Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet–Triplet Annihilation Upconversion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Photophysical Properties of the Annihilators and Sensitizers
2.3. Applications of A-1 and A-2 as Annihilators for TTA-UC
3. Materials and Methods
3.1. Synthesis of A-1 and A-2
3.2. Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349. [Google Scholar] [CrossRef]
- Pawlicki, M.; Collins, H.A.; Denning, R.G.; Anderson, H.L. Two-Photon Absorption and the Design of Two-Photon Dyes. Angew. Chem. Int. Ed. 2009, 48, 3244–3266. [Google Scholar] [CrossRef]
- Mao, C.; Min, K.; Bae, K.; Cho, S.; Xu, T.; Jeon, H.; Park, W. Enhanced Upconversion Luminescence by Two-Dimensional Photonic Crystal Structure. ACS Photonics 2019, 6, 1882–1888. [Google Scholar] [CrossRef]
- Olesund, A.; Ghasemi, S.; Moth-Poulsen, K.; Albinsson, B. Bulky Substituents Promote Triplet-Triplet Annihilation Over Triplet Excimer Formation in Naphthalene Derivatives. J. Am. Chem. Soc. 2023, 145, 22168–22175. [Google Scholar] [CrossRef]
- Zhang, B.; Richards, K.D.; Jones, B.E.; Collins, A.R.; Sanders, R.; Needham, S.R.; Qian, P.; Mahadevegowda, A.; Ducati, C.; Botchway, S.W.; et al. Ultra-Small Air-Stable Triplet-Triplet Annihilation Upconversion Nanoparticles for Anti-Stokes Time-Resolved Imaging. Angew. Chem. Int. Ed. 2023, 62, e202308602. [Google Scholar] [CrossRef]
- Hussain, M.; Razi, S.S.; Tao, T.; Hartl, F. Triplet-triplet annihilation photon up-conversion: Accessing triplet excited states with minimum energy loss. J. Photoch. Photobio. C. 2023, 56, 100618. [Google Scholar] [CrossRef]
- Wang, K.; Cline, R.P.; Schwan, J.; Strain, J.M.; Roberts, S.T.; Mangolini, L.; Eaves, J.D.; Tang, M.L. Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene. Nat. Chem. 2023, 15, 1172–1178. [Google Scholar] [CrossRef]
- Acosta-Mora, P.; Domen, K.; Hisatomi, T.; Lyu, H.; Méndez-Ramos, J.; Ruiz-Morales, J.C.; Khaidukov, N.M. Shifting the NIR into the UV-blue: Up-conversion boosted photocatalysis. Opt. Mater. 2018, 83, 315–320. [Google Scholar] [CrossRef]
- Yu, T.; Liu, Y.; Zeng, Y.; Chen, J.; Yang, G.; Li, Y. Triplet–Triplet Annihilation Upconversion for Photocatalytic Hydrogen Evolution. Chem. Eur. J. 2019, 25, 16270–16276. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Huang, F.; Sun, Y.; Li, Y.; Miao, Y. Near-Infrared Frequency Upconversion Luminescence Bioimaging Based on Cyanine Nanomicelles. ACS Appl. Polym. Mater. 2022, 4, 5566–5573. [Google Scholar] [CrossRef]
- Askes, S.H.C.; Pomp, W.; Hopkins, S.L.; Kros, A.; Wu, S.; Schmidt, T.; Bonnet, S. Imaging Upconverting Polymersomes in Cancer Cells: Biocompatible Antioxidants Brighten Triplet-Triplet Annihilation Upconversion. Small 2016, 12, 5579–5590. [Google Scholar] [CrossRef] [PubMed]
- Pini, F.; Francés-Soriano, L.; Andrigo, V.; Natile, M.M.; Hildebrandt, N. Optimizing Upconversion Nanoparticles for FRET Biosensing. ACS Nano 2023, 17, 4971–4984. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.R.; Wang, M.; Hsu, C.Y.; Chen, N.; Zhang, Y. Small Upconverting Fluorescent Nanoparticles for Biosensing and Bioimaging. Adv. Opt. Mater. 2016, 4, 984–997. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J.; Han, G. Expanding Anti-Stokes Shifting in Triplet–Triplet Annihilation Upconversion for In Vivo Anticancer Prodrug Activation. Angew. Chem. Int. Ed. 2017, 56, 14400–14404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Song, G.; He, Y.; Zhang, X.; Liu, Y.; Ju, H. A DNA–Azobenzene Nanopump Fueled by Upconversion Luminescence for Controllable Intracellular Drug Release. Angew. Chem. Int. Ed. 2019, 58, 18207–18211. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Wei, S.; Meir, R.; Sadaba, N.; Ballinger, N.A.; Harmon, E.K.; Gao, X.; Altin-Yavuzarslan, G.; Pozzo, L.D.; Campos, L.M.; et al. Triplet Fusion Upconversion for Photocuring 3D-Printed Particle-Reinforced Composite Networks. Adv. Mater. 2023, 35, 2207673. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, C.J.; Isokuortti, J.; Comer, E.E.; Roberts, S.T.; Page, Z.A. Triplet Upconversion under Ambient Conditions Enables Digital Light Processing 3D Printing. ACS Cent. Sci. 2024, 10, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Fallon, K.J.; Churchill, E.M.; Sanders, S.N.; Shee, J.; Weber, J.L.; Meir, R.; Jockusch, S.; Reichman, D.R.; Sfeir, M.Y.; Congreve, D.N.; et al. Molecular Engineering of Chromophores to Enable Triplet-Triplet Annihilation Upconversion. J. Am. Chem. Soc. 2020, 142, 19917–19925. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, W.; Li, Y.; Huang, K.; Zeng, L.; Lin, W.; Han, G. Highly Effective Near-Infrared Activating Triplet-Triplet Annihilation Upconversion for Photoredox Catalysis. J. Am. Chem. Soc. 2020, 142, 18460–18470. [Google Scholar] [CrossRef]
- Pun, A.B.; Campos, L.M.; Congreve, D.N. Tunable Emission from Triplet Fusion Upconversion in Diketopyrrolopyrroles. J. Am. Chem. Soc. 2019, 141, 3777–3781. [Google Scholar] [CrossRef]
- Xia, P.; Raulerson, E.K.; Coleman, D.; Gerke, C.S.; Mangolini, L.; Tang, M.L.; Roberts, S.T. Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion. Nat. Chem. 2020, 12, 137–144. [Google Scholar] [CrossRef]
- Ronchi, A.; Capitani, C.; Pinchetti, V.; Gariano, G.; Zaffalon, M.L.; Meinardi, F.; Brovelli, S.; Monguzzi, A. High Photon Upconversion Efficiency with Hybrid Triplet Sensitizers by Ultrafast Hole-Routing in Electronic-Doped Nanocrystals. Adv. Mater. 2020, 32, 2002953. [Google Scholar] [CrossRef]
- Wu, W.; Wu, X.; Zhao, J.; Wu, M. Synergetic effect of C*N^N/C^N^N coordination and the arylacetylide ligands on the photophysical properties of cyclometalated platinum complexes. J. Mater. Chem. C 2015, 3, 2291–2301. [Google Scholar] [CrossRef]
- Liang, H.; Liu, X.; Tang, L.; Mahmood, Z.; Chen, Z.; Chen, G.; Ji, S.; Huo, Y. Heavy atom-free triplet photosensitizer based on thermally activated delayed fluorescence material for NIR-to-blue triplet-triplet annihilation upconversion. Chin. Chem. Lett. 2023, 34, 107515. [Google Scholar] [CrossRef]
- Ogawa, T.; Yanai, N.; Monguzzi, A.; Kimizuka, N. Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems. Sci. Rep. 2015, 5, 10882. [Google Scholar] [CrossRef]
- Xu, W.; Liang, W.; Wu, W.; Fan, C.; Rao, M.; Su, D.; Zhong, Z.; Yang, C. Supramolecular Assembly-Improved Triplet–Triplet Annihilation Upconversion in Aqueous Solution. Chem. Eur. J. 2018, 24, 16677–16685. [Google Scholar] [CrossRef]
- Yang, D.; Han, J.; Sang, Y.; Zhao, T.; Liu, M.; Duan, P. Steering Triplet–Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. J. Am. Chem. Soc. 2021, 143, 13259–13265. [Google Scholar] [CrossRef]
- Lai, H.; Zhao, T.; Deng, Y.; Fan, C.; Wu, W.; Yang, C. Assembly-enhanced triplet-triplet annihilation upconversion in the aggregation formed by Schiff-base Pt(II) complex grafting-permethyl-β-CD and 9, 10-diphenylanthracence dimer. Chin. Chem. Lett. 2019, 30, 1979–1983. [Google Scholar] [CrossRef]
- Gray, V.; Moth-Poulsen, K.; Albinsson, B.; Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 2018, 362, 54–71. [Google Scholar] [CrossRef]
- Olesund, A.; Gray, V.; Mårtensson, J.; Albinsson, B. Diphenylanthracene Dimers for Triplet–Triplet Annihilation Photon Upconversion: Mechanistic Insights for Intramolecular Pathways and the Importance of Molecular Geometry. J. Am. Chem. Soc. 2021, 143, 5745–5754. [Google Scholar] [CrossRef]
- Han, J.; Duan, P.; Li, X.; Liu, M. Amplification of Circularly Polarized Luminescence through Triplet–Triplet Annihilation-Based Photon Upconversion. J. Am. Chem. Soc. 2017, 139, 9783–9786. [Google Scholar] [CrossRef]
- Matsui, Y.; Kanoh, M.; Ohta, E.; Ogaki, T.; Ikeda, H. Triplet-Triplet Annihilation-Photon Upconversion Employing an Adamantane-linked Diphenylanthracene Dyad Strategy. J. Photochem. Photobiol. A 2020, 387, 112107. [Google Scholar] [CrossRef]
- Gao, C.; Prasad, S.K.K.; Zhang, B.; Dvořák, M.; Tayebjee, M.J.Y.; McCamey, D.R.; Schmidt, T.W.; Smith, T.A.; Wong, W.W.H. Intramolecular Versus Intermolecular Triplet Fusion in Multichromophoric Photochemical Upconversion. J. Phys. Chem. C. 2019, 123, 20181–20187. [Google Scholar] [CrossRef]
- Pun, A.B.; Sanders, S.N.; Sfeir, M.Y.; Campos, L.M.; Congreve, D.N. Annihilator dimers enhance triplet fusion upconversion. Chem. Sci. 2019, 10, 3969–3975. [Google Scholar] [CrossRef]
- Imperiale, C.J.; Green, P.B.; Miller, E.G.; Damrauer, N.H.; Wilson, M.W.B. Triplet-Fusion Upconversion Using a Rigid Tetracene Homodimer. J. Phys. Chem. Lett. 2019, 10, 7463–7469. [Google Scholar] [CrossRef]
- Dzebo, D.; Börjesson, K.; Gray, V.; Moth-Poulsen, K.; Albinsson, B. Intramolecular Triplet-Triplet Annihilation Upconversion in 9,10-Diphenylanthracene Oligomers and Dendrimers. J. Phys. Chem. C. 2016, 120, 23397–23406. [Google Scholar] [CrossRef]
- Yu, S.; Zeng, Y.; Chen, J.; Yu, T.; Zhang, X.; Yang, G.; Li, Y. Intramolecular triplet-triplet energy transfer enhanced triplet-triplet annihilation upconversion with a short-lived triplet state platinum(ii) terpyridyl acetylide photosensitizer. RSC Adv. 2015, 5, 70640–70648. [Google Scholar] [CrossRef]
- Bossanyi, D.G.; Sasaki, Y.; Wang, S.; Chekulaev, D.; Kimizuka, N.; Yanai, N.; Clark, J. Spin Statistics for Triplet-Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing. JACS Au 2021, 1, 2188–2201. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Chen, Y. Supramolecular assembly-enhanced chiroptical properties of pyrene-modified cyclodextrins. Chin. Chem. Lett. 2023, 34, 107836. [Google Scholar] [CrossRef]
- Ji, J.; Wei, X.; Wu, W.; Yang, C. Asymmetric Photoreactions in Supramolecular Assemblies. Acc. Chem. Res. 2023, 56, 1896–1907. [Google Scholar] [CrossRef]
- Tu, C.; Wu, W.; Liang, W.; Zhang, D.; Xu, W.; Wan, S.; Lu, W.; Yang, C. Host–Guest Complexation-Induced Aggregation Based on Pyrene-Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew. Chem. Int. Ed. 2022, 61, e202203541. [Google Scholar] [CrossRef]
- Mi, Y.; Ma, J.; Liang, W.; Xiao, C.; Wu, W.; Zhou, D.; Yao, J.; Sun, W.; Sun, J.; Gao, G.; et al. Guest-Binding-Induced Interhetero Hosts Charge Transfer Crystallization: Selective Coloration of Commonly Used Organic Solvents. J. Am. Chem. Soc. 2021, 143, 1553–1561. [Google Scholar] [CrossRef]
- Peng, C.; Liang, W.; Ji, J.; Fan, C.; Kanagaraj, K.; Wu, W.; Cheng, G.; Su, D.; Zhong, Z.; Yang, C. Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. Chin. Chem. Lett. 2021, 32, 345–348. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, Y.M.; Qu, W.J.; Shi, B.; Yao, H.; Wei, T.B. Tuning host-guest binding model by different intramolecular alkyl chain lengths in tripodal hosts: An evidence on structure control supramolecular interactions. Chin. Chem. Lett. 2023, 34, 107085. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, L.; Chen, Y.; Liu, Y. In situ crosslink polymerization induced long-lived multicolor supramolecular hydrogel based on modified β-cyclodextrin. Chin. Chem. Lett. 2024, 35, 108644. [Google Scholar] [CrossRef]
- Fan, C.; Wu, W.; Chruma, J.J.; Zhao, J.; Yang, C. Enhanced Triplet–Triplet Energy Transfer and Upconversion Fluorescence through Host–Guest Complexation. J. Am. Chem. Soc. 2016, 138, 15405–15412. [Google Scholar] [CrossRef]
- Fan, C.; Wei, L.; Niu, T.; Rao, M.; Cheng, G.; Chruma, J.J.; Wu, W.; Yang, C. Efficient Triplet-Triplet Annihilation Upconversion with an Anti-Stokes Shift of 1.08 eV Achieved by Chemically Tuning Sensitizers. J. Am. Chem. Soc. 2019, 141, 15070–15077. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, L.; Zhu, S.; Jin, P.; He, C.; He, Q.; Yang, C.; Wu, W. Stimuli-responsive triplet-triplet annihilation upconversion with guanidyl functionalized annihilators for enhanced ratiometric sensing of trace water in MeOH. Sens. Actuators B 2023, 387, 133764. [Google Scholar] [CrossRef]
- Wei, L.; Gao, F.; He, C.; He, Q.; Jin, P.; Rong, Y.; Zhao, T.; Yang, C.; Wu, W. A new sensitization strategy for achieving organic RTP in aqueous solution: Tunable RTP and UC emission in supramolecular TTA-UC systems. Sci. China Chem. 2023, 66, 3546–3554. [Google Scholar] [CrossRef]
- Wei, L.; Fan, C.; Rao, M.; Gao, F.; He, C.; Sun, Y.; Zhu, S.; He, Q.; Yang, C.; Wu, W. Triplet-triplet annihilation upconversion in LAPONITE®/PVP nanocomposites: Absolute quantum yields of up to 23.8% in the solid state and application to anti-counterfeiting. Mater. Horiz. 2022, 9, 3048–3056. [Google Scholar] [CrossRef]
- Morris, J.V.; Mahaney, M.A.; Huber, J.R. Fluorescence quantum yield determinations. 9,10-Diphenylanthracene as a reference standard in different solvents. J. Phys. Chem. C 1976, 80, 969–974. [Google Scholar] [CrossRef]
λabs/nm | ε b/104 M−1 cm−1 | λem/nm | Φ c/% | τ e/ns | |
---|---|---|---|---|---|
A-1 | 358/376/396 | 1.44/2.39/2.26 | 417, 435 | 65.3 | 4.80 |
A-2 | 358/376/396 | 1.50/2.48/2.33 | 417, 435 | 62.9 | 4.73 |
DPA | 358/376/396 | 0.78/1.18/1.11 | 417, 435 | 95.0 | 5.30 |
S-1 | 570 | 1.03 | 650 | 9.94 d | 4400 |
S-2 | 585 | 0.90 | 670 | 2.16 d | 2480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Wei, L.; He, C.; Yang, C.; Wu, W. Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet–Triplet Annihilation Upconversion. Molecules 2024, 29, 2203. https://doi.org/10.3390/molecules29102203
He Q, Wei L, He C, Yang C, Wu W. Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet–Triplet Annihilation Upconversion. Molecules. 2024; 29(10):2203. https://doi.org/10.3390/molecules29102203
Chicago/Turabian StyleHe, Qiuhui, Lingling Wei, Cheng He, Cheng Yang, and Wanhua Wu. 2024. "Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet–Triplet Annihilation Upconversion" Molecules 29, no. 10: 2203. https://doi.org/10.3390/molecules29102203
APA StyleHe, Q., Wei, L., He, C., Yang, C., & Wu, W. (2024). Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet–Triplet Annihilation Upconversion. Molecules, 29(10), 2203. https://doi.org/10.3390/molecules29102203