficacy and safety of combination induction therapy with guselkumab and golimumab in participants with moderately-to-severely active Ulcerative Colitis: Results through week 12 of a phase 2a randomized, double-blind, active-controlled, parallel-group, multicenter, proof-of-concept study. J. Crohn’s Colitis 2022, 16, i042–i043. [Google Scholar] [CrossRef]
- Kwapisz, L.; Raffals, L.E.; Bruining, D.H.; Pardi, D.S.; Tremaine, W.J.; Kane, S.V.; Papadakis, K.A.; Coelho-Prabhu, N.; Kisiel, J.B.; Heron, V.; et al. Combination Biologic Therapy in Inflammatory Bowel Disease: Experience From a Tertiary Care Center. Clin. Gastroenterol. Hepatol. 2021, 19, 616–617. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Galati, J.; Kumar, A.; Christos, P.J.; Longman, R.; Lukin, D.J.; Scherl, E.; Battat, R. Dual Biologic or Small Molecule Therapy for Treatment of Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 20, e361–e379. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch, W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar] [CrossRef]
- Zhao, S.S.; Hyrich, K.; Yiu, Z.; Barton, A.; Bowes, J. Pos1604 Il-13 Inhibition Used for Atopic Diseases Is Associated with Risk of Psoriatic Arthritis. In Proceedings of the European Congress of Rheumatology, Milan, Italy, 31 May–3 June 2023; pp. 1146–1147. [Google Scholar]
- Wlazło, M.; Meglicka, M.; Wiernicka, A.; Osiecki, M.; Kierkuś, J. Dual Biologic Therapy in Moderate to Severe Pediatric Inflammatory Bowel Disease: A Retrospective Study. Children 2022, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Ibrahim, N.; Elawad, M.; Al-Mudahka, F.; Abdelrhman, H.; Akobeng, A.K. P617 Dual biologic therapy in pediatric Inflammatory Bowel Disease. J. Crohn’s Colitis 2023, 17, i747. [Google Scholar] [CrossRef]
- Schreiber, S.; Ben-Horin, S.; Leszczyszyn, J.; Dudkowiak, R.; Lahat, A.; Gawdis-Wojnarska, B.; Pukitis, A.; Horynski, M.; Farkas, K.; Kierkus, J.; et al. Randomized Controlled Trial: Subcutaneous vs Intravenous Infliximab CT-P13 Maintenance in Inflammatory Bowel Disease. Gastroenterology 2021, 160, 2340–2353. [Google Scholar] [CrossRef]
- Antoniou, E.; Margonis, G.A.; Angelou, A.; Pikouli, A.; Argiri, P.; Karavokyros, I.; Papalois, A.; Pikoulis, E. The TNBS-induced colitis animal model: An overview. Ann. Med. Surg. 2016, 11, 9–15. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Song, B.; Xiong, Y.; Wang, J.; Chen, D. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm. Res. 2021, 70, 753–764. [Google Scholar] [CrossRef]
- National Library of Medicine. Clinicaltirals.gov [Internet]; National Library of Medicine (US): Bethesda, MD, USA, 2024. [Google Scholar]
- Ananthakrishnan, A.N. Upadacitinib for ulcerative colitis. Lancet 2022, 399, 2077–2078. [Google Scholar] [CrossRef]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.; Siffledeen, J.; Hébuterne, X.; Nakase, H.; Higgins, P.; Chen, M.H.; Sanchez-Gonzalez, Y.; et al. OP24 Efficacy and safety of upadacitinib induction therapy in patients with Moderately to Severely Active Ulcerative Colitis: Results from the phase 3 U-ACHIEVE study. J. Crohn’s Colitis 2021, 15, S022–S024. [Google Scholar] [CrossRef]
- Vermeire, S.; Danese, S.; Zhou, W.; Pangan, A.; Greenbloom, S.; D’Haens, G.; Panes, J.; Juillerat, P.; Lindsay, J.O.; Loftus, E.V., Jr.; et al. OP23 Efficacy and safety of upadacitinib as induction therapy in patients with Moderately to Severely Active Ulcerative Colitis: Results from phase 3 U-ACCOMPLISH study. J. Crohn’s Colitis 2021, 15, S021–S022. [Google Scholar] [CrossRef]
- Feagan, B.G.; Danese, S.; Loftus, E.V., Jr.; Vermeire, S.; Schreiber, S.; Ritter, T.; Fogel, R.; Mehta, R.; Nijhawan, S.; Kempiński, R.; et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): A phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet 2021, 397, 2372–2384. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; D’Haens, G.; Wolf, D.C.; Jovanovic, I.; Hanauer, S.B.; Ghosh, S.; Petersen, A.; Hua, S.Y.; Lee, J.H.; et al. Ozanimod as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2021, 385, 1280–1291. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Vermeire, S.; Peyrin-Biroulet, L.; Dubinsky, M.C.; Panes, J.; Yarur, A.; Ritter, T.; Baert, F.; Schreiber, S.; Sloan, S.; et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): Two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet 2023, 401, 1159–1171. [Google Scholar] [CrossRef]
- Rezazadeh, F.; Ramos, N.; Saliganan, A.D.; Al-Hallak, N.; Chen, K.; Mohamad, B.; Wiesend, W.N.; Viola, N.T. Detection of IL12/23p40 via PET Visualizes Inflammatory Bowel Disease. J. Nucl. Med. 2023, 64, 1806–1814. [Google Scholar] [CrossRef]
- Bossuyt, P.; Bresso, F.; Dubinsky, M.; Ha, C.; Siegel, C.; Zambrano, J.; Kligys, K.; Kalabic, J.; Zhang, Y.; Panaccione, R. OP40 Efficacy of risankizumab induction and maintenance therapy by baseline Crohn’s Disease location: Post hoc analysis of the phase 3 ADVANCE, MOTIVATE, and FORTIFY studies. J. Crohn’s Colitis 2022, 16, i048. [Google Scholar] [CrossRef]
- Sands, B.E.; Peyrin-Biroulet, L.; Kierkus, J.; Higgins, P.D.R.; Fischer, M.; Jairath, V.; Hirai, F.; D’Haens, G.; Belin, R.M.; Miller, D.; et al. Efficacy and Safety of Mirikizumab in a Randomized Phase 2 Study of Patients With Crohn’s disease. Gastroenterology 2022, 162, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Feagan, B.G.; Panés, J.; Baert, F.; Louis, E.; Dewit, O.; Kaser, A.; Duan, W.R.; Pang, Y.; Lee, W.-J.; et al. Long-Term Safety and Efficacy of Risankizumab Treatment in Patients with Crohn’s Disease: Results from the Phase 2 Open-Label Extension Study. J. Crohn’s Colitis 2021, 15, 2001–2010. [Google Scholar] [CrossRef]
- Wang, J.; Goren, I.; Yang, B.; Lin, S.; Li, J.; Elias, M.; Fiocchi, C.; Rieder, F. Review article: The sphingosine 1 phosphate/sphingosine 1 phosphate receptor axis—A unique therapeutic target in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2022, 55, 277–291. [Google Scholar] [CrossRef]
- Sandborn, W.J.; D’Haens, G.R.; Reinisch, W.; Panés, J.; Chan, D.; Gonzalez, S.; Weisel, K.; Germinaro, M.; Frustaci, M.E.; Yang, Z.; et al. Guselkumab for the Treatment of Crohn’s disease: Induction Results From the Phase 2 GALAXI-1 Study. Gastroenterology 2022, 162, 1650–1664.e8. [Google Scholar] [CrossRef]
- D’Amico, F.; Tasopoulou, O.; Fiorino, G.; Zilli, A.; Furfaro, F.; Allocca, M.; Sileri, P.; Spinelli, A.; Peyrin-Biroulet, L.; Danese, S. Early Biological Therapy in Operated Crohn’s Disease Patients Is Associated With a Lower Rate of Endoscopic Recurrence and Improved Long-term Outcomes: A Single-center Experience. Inflamm. Bowel Dis. 2022, 29, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Enck, P.; Klosterhalfen, S. The Placebo and Nocebo Responses in Clinical Trials in Inflammatory Bowel Diseases. Front. Pharmacol. 2021, 12, 641436. [Google Scholar] [CrossRef]
- Danese, S.; Colombel, J.-F.; Lukas, M.; Gisbert, J.P.; D’Haens, G.; Hayee, B.h.; Panaccione, R.; Kim, H.-S.; Reinisch, W.; Tyrrell, H.; et al. Etrolizumab versus infliximab for the treatment of moderately to severely active ulcerative colitis (GARDENIA): A randomised, double-blind, double-dummy, phase 3 study. Lancet Gastroenterol. Hepatol. 2022, 7, 118–127. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Hart, A.; Bossuyt, P.; Long, M.; Allez, M.; Juillerat, P.; Armuzzi, A.; Loftus, E.V., Jr.; Ostad-Saffari, E.; Scalori, A.; et al. Etrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): A phase 3, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 2022, 7, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Lakatos, P.L.; Ritter, T.; Hanauer, S.; Bressler, B.; Khanna, R.; Isaacs, K.; Shah, S.; Kadva, A.; Tyrrell, H.; et al. Etrolizumab for maintenance therapy in patients with moderately to severely active ulcerative colitis (LAUREL): A randomised, placebo-controlled, double-blind, phase 3 study. Lancet Gastroenterol. Hepatol. 2022, 7, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; D’Haens, G.; Baert, F.; Danese, S.; Kobayashi, T.; Loftus, E.V., Jr.; Bhatia, S.; Agboton, C.; Rosario, M.; Chen, C.; et al. Efficacy and Safety of Subcutaneous Vedolizumab in Patients With Moderately to Severely Active Crohn’s Disease: Results From the VISIBLE 2 Randomised Trial. J. Crohn’s Colitis 2021, 16, 27–38. [Google Scholar] [CrossRef]
- Sandborn, W.; Danese, S.; Leszczyszyn, J.; Romatowski, J.; Altintas, E.; Peeva, E.; Vincent, M.; Reddy, P.; Banfield, C.; Banerjee, A.; et al. OP33 Oral ritlecitinib and brepocitinib in patients with Moderate to Severe Active Ulcerative Colitis: Data from the VIBRATO umbrella study. J. Crohn’s Colitis 2021, 15, S030–S031. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Liu, M.; Fan, C.; Feng, C.; Lu, Q.; Xiang, C.; Lu, H.; Yang, X.; Wu, B.; et al. Targeting PDE4 as a promising therapeutic strategy in chronic ulcerative colitis through modulating mucosal homeostasis. Acta Pharm. Sin. B 2022, 12, 228–245. [Google Scholar] [CrossRef]
- Henn, M.R.; O’Brien, E.J.; Diao, L.; Feagan, B.G.; Sandborn, W.J.; Huttenhower, C.; Wortman, J.R.; McGovern, B.H.; Wang-Weigand, S.; Lichter, D.I.; et al. A Phase 1b Safety Study of SER-287, a Spore-Based Microbiome Therapeutic, for Active Mild to Moderate Ulcerative Colitis. Gastroenterology 2021, 160, 115–127.e30. [Google Scholar] [CrossRef]
- Xu, Q.; Yao, Y.; Liu, Y.; Zhang, J.; Mao, L. The mechanism of traditional medicine in alleviating ulcerative colitis: Regulating intestinal barrier function. Front. Pharmacol. 2023, 14, 1228969. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, P.; Godoy-Brewer, G.; Maniyar, I.; White, J.; Maas, L.; Parian, A.M.; Limketkai, B. Herbal Medicines for the Treatment of Active Ulcerative Colitis: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 934. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Xu, N.; Wang, X.; Vallée, I.; Liu, M.; Liu, X. Helminth therapy for immune-mediated inflammatory diseases: Current and future perspectives. J. Inflamm. Res. 2022, 15, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Jamtsho, T.; Yeshi, K.; Perry, M.J.; Loukas, A.; Wangchuk, P. Approaches, Strategies and Procedures for Identifying Anti-Inflammatory Drug Lead Molecules from Natural Products. Pharmaceuticals 2024, 17, 283. [Google Scholar] [CrossRef]
- Mahmoud, H.A.; Salama, W.M.; Mariah, R.A.; Eid, A.M. Ameliorative effect of Leiurus quinquestriatus venom on acetic acid-induced colitis in mice. Sci. Afr. 2021, 14, e01009. [Google Scholar] [CrossRef]
- Ni, Y.; Xiong, R.; Zhu, Y.; Luan, N.; Yu, C.; Yang, K.; Wang, H.; Xu, X.; Yang, Y.; Sun, S. A target-based discovery from a parasitic helminth as a novel therapeutic approach for autoimmune diseases. EBioMedicine 2023, 95, 104751. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Lv, Z.; Taoerdahong, H.; Li, G.; Li, J.; Zhao, X.; Jin, X.; Chang, J. Structural characterization of a polysaccharide from Alhagi honey and its protective effect against inflammatory bowel disease by modulating gut microbiota dysbiosis. Int. J. Biol. Macromol. 2024, 259, 128937. [Google Scholar] [CrossRef]
- Hou, J.; Gong, H.; Gong, Z.; Tan, X.; Qin, X.; Nie, J.; Zhu, H.; Zhong, S. Structural characterization and anti-inflammatory activities of a purified polysaccharide from fruits remnants of Alpinia zerumbet (Pers.) Burtt. et Smith. Int. J. Biol. Macromol. 2024, 267, 131534. [Google Scholar] [CrossRef]
- Tran, Q.T.; Gan, P.X.; Liao, W.; Mok, Y.K.; Chai, C.L.; Wong, W.F. Degradation of MK2 with natural compound andrographolide: A new modality for anti-inflammatory therapy. Pharmacol. Res. 2023, 194, 106861. [Google Scholar] [CrossRef]
- Zhong, Y.-B.; Kang, Z.-P.; Wang, M.-X.; Long, J.; Wang, H.-Y.; Huang, J.-Q.; Wei, S.-Y.; Zhou, W.; Zhao, H.-M.; Liu, D.-Y. Curcumin ameliorated dextran sulfate sodium-induced colitis via regulating the homeostasis of DCs and Treg and improving the composition of the gut microbiota. J. Funct. Foods. 2021, 86, 104716. [Google Scholar] [CrossRef]
- Jing, W.; Dong, S.; Luo, X.; Liu, J.; Wei, B.; Du, W.; Yang, L.; Luo, H.; Wang, Y.; Wang, S. Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites. Pharmacol. Res. 2021, 164, 105358. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, M.; Su, J.; Zhong, R.; Yin, S.; Zhao, Z.; Sun, Z. Hypersampsonone H attenuates ulcerative colitis via inhibition of PDE4 and regulation of cAMP/PKA/CREB signaling pathway. Int. Immunopharmacol. 2024, 128, 111490. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Kong, R.; Han, W.; Bao, W.; Shi, Y.; Ye, L.; Lu, J. Honokiol alleviates ulcerative colitis by targeting PPAR-γ–TLR4–NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int. Immunopharmacol. 2022, 111, 109058. [Google Scholar] [CrossRef]
- Kulhari, U.; Kundu, S.; Mugale, M.N.; Sahu, B.D. Nuciferine alleviates intestinal inflammation by inhibiting MAPK/NF-κB and NLRP3/Caspase 1 pathways in vivo and in vitro. Int. Immunopharmacol. 2023, 115, 109613. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, T.; Zhang, M.; Hong, B.; Jin, B.; Hu, C.; Wang, J.; Chen, Y.; Zhang, L.; Wang, Y. Flavokawain B inhibits NF-κB inflammatory signaling pathway activation in inflammatory bowel disease by targeting TLR2. Toxicol. Appl. Pharmacol. 2024, 486, 116922. [Google Scholar] [CrossRef] [PubMed]
- Ekhtiar, M.; Ghasemi-Dehnoo, M.; Mirzaei, Y.; Azadegan-Dehkordi, F.; Amini-Khoei, H.; Lorigooini, Z.; Samiei-Sefat, A.; Bagheri, N. The coumaric acid and syringic acid ameliorate acetic acid-induced ulcerative colitis in rats via modulator of Nrf2/HO-1 and pro-inflammatory cytokines. Int. Immunopharmacol. 2023, 120, 110309. [Google Scholar] [CrossRef]
- He, X.; Liu, J.; Long, G.; Xia, X.-H.; Liu, M. 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-D-glucoside, a major bioactive component from Polygoni multiflori Radix (Heshouwu) suppresses DSS induced acute colitis in BALb/c mice by modulating gut microbiota. Biomed. Pharmacother. 2021, 137, 111420. [Google Scholar] [CrossRef]
- Lamichhane, G.; Pandeya, P.R.; Lamichhane, R.; Yun, H.D.; Shrivastava, A.K.; Cheon, J.-y.; Sapkota, B.; Devkota, H.P.; Jung, H.-J. Evaluation of anti-inflammatory potential of extract, fractions and major compounds of Ponciri Fructus in LPS-induced RAW 264.7 cells. Curr. Res. Biotechnol. 2023, 6, 100138. [Google Scholar] [CrossRef]
- Zhou, M.; Zhi, J.; Zhi, J.; Xiong, Z.; Wu, F.; Lu, Y.; Hu, Q. Polysaccharide from Strongylocentrotus nudus eggs regulates intestinal epithelial autophagy through CD36/PI3K-Akt pathway to ameliorate inflammatory bowel disease. Int. J. Biol. Macromol. 2023, 244, 125373. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhu, X.; Shen, J.; Chen, H.; Zhou, G. Mechanism of Nicotiflorin in San-Ye-Qing rhizome for anti-inflammatory effect in ulcerative colitis. Phytomedicine 2024, 129, 155564. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Gong, L.; Zhu, T.; Zhou, W.; Kong, L.; Luo, J. Identification of Tubocapsanolide A as a novel NLRP3 inhibitor for potential treatment of colitis. Biochem. Pharmacol. 2021, 190, 114645. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huo, J.; Zhong, S.; Zhu, J.; Li, Y.; Li, X. Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohydr. Polym. 2021, 268, 118214. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.-T.; Li, L.-H.; Chiu, H.-W.; Menon, M.P.; Hsu, H.-T.; Lin, W.-Y.; Wu, C.-H.; Ho, C.-L.; Hua, K.-F. Antcin-H, a natural triterpene derived from Antrodia cinnamomea, ameliorates dextran sulfate sodium-induced colitis in mice by inhibiting the NLRP3 inflammasome. J. Tradit. Complement. Med. 2024. [Google Scholar] [CrossRef]
- Cai, D.; Liu, Y.-Y.; Tang, X.-P.; Zhang, M.; Cheng, Y.-X. Minor ergosteroids and a 19-nor labdane-type diterpenoid with anti-inflammatory effects from Ganoderma lucidum. Phytochemistry 2024, 222, 114052. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.-M.; Veeraperumal, S.; Tan, K.; Zhong, S.; Cheong, K.-L. The in vitro anti-inflammatory mechanism of Porphyra haitanensis oligosaccharides on lipopolysaccharide-induced injury in IEC-6 cells. J. Funct. Foods 2024, 112, 106005. [Google Scholar] [CrossRef]
- Dai, L.-T.; Yang, L.; Guo, J.-C.; Ma, Q.-Y.; Xie, Q.-Y.; Jiang, L.; Yu, Z.-F.; Dai, H.-F.; Zhao, Y.-X. Anti-diabetic and anti-inflammatory indole diterpenes from the marine-derived fungus Penicillium sp. ZYX-Z-143. Bioorg. Chem. 2024, 145, 107205. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Peng, W.-R.; Zhang, D.; Sun, H.-X.; Li, L.; Sun, F.; Gu, Z.-C.; Lin, H.-W. Marine sponge-derived alkaloid ameliorates DSS-induced IBD via inhibiting IL-6 expression through modulating JAK2-STAT3-SOCS3 pathway. Int. Immunopharmacol. 2024, 129, 111576. [Google Scholar] [CrossRef]
- Ihekweazu, F.D.; Engevik, M.A.; Ruan, W.; Shi, Z.; Fultz, R.; Engevik, K.A.; Chang-Graham, A.L.; Freeborn, J.; Park, E.S.; Venable, S. Bacteroides ovatus promotes IL-22 production and reduces trinitrobenzene sulfonic acid–driven colonic inflammation. Am. J. Pathol. 2021, 191, 704–719. [Google Scholar] [CrossRef]
- Li, K.; Hao, Z.; Du, J.; Gao, Y.; Yang, S.; Zhou, Y. Bacteroides thetaiotaomicron relieves colon inflammation by activating aryl hydrocarbon receptor and modulating CD4+ T cell homeostasis. Int. Immunopharmacol. 2021, 90, 107183. [Google Scholar] [CrossRef]
- Cordeiro, B.F.; Alves, J.L.; Belo, G.A.; Oliveira, E.R.; Braga, M.P.; da Silva, S.H.; Lemos, L.; Guimarães, J.T.; Silva, R.; Rocha, R.S.; et al. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front. Microbiol. 2021, 12, 623920. [Google Scholar] [CrossRef]
- Chae, S.A.; Ramakrishnan, S.R.; Kim, T.; Kim, S.-R.; Bang, W.Y.; Jeong, C.-R.; Yang, J.; Kim, S.-J. Anti-inflammatory and anti-pathogenic potential of Lacticaseibacillus rhamnosus IDCC 3201 isolated from feces of breast-fed infants. Microb. Pathog 2022, 173, 105857. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhang, L.; Chen, L.; Wang, J.; Liu, A.; Luo, P.; Zhan, M.; Zhou, X.; Chen, L.; Zhang, J. Lactobacillus fermentum CKCC1858 and Lactobacillus plantarum CKCC1312 ameliorate the symptoms of ulcerative colitis in mouse model induced by dextran sulfate sodium. J. Funct. Foods. 2024, 112, 105995. [Google Scholar] [CrossRef]
- Nie, H.; Li, Y.; Lu, X.-L.; Yan, J.; Liu, X.-R.; Yin, Q. Prodigiosin derived from chromium-resistant Serratia sp. prevents inflammation and modulates gut microbiota homeostasis in DSS-induced colitis mice. Int. Immunopharmacol. 2023, 116, 109800. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, J.; Zhang, L.; Qin, N.; Zhu, B.; Xia, X. Jellyfish skin polysaccharides enhance intestinal barrier function and modulate the gut microbiota in mice with DSS-induced colitis. Food Funct. 2021, 12, 10121–10135. [Google Scholar] [CrossRef]
- Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Lee, M.; Chang, E.B. The gut microbiome and inflammatory bowel diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Vindigni, S.M.; Zisman, T.L.; Suskind, D.L.; Damman, C.J. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: A tripartite pathophysiological circuit with implications for new therapeutic directions. Ther. Adv. Gastroenterol. 2016, 9, 606–625. [Google Scholar] [CrossRef]
- Hang, S.; Paik, D.; Yao, L.; Kim, E.; Trinath, J.; Lu, J.; Ha, S.; Nelson, B.N.; Kelly, S.P.; Wu, L. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 2019, 576, 143–148. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef]
- Song, X.; Sun, X.; Oh, S.F.; Wu, M.; Zhang, Y.; Zheng, W.; Geva-Zatorsky, N.; Jupp, R.; Mathis, D.; Benoist, C. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 2020, 577, 410–415. [Google Scholar] [CrossRef]
- Clooney, A.G.; Eckenberger, J.; Laserna-Mendieta, E.; Sexton, K.A.; Bernstein, M.T.; Vagianos, K.; Sargent, M.; Ryan, F.J.; Moran, C.; Sheehan, D. Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut 2021, 70, 499–510. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.; Chen, Q.; Li, X.; Chen, L.; Dong, Z.; Zhu, W.; Yang, Y.; Liu, Z.; Chen, Q. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun. 2022, 13, 3432. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Zhang, R.; Chen, Y.; Wang, F.; Zhang, M. Gut microbial fermentation promotes the intestinal anti-inflammatory activity of Chinese yam polysaccharides. Food Chem. 2023, 402, 134003. [Google Scholar] [CrossRef]
- Tsopmejio, I.S.N.; Ding, M.; Wei, J.; Zhao, C.; Jiang, Y.; Li, Y.; Song, H. Auricularia polytricha and Flammulina velutipes ameliorate inflammation and modulate the gut microbiota via regulation of NF-κB and Keap1/Nrf2 signaling pathways on DSS-induced inflammatory bowel disease. Food Biosci. 2022, 47, 101426. [Google Scholar] [CrossRef]
- Mak, K.-K.; Wong, Y.-H.; Pichika, M.R. Artificial Intelligence in Drug Discovery and Development; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Powrie, F.; Leach, M.W.; Mauze, S.; Menon, S.; Caddle, L.B.; Coffman, R.L. Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994, 1, 553–562. [Google Scholar] [CrossRef]
- Jukič, M.; Bren, U. Machine learning in antibacterial drug design. Front. Pharmacol. 2022, 13, 864412. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: A perspective and expert opinion. Ann. Med. 2023, 55, 2300670. [Google Scholar] [CrossRef] [PubMed]
- Bruderer, S.; Paruzzo, F.; Bolliger, C. Deep Learning-Based Phase and Baseline Correction of 1D 1H NMR Spectra. Public Bruker White Paper. 2021. Available online: https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html (accessed on 8 June 2024).
- Zhang, Y.; Bhosle, A.; Bae, S.; McIver, L.J.; Pishchany, G.; Accorsi, E.K.; Thompson, K.N.; Arze, C.; Wang, Y.; Subramanian, A.; et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 2022, 606, 754–760. [Google Scholar] [CrossRef]
- Howarth, A.; Ermanis, K.; Goodman, J.M. DP4-AI automated NMR data analysis: Straight from spectrometer to structure. Chem. Sci. 2020, 11, 4351–4359. [Google Scholar] [CrossRef]
- Huber, F.; van der Burg, S.; van der Hooft, J.J.; Ridder, L. MS2DeepScore: A novel deep learning similarity measure to compare tandem mass spectra. J. Cheminform. 2021, 13, 84. [Google Scholar] [CrossRef]
- Jena, A.B.; Dash, U.C.; Duttaroy, A.K. An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 inflammasome complex. Biomed. Pharmacother. 2022, 156, 113890. [Google Scholar] [CrossRef] [PubMed]
- Ekowati, J.; Tejo, B.A.; Maulana, S.; Kusuma, W.A.; Fatriani, R.; Ramadhanti, N.S.; Norhayati, N.; Nofianti, K.A.; Sulistyowaty, M.I.; Zubair, M.S. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF-α Convertase Inhibition Mechanisms: A Network Pharmacology, Docking, and Molecular Dynamics Approach. ACS Omega 2023, 8, 46851–46868. [Google Scholar] [CrossRef]
- Vishwakarma, R.K.; Negi, A.; Negi, D.S. Abortitristoside A and desrhamnosylverbanscoside: The potential COX-2 inhibitor from the leaves of Nyctanthes arbor-tristis as Anti-inflammatory agents based on the in-vitro assay, molecular docking and ADMET prediction. Chem. Pap. 2022, 77, 3035–3049. [Google Scholar] [CrossRef]
- Simoben, C.V.; Babiaka, S.B.; Moumbock, A.F.A.; Namba-Nzanguim, C.T.; Eni, D.B.; Medina-Franco, J.L.; Günther, S.; Ntie-Kang, F.; Sippl, W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv. 2023, 13, 31578–31594. [Google Scholar] [CrossRef] [PubMed]
- Jamtsho, T.; Loukas, A.; Wangchuk, P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals 2024, 17, 819. [Google Scholar] [CrossRef]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar]
- Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2018, 17, 97–113. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.-R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv 2017, arXiv:1708.08296. [Google Scholar]
- Ekins, S.; Puhl, A.C.; Zorn, K.M.; Lane, T.R.; Russo, D.P.; Klein, J.J.; Hickey, A.J.; Clark, A.M. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 2019, 18, 435–441. [Google Scholar] [CrossRef]
- Robinson, D. Confronting Biopiracy: Challenges, Cases and International Debates; Routledge: Abingdon, UK, 2010. [Google Scholar]
- Mittelstadt, B.D.; Allo, P.; Taddeo, M.; Wachter, S.; Floridi, L. The ethics of algorithms: Mapping the debate. Big Data Soc. 2016, 3, 2053951716679679. [Google Scholar] [CrossRef]
Types | Drugs | Brand Names | Diseases Target | Delivery Route | Side Effects |
---|---|---|---|---|---|
Small molecules | Aminosalicylate | Asacol HD, Salofalk, Pentasa, Lialda | Mild to moderate UC | Oral | Burping, constipation, nausea, vomiting, stomach pain/cramping, diarrhoea, dizziness, cold symptoms, back pain, headache, rash, itching, coughing, vomiting, bloody diarrhoea, and rectal bleeding. |
Olsalazine | Dipentum | Induction and maintenance of remission of mild-severe UC | Oral | Diarrhoea, stomach pain, rash, itching, fever, severe muscle aches and weakness, bruising of skin and eyes. | |
Sulfasalazine | Azulfidine | Induction of remission of UC | Oral | Nausea, vomiting, stomach upset, loss of appetite, headache, rash, low sperm count in men. | |
Balsalazide | Colazal, Giazo | UC and CD | Oral | Headache, fever, diarrhea, nausea, vomiting, abdominal pain, loss of appetite, cramping, and rash. | |
Corticosteroids | Hydrocortisone | Anucort, Colocort, Cortenema, Cortef, Cortifoam | Helpful for inflammation in the anus, rectum or sigmoid colon in both UC and CD | Rectal | Acne, weight gain, fragility fracture, cataracts, hypertension, diabetes, stretch marks, moon face (rounding of face), insomnia, mood swings, psychosis, weakened bones (osteoporosis), venous thromboembolism (VTE), and increased risks of infections in long-term therapy. |
Prednisone/prednisolone | Deltasone | CD, UC | Oral, IV | ||
Methylprednisone | Medrol, Solumedrol | CD, UC | IV, Oral | ||
Budesonide | Uceris, Entocort | Active UC and CD with more diffuse disease | Oral; topical enema therapy | ||
Beclomethasone dipropionate (BDP) | Clipper | Mild/moderate UC | Oral: enemas, foams or suppositories | Side effects are less than conventional corticosteroids. | |
Immunomodulators/immunosuppressants | Azathioprine | Azasan, Imuran | CD and UC patients with steroid-resistant or steroid-dependent delay the recurrence of CD after surgical resection | Oral | Pancreatis and suppression of bone marrow and lymphoma. |
6-Mercaptopurine | Purixan | CD and UC patients with steroid-resistant or steroid-dependent delay the recurrence of CD after surgical resection | Oral | Headache, diarrhoea, nausea, vomiting, tiredness, joint pain, mouth sores, rash, fever, and liver inflammation. | |
Methotrexate | Trexall | CD with steroid resistance/dependence; CD in children | Oral | Leukopenia, hepatic fibrosis, and hypertensive interstitial pneumonitis. | |
Cyclosporine | Neoral, Sandimmune | Severe UC and not responding to glucocorticoid therapy | Oral | Renal insufficiency, hypertension, hepatitis, diabetes, increased cholesterol level, insomnia, and headache. | |
Tacrolimus | Prograf | Severe CD | Oral | Diabetes, hepatitis, decreased kidney function, increased cholesterol, insomnia, headache, high blood pressure, swollen gums, seizure, and increased facial hair. | |
TNF inhibitors | Adalimumab | Humira, Amjevita, Cyltezo, Hyrimoz, Simlandi, Yusimry, Idacio, Imraldi, Amsparity, Hefiya, Hullo | Moderate to severe UC and CD, showing inadequate response to or intolerance to other conventional therapies, including infliximab | SC | Injection site reactions, headaches, rash, nausea, abdominal pain, nausea and vomiting, upper respiratory infections (sinus infections), and muscle pain. |
Golimumab | Simponi | In adults with mild to severe UC, showing inadequate response or intolerance to other medications | SC | Upper respiratory tract infection, reactions at the injection site, and viral infections. | |
Infliximab | Avsola, Flixabi, Inflectra, Remicade, Renflexis, Zymfentra, Flixabi, Remsima | Induction and maintenance of remission of moderate-severe UC and CD | IV infusion, SC | Fever, chest pain, respiratory infections, such as sinus infections, sore throat, sweating, nausea, itching, headache, coughing, rash, difficulty breathing, and stomach pain. | |
Certolizumab pegol | Cimzia | UC | SC | Upper respiratory infections (flu, cold), rash, and bladder infections. | |
Anti-IL-12/IL-23 mAb | Ustekinumab | Stelara | Moderate/severe UC and CD | IV infusion, SC | Cold, sore throat or sinus infections, dizziness, headache, diarrhoea, itching, back and joint pain, and muscle fatigue or pain. |
Anti-IL-23 | Risankizumab | Skyrizi 150 Mg Dose Pack | CD in adults | IV, SC | Cold, sore throat or sinus infections, headache, tiredness, itching, and skin fungal infections. |
JAK inhibitors | Tofacitinib | Xeljanz | UC | Oral | Difficulty in breathing or swallowing, rash, hives, swollen face including lips and mouth or swollen hands and feet; common side effects include headache, runny nose, nausea, nasopharyngitis, and joint pain. |
Filgotinib | Jyseleca | UC | Oral | Cold, sore throat, sinus infection, and urinary tract infection; serious side effects might include pneumonia or shingles. | |
Upadacitinib | Rinvoq | UC | Oral | Rash, itchy patches on skin [16], swelling lips, tongue or throat, and difficulty breathing or swallowing. | |
α4β7-integrin mAb | Vedolizumab | Entyvio | Moderate/severe UC and CD | IV infusion | Common cold, headache, joint pain, nausea, and fever. |
α4-integrin mAb | Natalizumab | Tysabri | Induction and maintenance of remission of moderate-severe CD | IV infusion | Headache, depression, tiredness, joint pain, urinary tract infections, upper respiratory tract infections, diarrhoea, and stomach pain. |
S1P inhibitor | Ozanimod | Zeposia, Zeposia 7-day starter pack, Zeposia starter pack | UC | Oral | Upper respiratory tract infections, headache, urinary tract infections, elevated liver tests, low blood pressure, high blood pressure, and back pain. |
Species/Source | Anti-Inflammatory Compounds/Products | Model/Cell | The Main Effect on Inflammation | Ref. |
---|---|---|---|---|
Plants | ||||
Alhagi pseudalhagi (M.Bieb.) Desv. ex Wangerin | Alhagi honey polysaccharide (AHPN50-1a) | DSS-induced colitis mice | Downregulated IL-1β, IL-6, and TNF expression in colon tissue Restored microbiota diversity and increased concentrations of short-chain fatty acids (SCFAs) produced by gut microbiota | [59] |
Alpinia zerumbet var. | Homogeneous polysaccharide (AZP-2) | stimulated RAW264.7 cell | Inhibited NO, ROS, and increased IL-10 production Regulates the NF-κB signaling pathway | [60] |
Andrographis paniculata (Burm.f.) Wall. ex Nees | Andrographolide | LPS-stimulated RAW264.7 cells | Degradation of MK2 concentration Inhibit TNF, MCP-1 | [61] |
Curcuma longa L. | Curcumin | DSS-induced colitis mice | Inhibited IL-1β, IL-2, IL-6, IL-9, and IL-17A production | [62] |
Hydrastis canadensis L. | Berberine (Berberine chloride) | DSS-induced colitis in rats | Increased TNF, IL-1β and IL-6 Decreased IL-10 | [63] |
Hypericum sampsonii Hance | Hypersampsonone H | LPS-induced RAW264.7 cells | Suppressed NO production Inhibited COX-2 and iNOS, IL-6, TNF and IL-10 expression | [64] |
Magnolia officinalis Rehder & E.H.Wilson | Honokiol | DSS-induced colitis mice (C57BL/6J mice) | Decreased TNF, IL-6, IL-1β, and IFN-γ Increased PPAR-γ expression Downregulated TLR4, NF-κB signaling pathway | [65] |
Nelumbo nucifera Gaertn | Nuciferine | LPS-induced RAW 264.7 cells | Reduced the expression of iNOS, IL-1β, IL-18, and TNF. Disrupted the activation of MAPK, NF-κB, and NLRP3 signaling pathways | [66] |
Piper methysticum G. Forst | Flavokawain B | C57BL/6 J mice | Inhibited NF-κB signaling pathway | [67] |
Plants | Coumaric acid and syringic acid | Acetic acid-induced colitis mice | Downregulated TNF and IL-1β and upregulate the Nrf2/HO-1 pathway | [68] |
Polygoni multiflori Radix | 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside | DSS-induced colitis mice (BALB/c) | Inhibited TNF-α, IL-1β, and IL-6 and IL-10 expression level Increased the abundances of Firmicutes and Bacteroidetes Improved the homeostasis of the gut microbiota composition | [69] |
Poncirus trifoliata (L.) Raf | Poncirin, naringin, imperatorin, and phellopterin | LPS-induced RAW 264.7 cells | Inhibited NO and iNOS production | [70] |
Strongylocentrotus nudus (A. Agassiz) | Polysaccharides from egg | DSS-induced acute ulcerative colitis mice (C57BL/6 J mice) | Inhibited IL-6, IL-1β, TNF production Suppressed Th17 and increased Treg cells production | [71] |
Tetrastigma hemsleyanum Diels & Gilg | Nicotiflorin | DSS-induced colitis mice (C57BL/6 mice) | Inhibited the activation of NF-κB and NLRP3 inflammasomes. | [72] |
Tubocapsicum anomalum (Franch. & Sav.) Makino | Tubocapsanolide A | DSS-induced colitis mice (C57BL/6 mice) | Suppression of INF-γ, IL-6, TNF, and IL-6 levels in serum and colonic tissue | [73] |
Fungi | ||||
Phellinus baumii | Heteropolysaccharide (SHPS-1) | LPS- LPS-stimulated macrophage RAW 264.7 cells | Downregulated iNOS and TNF level Upregulated IL-10 expression | [74] |
Antrodia cinnamomea | Antcin-H | DSS-induced colitis mice (C57BL/6JNal mice) | Inhibits colonic expression of NLRP3, ASC, active caspase-1, IL-1β, IL-6, TNF | [75] |
Ganoderma lucidum | Baoslingzhine K | LPS-stimulated RAW264.7 cells | Inhibited protein expression of iNOS and COX | [76] |
Porphyra haitanensis | Oligosaccharides (PHO) | LPS-induced IEC-6 cells | Upregulated ZO-1, claudin-1, and occluding Downregulated oNF-κB p50 and NF-κB p65 pathways, Inhibited the TLR4/NF-κB pathway | [77] |
Penicillium sp. ZYX-Z-143-fgi | Penpaxilloids E, schipenindolene A, paxilline D | LPS- LPS-stimulated RAW264.7 macrophages | Suppressed NO production | [78] |
Microbial | ||||
Actinoalloteichus Cyanogriseus | Cyanogramide | THP-1 cells and a Caco-2/THP-1 | Inhibited IL-6 secretion | [79] |
Bacteroides ovatus | indole-3-acetic acid | TNBS-induced colitis mice | Upregulated IL-22 expression | [80] |
Bacteroides thetaiotaomicron | IAA (Indole-3-Acetic Acid) and IPA (Indole-3-Propionic Acid) | DSS-induced colitis mice | Regulated the Th17/Treg balance and restore immune homeostasis | [81] |
Lactococcus lactis NCDO 2118 | Minas Frescal Cheese | DSS-induced colitis mice | Increased gene expression of tight junctions’ proteins zo-1, zo-2, ocln, and cln-1 in the colon and increase IL-10 release | [82] |
Lacticaseibacillus rhamnosus | L. rhamnosus IDCC 3201 | DSS-induced RAW 264.7 macrophages | Downregulated TNF, IL-6, NO, iNOS) and COX-2 expression levels | [83] |
Lactobacillus fermentum and L. plantarum | Lactobacillus fermentum CKCC1858 and Lactobacillus plantarum CKCC1312 | DSS-induced colitis mice | Increased the level of mucin-2, zonula occludens-1 and interleukin-10 Decreased the levels of IL-1β, IL-17A, IFN-γ, iIL-6 and TNF | [84] |
Serratia sp. | Prodigiosin | DSS-induced colitis mice | Suppressed IL-1β, IL-6 and IL-10 expression Upregulated junction protein Claudin-1, Occludin and ZO-1 | [85] |
Animals | ||||
Rhopilema esculentum Kishinouye | Skin polysaccharides | DSS-induced colitis mice (C57BL/6J) | Downregulated MPO, NO level Upregulated TNF, IL-6, L-1β level Upregulated Occludin, ZO-1, Muc2 level | [86] |
Leiurus quinquestriatus (Ehrenberg) | L.Q venom | Albino CD-1 mice | Downregulated TREM, NO, MPO level in sera and MMP-9, caspase-3, NO, MPO in colonic tissue | [57] |
Parasite | ||||
Schistosoma japonicum | Small three kDa peptide (SjDX5-53) | C57BL/6 mice | Induce Tregs and inhibit T-helper (Th1/Th17) | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeshi, K.; Jamtsho, T.; Wangchuk, P. Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease. Molecules 2024, 29, 3954. https://doi.org/10.3390/molecules29163954
Yeshi K, Jamtsho T, Wangchuk P. Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease. Molecules. 2024; 29(16):3954. https://doi.org/10.3390/molecules29163954
Chicago/Turabian StyleYeshi, Karma, Tenzin Jamtsho, and Phurpa Wangchuk. 2024. "Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease" Molecules 29, no. 16: 3954. https://doi.org/10.3390/molecules29163954
APA StyleYeshi, K., Jamtsho, T., & Wangchuk, P. (2024). Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease. Molecules, 29(16), 3954. https://doi.org/10.3390/molecules29163954