Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques
Abstract
:1. Introduction
2. Results
2.1. Optimization of Ultrasound-Assisted Extraction (UAE) for the Recovery of Phenolic Compounds from Rose Samples
2.2. Total Phenolic Content, Antiradical and Antioxidant Activity of Rose Byproducts Extracts
2.3. Interpretation of ATR-FTIR Spectrum of Rose Byproduct Extracts at Optimal UAE Conditions
2.4. Phenolic Fingerprint of Rose Byproducts Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Information Dependent Acquisition (IDA) in Negative Ionization Mode
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Ultrasound-Assisted Extraction (UAE) for the Recovery of Phenolic Compounds from Rose Samples and Byproducts
4.3. Implementation of Box–Behnken Design
4.4. Spectrophotometric Assays
4.5. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Analysis
4.6. Phenolic Profile of the Extracts by Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Villacís-Chiriboga, J.; Elst, K.; Van Camp, J.; Vera, E.; Ruales, J. Valorization of Byproducts from Tropical Fruits: Extraction Methodologies, Applications, Environmental, and Economic Assessment: A Review (Part 1: General Overview of the Byproducts, Traditional Biorefinery Practices, and Possible Applications). Compr. Rev. Food Sci. Food Saf. 2020, 19, 405–447. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.S.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Hydrolates: A Review on Their Volatiles Composition, Biological Properties and Potential Uses. Phytochem. Rev. 2022, 21, 1661–1737. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Bouloumpasi, E.; Biliaderis, C.G. Phenolic Extracts from Solid Wastes of the Aromatic Plant Essential Oil Industry: Potential Uses in Food Applications. Food Chem. Adv. 2022, 1, 100065. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Bravo, E.M.; Sánchez-Vioque, R. Potential Sources and Methodologies for the Recovery of Phenolic Compounds from Distillation Residues of Mediterranean Aromatic Plants: An Approach to the Valuation of by-Products of the Essential Oil Market—A Review. Ind. Crops Prod. 2022, 175, 114261. [Google Scholar] [CrossRef]
- Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Ali Shariati, M.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; et al. Chemical Constituents, Experimental and Clinical Pharmacology of Rosa Damascena: A Literature Review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Moridi Farimani, M.; Sadeghi, Z.; Asghari, S.; Rezadoost, H. Chemical Analysis of Iranian Rosa Damascena Essential Oil, Concrete, and Absolute Oil under Different Bio-Climatic Conditions. Ind. Crops Prod. 2022, 187, 115266. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological Effects of Rosa Damascena. Iran. J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar]
- Nguyen, T.L.; Ora, A.; Häkkinen, S.T.; Ritala, A.; Räisänen, R.; Kallioinen-Mänttäri, M.; Melin, K. Innovative Extraction Technologies of Bioactive Compounds from Plant By-Products for Textile Colorants and Antimicrobial Agents. Biomass Conv. Bioref. 2023, 1–30. [Google Scholar] [CrossRef]
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.-S. Potential Health Benefits of Phenolic Compounds in Grape Processing By-Products. Food Sci. Biotechnol. 2019, 28, 1607–1615. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green Non-Conventional Techniques for the Extraction of Polyphenols from Agricultural Food by-Products: A Review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Huang, Y.; Fu, L.; Song, L.; Wang, Y.; Bai, Z.; Meng, F.; Bi, Y. Antioxidation and Active Constituents Analysis of Flower Residue of Rosa Damascena. Chin. Herb. Med. 2020, 12, 336–341. [Google Scholar] [CrossRef]
- Galal, T.M.; Al-Yasi, H.M.; Fawzy, M.A.; Abdelkader, T.G.; Hamza, R.Z.; Eid, E.M.; Ali, E.F. Evaluation of the Phytochemical and Pharmacological Potential of Taif’s Rose (Rosa damascena Mill Var. trigintipetala) for Possible Recycling of Pruning Wastes. Life 2022, 12, 273. [Google Scholar] [CrossRef] [PubMed]
- Baydar, N.G.; Baydar, H. Phenolic Compounds, Antiradical Activity and Antioxidant Capacity of Oil-Bearing Rose (Rosa damascena Mill.) Extracts. Ind. Crops Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa Damascena from Morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Christaki, S.; Bouloumpasi, E.; Lalidou, E.; Chatzopoulou, P.; Irakli, M. Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules 2022, 27, 9058. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Masek, A.; Latos, M.; Chrzescijanska, E.; Zaborski, M. Antioxidant Properties of Rose Extract (Rosa villosa L.) Measured Using Electrochemical and UV/Vis Spectrophotometric Methods. Int. J. Electrochem. Sci. 2017, 12, 10994–11005. [Google Scholar] [CrossRef]
- Peron, S.; Hadi, F.; Azarbani, F.; Ananda Murthy, H.C. Antimicrobial, Antioxidant, Anti-Glycation and Toxicity Studies on Silver Nanoparticles Synthesized Using Rosa Damascena Flower Extract. Green Chem. Lett. Rev. 2021, 14, 519–533. [Google Scholar] [CrossRef]
- Asghar, M.; Sajjad, A.; Hanif, S.; Ali, J.S.; Ali, Z.; Zia, M. Comparative Analysis of Synthesis, Characterization, Antimicrobial, Antioxidant, and Enzyme Inhibition Potential of Roses Petal Based Synthesized Copper Oxide Nanoparticles. Mater. Chem. Phys. 2022, 278, 125724. [Google Scholar] [CrossRef]
- Kritsi, E.; Tsiaka, T.; Ioannou, A.-G.; Mantanika, V.; Strati, I.F.; Panderi, I.; Zoumpoulakis, P.; Sinanoglou, V.J. In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. Appl. Sci. 2022, 12, 7331. [Google Scholar] [CrossRef]
- Kyzioł, A.; Łukasiewicz, S.; Sebastian, V.; Kuśtrowski, P.; Kozieł, M.; Majda, D.; Cierniak, A. Towards Plant-Mediated Chemistry—Au Nanoparticles Obtained Using Aqueous Extract of Rosa Damascena and Their Biological Activity in Vitro. J. Inorg. Biochem. 2021, 214, 111300. [Google Scholar] [CrossRef]
- Li, H.; Fang, W.; Wang, Z.; Chen, Y. Physicochemical, Biological Properties, and Flavour Profile of Rosa Roxburghii Tratt, Pyracantha Fortuneana, and Rosa Laevigata Michx Fruits: A Comprehensive Review. Food Chem. 2022, 366, 130509. [Google Scholar] [CrossRef]
- Sharma, E.; Lal, M.K.; Gulati, A. Targeted UHPLC-QTOF-IMS Based Metabolite Profiling for Bioactive Compounds in Rosa Webbiana Wallich Ex Royle: An Unexploited Native from Western Himalayas. Plant Physiol. Biochem. 2023, 195, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive Compounds and Antioxidant Activity of Four Rose Hip Species from Spontaneous Sicilian Flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites Profiling of Egyptian Rosa Damascena Mill. Flowers as Analyzed via Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry in Relation to Its Anti-Collagenase Skin Effect. Ind. Crops Prod. 2020, 155, 112818. [Google Scholar] [CrossRef]
- Isidore, E.; Karim, H.; Ioannou, I. Extraction of Phenolic Compounds and Terpenes from Cannabis Sativa, L. By-Products: From Conventional to Intensified Processes. Antioxidants 2021, 10, 942. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the Extraction of Bioactive Compounds and Characterization of Fruit Industry By-Products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef]
- Calvano, C.D.; Tamborrino, A. Valorization of Olive By-Products: Innovative Strategies for Their Production, Treatment and Characterization. Foods 2022, 11, 768. [Google Scholar] [CrossRef]
- Yu, M.; Wang, B.; Qi, Z.; Xin, G.; Li, W. Response Surface Method Was Used to Optimize the Ultrasonic Assisted Extraction of Flavonoids from Crinum Asiaticum. Saudi J. Biol. Sci. 2019, 26, 2079–2084. [Google Scholar] [CrossRef]
- Ullah, S.; Anwar, F.; Fayyaz ur Rehman, M.; Qadir, R.; Safwan Akram, M. Response Surface Methodology-Based Optimized Ultrasonic-Assisted Extraction and Characterization of Selected High-Value Components from Gemlik Olive Fruit. Chem. Biodivers. 2023, 20, e202300107. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shin, Y. Antioxidant Compounds and Activities of Edible Roses (Rosa hybrida spp.) from Different Cultivars Grown in Korea. Appl. Biol. Chem. 2017, 60, 129–136. [Google Scholar] [CrossRef]
- Savic Gajic, I.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Locust (Robiniae pseudoacaciae) Flowers and Comparison with Conventional Methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef]
- Um, M.; Han, T.-H.; Lee, J.-W. Ultrasound-Assisted Extraction and Antioxidant Activity of Phenolic and Flavonoid Compounds and Ascorbic Acid from Rugosa Rose (Rosa rugosa Thunb.) Fruit. Food Sci. Biotechnol. 2018, 27, 375–382. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrason. Sonochem. 2017, 34, 206–213. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Pang, X.; Hua, P.; Gao, X.; Li, Q.; Li, Z. Simultaneous Optimization of Ultrasound-Assisted Extraction for Flavonoids and Antioxidant Activity of Angelica Keiskei Using Response Surface Methodology (RSM). Molecules 2019, 24, 3461. [Google Scholar] [CrossRef]
- Ahmed, T.; Rana, M.R.; Hossain, M.A.; Ullah, S.; Suzauddula, M. Optimization of Ultrasound-Assisted Extraction Using Response Surface Methodology for Total Anthocyanin Content, Total Phenolic Content, and Antioxidant Activities of Roselle (Hibiscus sabdariffa L.) Calyces and Comparison with Conventional Soxhlet Extraction. Biomass Conv. Bioref. 2023, 1–15. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Comparison of Conventional Extraction Technique with Ultrasound Assisted Extraction on Recovery of Phenolic Compounds from Lemon Scented Tea Tree (Leptospermum petersonii) Leaves. Heliyon 2020, 6, e03666. [Google Scholar] [CrossRef] [PubMed]
- Noubigh, A.; Aydi, A.; Mgaidi, A.; Abderrabba, M. Measurement and Correlation of the Solubility of Gallic Acid in Methanol plus Water Systems from (293.15 to 318.15) K. J. Mol. Liq. 2013, 187, 226–229. [Google Scholar] [CrossRef]
- Zhao, P.S.; Wang, X.; Jian, F.F.; Zhang, J.L.; Xiao, L.H. Crystal Engineered Acid-Base Complexes with 2d and 3d Hydrogen Bonding Systems Using p-Hydroxybenzoic Acid as the Building Block. J. Serb. Chem. Soc. 2010, 75, 459–473. [Google Scholar] [CrossRef]
- Demasi, S.; Mellano, M.G.; Falla, N.M.; Caser, M.; Scariot, V. Sensory Profile, Shelf Life, and Dynamics of Bioactive Compounds during Cold Storage of 17 Edible Flowers. Horticulturae 2021, 7, 166. [Google Scholar] [CrossRef]
- Duda, S.C.; Mărghitaş, L.A.; Dezmirean, D.; Duda, M.; Mărgăoan, R.; Bobiş, O. Changes in Major Bioactive Compounds with Antioxidant Activity of Agastache Foeniculum, Lavandula Angustifolia, Melissa Officinalis and Nepeta Cataria: Effect of Harvest Time and Plant Species. Ind. Crops Prod. 2015, 77, 499–507. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skałecki, P.; Domaradzki, P.; Florek, M. Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef]
- Gao, K.; Liu, M.; Ding, Y.; Yao, M.; Zhu, Y.; Zhao, J.; Cheng, L.; Bai, J.; Wang, F.; Cao, J.; et al. A Phenolic Amide (LyA) Isolated from the Fruits of Lycium Barbarum Protects against Cerebral Ischemia–Reperfusion Injury via PKCε/Nrf2/HO-1 Pathway. Aging 2019, 11, 12361–12374. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Xiang, J.; Zheng, B.; Sun, J.; Luo, D.; Li, P.; Fan, J. Diversity of Phenolics Including Hydroxycinnamic Acid Amide Derivatives, Phenolic Acids Contribute to Antioxidant Properties of Proso Millet. LWT 2022, 154, 112611. [Google Scholar] [CrossRef]
- Wang, X.; Yu, L.; Li, F.; Zhang, G.; Zhou, W.; Jiang, X. Synthesis of Amide Derivatives Containing Capsaicin and Their Antioxidant and Antibacterial Activities. J. Food Biochem. 2019, 43, e13061. [Google Scholar] [CrossRef] [PubMed]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal Distillates: A New Era of Grape Marc Distillates with Enriched Antioxidant Profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.G.; Glamočlija, J.; Ćirić, A.; Soković, M.; Heropoulos, G.; Proestos, C. Antiradical–Antimicrobial Activity and Phenolic Profile of Pomegranate (Punica granatum, L.) Juices from Different Cultivars: A Comparative Study. RSC Adv. 2014, 5, 2602–2614. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.; Proestos, C. Comparison of the Antioxidant and Antiradical Activity of Pomegranate (Punica granatum, L.) by Ultrasound-Assisted and Classical Extraction. Anal. Lett. 2016, 49, 969–978. [Google Scholar] [CrossRef]
- Kritsi, E.; Tsiaka, T.; Sotiroudis, G.; Mouka, E.; Aouant, K.; Ladika, G.; Zoumpoulakis, P.; Cavouras, D.; Sinanoglou, V.J. Potential Health Benefits of Banana Phenolic Content during Ripening by Implementing Analytical and In Silico Techniques. Life 2023, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the Experimental Cultivation of Peppers in Low-Energy-Demand Greenhouses. An Interdisciplinary Study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef]
- Tsiaka, T.; Kritsi, E.; Lantzouraki, D.Z.; Christodoulou, P.; Tsigrimani, D.; Strati, I.F.; Sinanoglou, V.J.; Zoumpoulakis, P. Assessing the Phytochemical Profile and Potential of Traditional Herbal Infusions against Aldose Reductase through In Silico Studies and LC-MS/MS Analysis. Appl. Sci. 2022, 12, 8361. [Google Scholar] [CrossRef]
Sample | Sample Code Name | Average TPC (mg GAE/g Dry Sample) (±stdev) 1, N = 3 2 | Average ABTS•+ (mg of TE/g of Dry Sample) (±stdev) 1, N = 3 2 | Average FRAP (mg of Fe (II)/g of Dry Sample) (±stdev) 1, N = 3 2 |
---|---|---|---|---|
Rose solid byproducts_15/05/2022 *_ Optimal UAE conditions | RSB1_BEST | 56.7 (±0.36) a | 414 (±57) b | 604.5 (±2.8) a |
Rose solid byproducts_15/05/2022_ Low phenolics UAE conditions | RSB1_LOW TPC | 5.22 (±0.36) c | 113 (±40) c | 414 (±44) b |
Rose solid byproducts_30/05/2022_ Optimal UAE conditions | RSB2_BEST | 23.6 (±0.27) b | 842 (±48) a | 601 (±31) a |
Rose solid byproducts_30/05/2022_ Low phenolics UAE conditions | RSB2_LOW TPC | 3.13 (±0.28) c | 164.0 (±9.1) c | 554 (±117) a |
Average TPC (mg GAE/L of liquid sample) (±stdev) 1, N = 3 2 | Average ABTS•+(mg of TE/L of liquid sample) (±stdev) 1, N = 3 2 | Average FRAP (mg of Fe (II)/L of liquid sample) (±stdev) 1, N = 3 2 | ||
Hydrosol_30/05/2022 | RLB1 | 1038 (±13) A | 3865 (±195) A | 8838 (±106) A |
Hydrosol_16/06/2022 | RLB2 | 726 (±70) B | 1268 (±75) B | 3471 (±227) B |
Regions (cm−1) | Band Annotation | Intensities |
---|---|---|
745–705 | Bending vibration of C-H at the CH2 of m-disubstituted aromatic derivatives (aliphatic rocking vibrations) | 0.019 |
810–750 | Stretching vibration Caromatic-H in m-disubstituted aromatic derivatives | 0.030 |
860–800 | Stretching vibration Caromatic-H in o-disubstituted aromatic derivatives | 0.055 |
900–860 | Stretching vibration Caromatic-H in m-disubstituted aromatic derivatives | 0.124 |
1020–1045 | Stretching vibration C-O of glycoside bond in sugars | 0.240 |
1050–1080 | Stretching vibration of C-O ether bond in primary alcohols | 0.032 |
1100–1120 | Stretching vibration of C-O ether bond in secondary alcohols | 0.026 |
1150–1170 | Stretching vibration of C-O ether bond in tertiary alcohols or proteins | 0.029 |
1170–1200 | Stretching vibration of C-O ether bond in phenolic compounds | 0.123 |
1270–1230 | Stretching vibration of C-O ether bond | 0.035 |
1380–1360 | Bending vibration O-H of the C-OH group | 0.020 |
1410–1310 | Bending vibration O-H in phenols or tertiary alcohols | 0.024 |
1470–1430 | Bending vibration of C-H bond in methyl or methylene | 0.033 |
1530–1500 | Aromatic band | 0.016 |
1650–1550 | Bending vibration of >N-H secondary amino groups | 0.031 |
1700–1600 | Stretching vibration of carbonyl C=O in amides | 0.297 |
1725–1720 | Stretching vibration of carbonyl C=O in carboxylic acids and carbonyl compounds | 0.029 |
2855 | Symmetric stretching vibration C-H bond in CH3 methyl and CH2 methylene groups | 0.011 |
2922 | Asymmetric stretching vibration C-H bond in CH3 methyl and CH2 methylene groups | 0.373 |
3500–3200 | Stretching vibration of alcohols OH | 0.031 |
3640–3530 | Stretching vibration of phenolic compounds OH | 0.030 |
Phenolic Compound | RSB1_BEST | RSB1_LOW TPC | RSB2_BEST | RSB2_LOW TPC |
---|---|---|---|---|
Benzoic acid | √ | √ | √ | |
Catechin | √ | √ | ||
Coumaric acid | √ | √ | √ | √ |
Eriodictyol | √ | √ | ||
Gallic acid | √ | √ | √ | √ |
Kaempferol | √ | √ | √ | √ |
Naringenin | √ | √ | √ | √ |
Pyrocatechol | √ | √ | ||
Protocatehuic acid | √ | √ | √ | |
Quercetin | √ | √ | √ | √ |
Rosmarinic acid | √ | √ | √ | |
Syringaldehyde | √ | |||
p-Hydroxybenzoic acid | √ | √ | √ | √ |
Extraction Factors | Coded Values/Real Values | ||
---|---|---|---|
−1 | 0 | +1 | |
Ethanol content (A, % v/v) | 60 | 80 | 100 |
Extraction time (B, min) | 10 | 25 | 40 |
Solvent-to-material ratio (C, mL/g) | 20 | 40 | 60 |
US power (D, %) | 20 | 50 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiaka, T.; Stavropoulou, N.A.; Giannakourou, M.C.; Strati, I.F.; Sinanoglou, V.J. Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques. Molecules 2023, 28, 7403. https://doi.org/10.3390/molecules28217403
Tsiaka T, Stavropoulou NA, Giannakourou MC, Strati IF, Sinanoglou VJ. Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques. Molecules. 2023; 28(21):7403. https://doi.org/10.3390/molecules28217403
Chicago/Turabian StyleTsiaka, Thalia, Natalia A. Stavropoulou, Maria C. Giannakourou, Irini F. Strati, and Vassilia J. Sinanoglou. 2023. "Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques" Molecules 28, no. 21: 7403. https://doi.org/10.3390/molecules28217403
APA StyleTsiaka, T., Stavropoulou, N. A., Giannakourou, M. C., Strati, I. F., & Sinanoglou, V. J. (2023). Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques. Molecules, 28(21), 7403. https://doi.org/10.3390/molecules28217403