Recent Advances in the Synthesis of Rosettacin
Abstract
:1. Introduction
2. Synthesis of Rosettacin
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bur, S.K.; Padwa, A. The Pummerer Reaction: Methodology and Strategy for the Synthesis of Heterocyclic Compounds. Chem. Rev. 2004, 104, 2401–2432. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-Free Heterocyclic Synthesis. Chem. Rev. 2009, 109, 4140–4182. [Google Scholar] [CrossRef] [PubMed]
- Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of Heterocycles via Electrophilic Cyclization of Alkynes Containing Heteroatom. Chem. Rev. 2011, 111, 2937–2980. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ding, S.; Song, L.; Van der Eycken, E.V. Transition Metal-Catalyzed C−H Activation/Annulation Approaches to Isoindolo [2,1-b]isoquinolin-5(7H)-ones. Chem. Rec. 2023, 23, e202200255. [Google Scholar] [CrossRef]
- Brandi, A.; Cicchi, S.; Cordero, F.M.; Goti, A. Heterocycles from Alkylidenecyclopropanes. Chem. Rev. 2003, 103, 1213–1270. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev. 2008, 108, 3395–3442. [Google Scholar] [CrossRef]
- Tang, X.; Song, L.; Van der Eycken, E.V. Post-Ugi Cyclizations towards Polycyclic N-Heterocycles. Chem. Rec. 2023, 23, e202300095. [Google Scholar] [CrossRef]
- Wang, Y.; Cobo, A.A.; Franz, A.K. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org. Chem. Front. 2021, 8, 4315–4348. [Google Scholar] [CrossRef]
- St. Jean, D.J., Jr.; Fotsch, C. Mitigating Heterocycle Metabolism in Drug Discovery. J. Med. Chem. 2012, 55, 6002–6020. [Google Scholar] [CrossRef]
- Yamamoto, Y. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes. Chem. Soc. Rev. 2014, 43, 1575–1600. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.-X.; Xi, Z. Carbodiimide-based synthesis of N-heterocycles: Moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev. 2020, 49, 5810–5849. [Google Scholar] [CrossRef]
- Xue, W.; Warshawsky, D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol. Appl. Pharmacol. 2005, 206, 73–93. [Google Scholar] [CrossRef]
- Meade, J.D.; Hellou, J.; Patel, T.R. Aerobic co-metabolism of sulfur, nitrogen and oxygen heterocycles by three marine bacterial consortia. J. Basic Microbiol. 2002, 42, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Turesky, R.J.; Le Marchand, L. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines. Chem. Res. Toxicol. 2011, 24, 1169–1214. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Lv, Z.; Zhang, K.; Wu, Y.; Van der Eycken, E.V.; Cai, L. Recent Advances in the Asymmetric Total Synthesis of Camptothecin. Asian J. Org. Chem. 2022, 11, e202200515. [Google Scholar] [CrossRef]
- Yuan, J.-M.; Wei, K.; Zhang, G.-H.; Chen, N.-Y.; Wei, X.-W.; Pan, C.-X.; Mo, D.-L.; Su, G.-F. Cryptolepine and aromathecin based mimics as potent G-quadruplex-binding, DNA-cleavage and anticancer agents: Design, synthesis and DNA targeting-induced apoptosis. Eur. J. Med. Chem. 2019, 169, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. J. Am. Chem. Soc. 1966, 88, 3888–3890. [Google Scholar] [CrossRef]
- Thomas, C.J.; Rahier, N.J.; Hecht, S.M. Camptothecin: Current perspectives. Bioorg. Med. Chem. 2004, 12, 1585–1604. [Google Scholar] [CrossRef]
- Martino, E.; Volpe, S.D.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett. 2017, 27, 701–707. [Google Scholar] [CrossRef]
- Chen, L.; Chen, F.-E. Total Synthesis of Camptothecins: An Update. Synlett 2017, 28, 1134–1150. [Google Scholar] [CrossRef]
- Adams, D.J.; Dewhirst, M.W.; Flowers, J.L.; Gamcsik, M.P.; Colvin, O.M.; Manikumar, G.; Wani, M.C.; Wall, M.E. Camptothecin analogues with enhanced antitumor activity at acidic pH. Cancer Chemother. Pharmacol. 2000, 46, 263–271. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Morrell, A.E.; Dexheimer, T.S.; Agama, K.; Agrawal, S.; Pommier, Y.; Cushman, M. The structure–activity relationships of A-ring-substituted aromathecin topoisomerase I inhibitors strongly support a camptothecin-like binding mode. Bioorg. Med. Chem. 2010, 18, 5535–5552. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, G.; Yao, Z.-J. Short and Efficient Total Synthesis of Luotonin A and 22-Hydroxyacuminatine Using A Common Cascade Strategy. J. Org. Chem. 2007, 72, 6270–6272. [Google Scholar] [CrossRef]
- Cheng, K.; Rahier, N.J.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. 14-Azacamptothecin: A Potent Water-Soluble Topoisomerase I Poison. J. Am. Chem. Soc. 2005, 127, 838–839. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Morrell, A.; Dexheimer, T.S.; Scher, E.S.; Pommier, Y.; Cushman, M. Design, Synthesis, and Biological Evaluation of 14-Substituted Aromathecins as Topoisomerase I Inhibitors. J. Med. Chem. 2008, 51, 4609–4619. [Google Scholar] [CrossRef]
- Hamid, A.; Souizi, A.; Lawson, A.M.; Othman, M.; Ghinet, A.; Rigo, B.; Daïch, A. Benzo[7,8]indolizinoquinoline scaffolds based on Mg(ClO4)2-promoted regiospecific imide reduction and π-cyclization of N-acyliminium species. Analogues of the topo-1 poison rosettacin and 22-hydroxyacuminatine alkaloids. Arab. J. Chem. 2019, 12, 680–693. [Google Scholar] [CrossRef]
- Warneke, J.; Winterfeldt, E. Reaktionen an Indolderivaten, XVI. Die autoxydative Indol-Chinolon-Umwandlung eines Camptothecin-Modells. Chem. Ber. 1972, 105, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Walraven, H.G.M.; Pandit, U.K. A facile two synthon approach to the camptothecin skeleton. Tetrahedron 1980, 36, 321–327. [Google Scholar] [CrossRef]
- Fox, B.M.; Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Staker, B.L.; Stewart, L.; Cushman, M. Design, Synthesis, and Biological Evaluation of Cytotoxic 11-Alkenylindenoisoquinoline Topoisomerase I Inhibitors and Indenoisoquinoline−Camptothecin Hybrids. J. Med. Chem. 2003, 46, 3275–3282. [Google Scholar] [CrossRef]
- Pin, F.; Comesse, S.; Sanselme, M.; Daïch, A. A Domino N-Amidoacylation/Aldol-Type Condensation Approach to the Synthesis of the Topo-I Inhibitor Rosettacin and Derivatives. J. Org. Chem. 2008, 73, 1975–1978. [Google Scholar] [CrossRef]
- El Blidi, L.; Namoune, A.; Bridoux, A.; Nimbarte, V.D.; Lawson, A.M.; Comesse, S.; Daïch, A. Expeditious Synthesis of the Topoisomerase I Inhibitors Isoindolo [2,1-b]isoquinolin-7(5H)-one and the Alkaloid Rosettacin Based on Aryl Radical Cyclization of Enamide Generated by Using N-Acyliminium Chemistry. Synthesis 2015, 47, 3583–3592. [Google Scholar]
- Xu, X.; Liu, Y.; Park, C.-M. Rhodium(III)-Catalyzed Intramolecular Annulation through C-H Activation: Total Synthesis of (±)-Antofine, (±)-Septicine, (±)-Tylophorine, and Rosettacin. Angew. Chem. Int. Ed. 2012, 51, 9372–9376. [Google Scholar] [CrossRef] [PubMed]
- Lerchen, A.; Knecht, T.; Koy, M.; Daniliuc, C.G.; Glorius, F. A General Cp*CoIII-Catalyzed Intramolecular C−H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids. Chem. Eur. J. 2017, 23, 12149–12152. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ou, J.; Gao, S. Total Synthesis of Camptothecin and Related Natural Products by a Flexible Strategy. Angew. Chem. Int. Ed. 2016, 55, 14778–14783. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tian, G.; He, Y.; Van der Eycken, E.V. Rhodium(iii)-catalyzed intramolecular annulation through C–H activation: Concise synthesis of rosettacin and oxypalmatime. Chem. Commun. 2017, 53, 12394–12397. [Google Scholar] [CrossRef]
- Raji Reddy, C.; Mallesh, K. Rh(III)-Catalyzed Cascade Annulations To Access Isoindolo [2,1-b]isoquinolin-5(7H)-ones via C–H Activation: Synthesis of Rosettacin. Org. Lett. 2018, 20, 150–153. [Google Scholar] [CrossRef]
- Song, L.; Tian, G.; Van der Eycken, E.V. Rhodium(III)-catalyzed intermolecular cascade annulation through C-H activation: Concise synthesis of rosettacin. Mol. Catal. 2018, 459, 129–134. [Google Scholar] [CrossRef]
- Song, L.; Zhang, X.; Tian, G.; Robeyns, K.; Van Meervelt, L.; Harvey, J.N.; Van der Eycken, E.V. Intramolecular cascade annulation triggered by CH activation via rhodium hydride intermediate. Mol. Catal. 2019, 463, 30–36. [Google Scholar] [CrossRef]
- Baguia, H.; Deldaele, C.; Romero, E.; Michelet, B.; Evano, G. Copper-Catalyzed Photoinduced Radical Domino Cyclization of Ynamides and Cyanamides: A Unified Entry to Rosettacin, Luotonin A, and Deoxyvasicinone. Synthesis 2018, 50, 3022–3030. [Google Scholar]
- Wang, G.; Hu, W.; Hu, Z.; Zhang, Y.; Yao, W.; Li, L.; Fu, Z.; Huang, W. Carbene-catalyzed aerobic oxidation of isoquinolinium salts: Efficient synthesis of isoquinolinones. Green Chem. 2018, 20, 3302–3307. [Google Scholar] [CrossRef]
- Mizuno, S.; Nishiyama, T.; Endo, M.; Sakoguchi, K.; Yoshiura, T.; Bessho, H.; Motoyashiki, T.; Hatae, N.; Choshi, T. Novel Approach to the Construction of Fused Indolizine Scaffolds: Synthesis of Rosettacin and the Aromathecin Family of Compounds. Molecules 2023, 28, 4059. [Google Scholar] [CrossRef] [PubMed]
- Corey, E.; Crouse, D.N.; Anderson, J.E. Total synthesis of natural 20 (S)-camptothecin. J. Org. Chem. 1975, 40, 2140–2141. [Google Scholar] [CrossRef]
- Wasserman, H.H.; Ives, J.L. Reaction of singlet oxygen with enamino carbonyl systems. A general method for the synthesis of. alpha.-keto derivatives of lactones, esters, amides, lactams, and ketones. J. Org. Chem. 1985, 50, 3573–3580. [Google Scholar] [CrossRef]
- Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M.d.C.; Soriano, E. Recent Advances in the Friedländer Reaction. Chem. Rev. 2009, 109, 2652–2671. [Google Scholar] [CrossRef]
- Deniau, E.; Enders, D. Synthesis of 3-alkyl-1-isoindolinones by alkylation of a benzotriazolyl substituted N-dimethylamino-phthalimidine. Tetrahedron 2001, 57, 2581–2588. [Google Scholar] [CrossRef]
- Witulski, B.; Stengel, T. N-Functionalized 1-Alkynylamides: New Building Blocks for Transition Metal Mediated Inter- and Intramolecular [2+2+1] Cycloadditions. Angew. Chem. Int. Ed. 1998, 37, 489–492. [Google Scholar] [CrossRef]
Year | Author | Key Step | Formed Ring | Reference |
---|---|---|---|---|
1972 | Warneke and Winterfeldt | Oxidative rearrangement | B and C | [27] |
1980 | Walraven and Pandit | Aminolysis and aldol condensation | D | [28] |
2003 | Cushman | Aminolysis and aldol condensation | D | [29] |
2008 | Daïch | N-Amidoacylation/aldol condensation | D | [30] |
2015 | Daïch | Aryl radical cyclization | C | [31] |
2012 | Park | Rh(III)-catalyzed C-H activation | D | [32] |
2017 | Glorius | Co(III)-catalyzed C-H activation | D | [33] |
2016 | Gao | exo Hydroamination and lactamization | C and D | [34] |
2017 | Van der Eycken | Rh(III)-catalyzed C-H activation | C and D | [35] |
2018 | Reddy | Rh(III)-catalyzed C-H activation | C and D | [36] |
2018 | Van der Eycken | Rh(III)-catalyzed C-H activation | C and D | [37] |
2019 | Van der Eycken | Rh(III)-catalyzed C-H activation | C and D | [38] |
2018 | Evano | Cu-catalyzed photoinduced radical domino cyclization | C and D | [39] |
2018 | Fu and Huang | Carbene-catalyzed aerobic oxidation and Pd-catalyzed cyclization | C | [40] |
2023 | Choshi | Thermal cyclization and Reissert–Henze-type reaction | D | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Jiang, Y.; Song, L.; Van der Eycken, E.V. Recent Advances in the Synthesis of Rosettacin. Molecules 2024, 29, 2176. https://doi.org/10.3390/molecules29102176
Tang X, Jiang Y, Song L, Van der Eycken EV. Recent Advances in the Synthesis of Rosettacin. Molecules. 2024; 29(10):2176. https://doi.org/10.3390/molecules29102176
Chicago/Turabian StyleTang, Xiao, Yukang Jiang, Liangliang Song, and Erik V. Van der Eycken. 2024. "Recent Advances in the Synthesis of Rosettacin" Molecules 29, no. 10: 2176. https://doi.org/10.3390/molecules29102176
APA StyleTang, X., Jiang, Y., Song, L., & Van der Eycken, E. V. (2024). Recent Advances in the Synthesis of Rosettacin. Molecules, 29(10), 2176. https://doi.org/10.3390/molecules29102176