Pitahaya (Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products—Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Physico-Chemical Properties
2.3. Techno-Functional Properties
2.4. Antioxidant Properties
2.5. Bioactive Compounds
3. Materials and Methods
3.1. Obtaining Pitahaya-Peel and -Flesh Flour
3.2. Proximate Composition
3.3. Physico-Chemical Properties
3.4. Techno-Functional Properties
3.5. Bioactive Compounds
3.5.1. Extraction of Bioactive Compounds
3.5.2. Antioxidant Activity
3.5.3. Betalain Quantification
3.5.4. High-Performance Liquid Chromatography Analysis
3.6. Statistical Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayago-Ayerdi, S.; García-Martínez, D.L.; Ramírez-Castillo, A.C.; Ramírez-Concepción, H.R.; Viuda-Martos, M. Tropical fruits and their co-products as bioactive compounds and their health effects: A review. Foods 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Cornara, L.; Xiao, J.; Smeriglio, A.; Trombetta, D.; Burlando, B. Emerging exotic fruits: New functional foods in the european market. eFood 2020, 1, 126–139. [Google Scholar] [CrossRef]
- Schulz, M.; Seraglio, S.K.T.; Brugnerotto, P.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Composition and potential health effects of dark-colored underutilized Brazilian fruits—A review. Food Res. Int. 2020, 137, 109744. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.N.A.; Mohamad, A.Z.; Harith, Z.T.; Rahman, N.A. Antioxidant and antibacterial activities of red (Hylocereus polyrhizus) and white (Hylocereus undatus) dragon fruits. J. Trop. Resour. Sustain. Sci. 2022, 10, 9–14. [Google Scholar] [CrossRef]
- Sosa, V.; Ruiz-Domínguez, C.; Gutiérrez-Rodríguez, B. Hylocereus ocamponis, una especie de pitahaya mexicana poco conocida: Un recurso promisorio. Cact. Suculentas Mex. 2020, 65, 4–13. [Google Scholar]
- Hernández-Ramos, L.; García-Mateos, M.R.; Castillo-González, A.M.; Ybarra-Moncada, C.; Nieto-Ángel, R. Fruits of the pitahaya Hylocereus undatus and H. ocamponis: Nutritional components and antioxidants. J. Appl. Botany Food Qual. 2020, 93, 197–203. [Google Scholar]
- Saenjum, C.; Pattananandecha, T.; Nakagawa, K. Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules 2021, 26, 3565. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, G.; Lakshmanan, D.K.; Murugesan, S.; Elangovan, A.; Rajasekaran, N.S.; Thilagar, S. Attenuation of protein glycation by functional polyphenolics of dragon fruit (Hylocereus polyrhizus); an in vitro and in silico evaluation. Food Res. Int. 2021, 140, 110081. [Google Scholar] [CrossRef]
- Luu, T.T.H.; Le, T.L.; Huynh, N.; Quintela-Alonso, P. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech J. Food Sci. 2021, 39, 71–94. [Google Scholar] [CrossRef]
- Madane, P.; Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Jagtap, P.; Shewalkar, A.; Maity, B. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. J. Food Sci. Technol. 2020, 57, 1449–1461. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Li, G.H.; Pan, W.C.; Xiong, C. Effect of pitaya peel powder addition on the phytochemical and textural properties and sensory acceptability of dried and cooked noodles. J. Food Process. Preserv. 2020, 44, e1449. [Google Scholar] [CrossRef]
- Yankey, S.; Mensah, E.O.; Ankar-Brewoo, G.M.; Ellis, W.O. Optimized fermentation conditions for dragon fruit yogurt. Food Human 2023, 1, 343–348. [Google Scholar] [CrossRef]
- Moreira Morais, D.C.; Alves, V.M.; Ramirez Asquieri, E.; Marques de Souza, A.R.; Damiani, C. Physical, chemical, nutritional and antinutritional characterization of fresh peels of yellow pitaya (Selenicereus megalanthus) and red pitaya (Hylocereus costaricensis) and their flours. Rev. Ciência Agronômica 2021, 52, e20207289. [Google Scholar] [CrossRef]
- Utpott, M.; Ramos de Araujo, R.; Galarza Vargas, C.; Nunes Paiva, A.R.; Tischer, B.; de Oliveira Rios, A.; Flôres, S.H. Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. J. Food Process. Pres. 2020, 44, e14420. [Google Scholar] [CrossRef]
- Liaotrakoon, W. Characterization of Dragon Fruit (Hylocereus spp.) Components with Valorization Potential. Ph.D Thesis, Ghent University, Gent, Belgium, 2013; 217p. [Google Scholar]
- Liu, Y.; Chen, H.; Chen, S.; Zhang, Y.; Zhang, J.; Zhu, X.; Li, W.; Liu, J.; Jiang, Y.; Li, D. Pectin-rich dragon fruit peel extracts: An environmentally friendly emulsifier of natural origin. Food Chem. 2023, 429, 136955. [Google Scholar] [CrossRef]
- Rahmati, S.; Abdullah, A.; Kang, O.L. Effects of different microwave intensity on the extraction yield and physicochemical properties of pectin from dragon fruit (Hylocereus polyrhizus) peels. Bioact. Carbohydr. Diet. Fibre. 2019, 18, 100186. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Human Well. 2022, 11, 1–10. [Google Scholar] [CrossRef]
- European Commission Regulation. Nº 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Food. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A02006R1924-20121129 (accessed on 26 February 2024).
- Viuda-Martos, M.; Barber, X.; Pérez-Álvarez, J.A.; Fernández-López, J. Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.) powder co-products. Ind. Crops Prod. 2015, 69, 472–479. [Google Scholar] [CrossRef]
- Mai, T.H.A.; Tran, T.T.T.; Le, V.V.M. Use of pitaya peel powder for partial replacement of wheat flour in cookie making: Effects of particle size of pitaya peel powder on the product quality. J. Food Proces. Pres. 2022, 46, e16214. [Google Scholar] [CrossRef]
- Chia, S.L.; Chong, G.H. Effect of drum drying on physico-chemical characteristics of dragon fruit peel (Hylocereus polyrhizus). Int. J. Food Eng. 2015, 11, 285–293. [Google Scholar] [CrossRef]
- Chumroenvidhayakul, S.; Thilavech, T.; Abeywardena, M.; Adisakwattana, S. Investigating the impact of dragon fruit peel waste on starch digestibility, pasting, and thermal properties of flours used in Asia. Foods 2022, 11, 2031. [Google Scholar] [CrossRef] [PubMed]
- Corimayhua-Silva, A.A.; Elías-Peñafiel, C.; Rojas-Ayerve, T.; Guevara-Pérez, A.; Farfán-Rodríguez, L.; Encina-Zelada, C.R. Red Dragon fruit peels: Effect of two species ratio and particle size on fibre quality and its application in reduced-fat alpaca-based sausages. Foods 2024, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Miehle, E.; Haas, M.; Bader-Mittermaier, S.; Eisner, P. The role of hydration properties of soluble dietary fibers on glucose diffusion. Food Hydrocol. 2022, 131, 107822. [Google Scholar] [CrossRef]
- Bala, M.; Handa, S.; Mridula, D.; Singh, R.K. Physicochemical, functional and rheological properties of grass pea (Lathyrus sativus L.) flour as influenced by particle size. Heliyon 2020, 6, E05471. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of the antioxidant capacity of food products: Methods, applications and limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Jerônimo, M.C.; Orsine, J.V.C.; Borges, K.K.; Novaes, M.R.C.G. Chemical and physical-chemical properties, antioxidant activity and fatty acids profile of red pitaya [Hylocereus undatus (Haw. Britton & Rose)] grown in Brazil. J. Drug Metabol. Toxicol. 2015, 6, 1–6. [Google Scholar]
- Huang, Y.; Brennan, M.A.; Kasapis, S.; Richardson, S.J.; Brennan, C.S. Maturation process, nutritional profile, bioactivities and utilisation in food products of red pitaya fruits: A review. Foods 2021, 10, 2862. [Google Scholar] [CrossRef]
- Uslu, N.; Ozcan, M.M. The effect of ultrasound-vacuum-assisted extraction on bioactive properties of pitaya (Hylocereus undatus). Int. J. Food Sci. Technol. 2021, 56, 6618–6625. [Google Scholar] [CrossRef]
- Bassey, E.J.; Cheng, J.H.; Sun, D.W. Comparative elucidation of bioactive and antioxidant properties of red dragon fruit peel as affected by electromagnetic and conventional drying approaches. Food Chem. 2024, 439, 138118. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Biological Properties and Applications of Betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Suh, D.H.; Lee, S.; Heo, D.Y.; Kim, Y.S.; Cho, S.K.; Lee, S.; Lee, C.H. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J. Agric. Food Chem. 2014, 62, 8764–8771. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Vieira, T.R.; Barbosa Lima, A.; Maranhão Ribeiro, C.M.C.; Queiroz de Medeiros, P.V.; Converti, A.; dos Santos Lima, M.; Maciel, M.I.S. Red pitaya (Hylocereus polyrhizus) as a source of betalains and phenolic compounds: Ultrasound extraction, microencapsulation, and evaluation of stability. LWT-Food Sci. Technol. 2024, 196, 115755. [Google Scholar] [CrossRef]
- Cheok, A.; Xu, Y.; Zhang, Z.; Caton, P.W.; Rodriguez-Mateos, A. Betalain-rich dragon fruit (pitaya) consumption improves vascular function in men and women: A double-blind, randomized controlled crossover trial. Am. J. Clin. Nutr. 2022, 115, 1418–1431. [Google Scholar] [CrossRef]
- Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R. Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus). Foods 2021, 10, 1183. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.; Baruah, A.M. Phenolic profile and pigment stability of Hylocereus species grown in North-East India. J. Food Compos. Anal. 2023, 116, 105078. [Google Scholar] [CrossRef]
- Paśko, P.; Galanty, A.; Zagrodzki, P.; Luksirikul, P.; Barasch, D.; Nemirovski, A.; Gorinstein, S. Dragon Fruits as a Reservoir of Natural Polyphenolics with Chemopreventive Properties. Molecules 2021, 26, 2158. [Google Scholar] [CrossRef]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemistry: Rockville, MD, USA, 2010. [Google Scholar]
- Chen, H.; Liu, Y.; Zhang, J.; Jiang, Y.; Li, D. Pectin extracted from dragon fruit Peel: An exploration as a natural emulsifier. Int. J. Biol. Macromol. 2022, 221, 976–985. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Qi, J. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT-Food Sci. Technol. 2020, 128, 109397. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Tecnol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Yang, L.; Wang, D.; Zhou, D.; Zhang, Y. Effect of different isolation methods on structure and properties of lignin from valonea of Quercus variabilis. Int. J. Biol. Macromol. 2016, 85, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, B.; Yaacob, W.A.; Din, L.B. Chemical composition, antioxidant, and antibacterial activity of essential oils from Etlingera sayapensis A.D. Poulsen & Ibrahim. Asian Pac. J. Trop. Med. 2017, 10, 819–826. [Google Scholar] [PubMed]
- Wu, L.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 2016, 96, 4235–4242. [Google Scholar] [CrossRef]
Pitahaya-Peel Flour | Pitahaya-Flesh Flour | |
---|---|---|
Protein 1 | 6.72 ± 0.07 a | 6.06 ± 0.19 b |
Fat | 2.23 ± 0.12 a | 2.19 ± 0.07 a |
Ash | 11.63 ± 0.76 a | 3.63 ± 0.01 b |
Total Dietary fiber | 56.56 ± 0.76 a | 8.22 ± 0.76 b |
Pectin | 24% | 1.00% |
Calcium | 1.64 ± 0.04 a | 0.08 ± 0.02 b |
Potassium | 4.43 ± 0.19 a | 0.85 ± 0.05 b |
Phosphorus | 0.58 ± 0.05 a | 0.66 ± 0.03 a |
Color Coordinates | |||||
---|---|---|---|---|---|
pH | Water Activity | L* | a* | b* | |
Pitahaya-peel flour | 4.83 ± 0.05 b | 0.436 ± 0.002 b | 55.26 ± 0.69 a | 28.48 ± 0.34 b | −1.64 ± 0.08 a |
Pitahaya-flesh flour | 5.80 ± 0.05 a | 0.486 ± 0.004 a | 26.12 ± 0.82 b | 45.19 ± 0.17 a | −2.10 ± 0.03 b |
WHC | OHC | SWC | |
---|---|---|---|
Pitahaya-peel flour | 15.69 ± 0.34 a | 4.17 ± 0.52 a | 24.80 ± 0.78 a |
Pitahaya-flesh flour | 1.83 ± 0.38 b | 0.31 ± 0.04 b | 5.44 ± 0.23 b |
ABTS | DPPH | FIC | FRAP | |
---|---|---|---|---|
Pitahaya-peel flour | 5.70 ± 0.16 a | 1.19 ± 0.05 a | 0.09 ± 0.01 a | 4.94 ± 0.21 a |
Pitahaya-flesh flour | 4.73 ± 0.19 b | 1.38 ± 0.06 b | 0.08 ± 0.01 a | 3.12 ± 0.12 b |
Pitahaya-Peel Flour | Pitahaya-Flesh Flour | ||
---|---|---|---|
Phenolic Acids | 3-O-Caffeoylquinic acid | 0.28 ± 0.03 aG | 0.04 ± 0.03 bG |
4-O-Caffeoylquinic acid | 0.97 ± 0.05 aF | 0.17 ± 0.03 bE | |
caffeic acid | 0.04 ± 0.00 bK | 0.27 ± 0.03 aD | |
cichoric acid | n.d. | 0.14 ± 0.02 EF | |
Sinapic acid | 0.14 ± 0.01 aJ | 0.11 ± 0.01 aF | |
TOTAL | 1.38 ± 0.01 a | 0.79 ± 0.02 b | |
Flavan-3-ol | Catechin | 25.85 ± 0.48 aA | 5.32 ± 0.15 bA |
TOTAL | 25.85 ± 0.48 a | 5.32 ± 0.15 b | |
Flavonol | Quercetin 3-galactoside | 4.56 ± 0.13 D | n.d. |
Quercetin 3-rutinoside | 3.87 ± 0.12 E | n.d. | |
Quercetin 3-O-beta-D-glucofuranoside | 3.78 ± 0.14 aE | 0.04 ± 0.00 bJ | |
Quercetin 3-rhamnoside | 11.66 ± 0.20 aC | 0.07 ± 0.00 bH | |
Myricetrin | 12.10 ± 0.16 aB | 0.08 ± 0.01 bH | |
TOTAL | 35.97 ± 0.14 a | 0.19 ± 0.01 b | |
Anthocyanins | Cyanidin-3-glucoside | 0.11 ± 0.01 bK | 0.24 ± 0.01 aD |
Cyanidin-3-rutinoside | n.d. | 0.32 ± 0.02 C | |
Delphinidin-3-glucoside | 0.20 ± 0.01 bH | 0.34 ± 0.02 aC | |
Delphinidin-3-rutinoside | n.d. | 0.40 ± 0.02 B | |
TOTAL | 0.31 ± 0.01 b | 1.30 ± 0.02 a | |
Anthocyanidins | Cyanidin | 0.13 ± 0.00 J | n.d. |
Delphinidin | 0.11 ± 0.01 K | n.d. | |
TOTAL | 0.24 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-García, V.; Botella-Martínez, C.; Juárez-Trujillo, N.; Muñoz-Tébar, N.; Viuda-Martos, M. Pitahaya (Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products—Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties. Molecules 2024, 29, 2241. https://doi.org/10.3390/molecules29102241
Reyes-García V, Botella-Martínez C, Juárez-Trujillo N, Muñoz-Tébar N, Viuda-Martos M. Pitahaya (Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products—Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties. Molecules. 2024; 29(10):2241. https://doi.org/10.3390/molecules29102241
Chicago/Turabian StyleReyes-García, Verónica, Carmen Botella-Martínez, Naida Juárez-Trujillo, Nuria Muñoz-Tébar, and Manuel Viuda-Martos. 2024. "Pitahaya (Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products—Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties" Molecules 29, no. 10: 2241. https://doi.org/10.3390/molecules29102241
APA StyleReyes-García, V., Botella-Martínez, C., Juárez-Trujillo, N., Muñoz-Tébar, N., & Viuda-Martos, M. (2024). Pitahaya (Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products—Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties. Molecules, 29(10), 2241. https://doi.org/10.3390/molecules29102241