Structure Identification of Ganoderma lucidum Spore Polysaccharides and Their Antitumor Activity In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction and Purification of GLSP
2.3. Structure Analysis of GLSP
2.3.1. Fourier Transform-Infrared (FT-IR) Analysis
2.3.2. Molecular Weight Determination
2.3.3. Monosaccharide Composition Analysis
2.3.4. Methylation Analysis
2.3.5. NMR Spectroscopy Analysis
2.4. Antitumor Effects of GLSPs on Multiple Tumor Models
3. Results and Discussion
3.1. Molecular Weight of GLSPs
3.2. FT-IR and Monosaccharide Composition Analysis of GLSPs
3.3. Methylation and NMR Analysis
3.4. Inhibitory Effect of GLSP on the Growth of Four Mouse Tumor Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q.; Ni, J. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Ribelles, N.; Pascual, J.; Galvez-Carvajal, L.; Ruiz-Medina, S.; Garcia-Corbacho, J.; Benitez, J.C.; Dominguez-Recio, M.E.; Torres, E.; Oliva, L.; Zalabardo, M.; et al. Increasing Annual Cancer Incidence in Patients Age 20–49 Years: A Real-Data Study. JCO Glob. Oncol. 2024, 10, e2300363. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-P.; Zheng, C.-C.; Huang, Y.-N.; He, M.-L.; Xu, W.W.; Li, B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021, 2, 315–340. [Google Scholar] [CrossRef]
- Tangkiatkumjai, M.; Boardman, H.; Walker, D.-M. Potential factors that influence usage of complementary and alternative medicine worldwide: A systematic review. BMC Complement. Med. Ther. 2020, 20, 363. [Google Scholar] [CrossRef]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef]
- Castellani, R.J.; Perry, G.; Smith, M.A. The role of novel chitin-like polysaccharides in Alzheimer disease. Neurotox. Res. 2007, 12, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Nie, W.; Dai, L.; Luo, R.; Lin, D.; Zhang, M.; Zhang, J.; Gao, F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr. Polym. 2023, 301, 120311. [Google Scholar] [CrossRef]
- Shiao, M.-S. Natural products of the medicinal fungus Ganoderma lucidum: Occurrence, biological activities, and pharmacological functions. Chem. Rec. 2003, 3, 172–180. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Q.; He, Y.-M. The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network. Sci. Rep. 2018, 8, 12680. [Google Scholar] [CrossRef]
- Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M.J.F. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, L.; Li, G.; Jiang, Y.; Zhang, G.; Ling, J. A novel promising neuroprotective agent: Ganoderma lucidum polysaccharide. Int. J. Biol. Macromol. 2023, 229, 168–180. [Google Scholar] [CrossRef]
- Cai, M.; Mu, H.; Xing, H.; Li, Z.; Xu, J.; Liu, W.; Yang, K.; Sun, P. In vitro gastrointestinal digestion and fermentation properties of Ganoderma lucidum spore powders and their extracts. LWT 2021, 135, 110235. [Google Scholar] [CrossRef]
- Song, M.; Li, Z.-H.; Gu, H.-S.; Tang, R.-Y.; Zhang, R.; Zhu, Y.-L.; Liu, J.-L.; Zhang, J.-J.; Wang, L.-Y. Ganoderma lucidum Spore Polysaccharide Inhibits the Growth of Hepatocellular Carcinoma Cells by Altering Macrophage Polarity and Induction of Apoptosis. J. Immunol. Res. 2021, 2021, 6696606. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Shi, L.; Ding, K. Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Int. J. Biol. Macromol. 2019, 141, 693–699. [Google Scholar] [CrossRef]
- Li, D.; Gao, L.; Li, M.; Luo, Y.; Xie, Y.; Luo, T.; Su, L.; Yong, T.; Chen, S.; Jiao, C.; et al. Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed. Pharmacother. 2020, 130, 110539. [Google Scholar] [CrossRef]
- Zhong, J.; Fang, L.; Chen, R.; Xu, J.; Guo, D.; Guo, C.; Guo, C.; Chen, J.; Chen, C.; Wang, X. Polysaccharides from sporoderm-removed spores of Ganoderma lucidum induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncol. Lett. 2021, 21, 425. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-Y.; Zhu, X.-L.; Lin, Z.-B. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of Ganoderma lucidum. Front. Pharmacol. 2012, 3, 20644. [Google Scholar] [CrossRef]
- Shi, Y.-J.; Zheng, H.-X.; Hong, Z.-P.; Wang, H.-B.; Wang, Y.; Li, M.-Y.; Li, Z.-H. Antitumor effects of different Ganoderma lucidum spore powder in cell- and zebrafish-based bioassays. J. Integr. Med. 2021, 19, 177–184. [Google Scholar] [CrossRef]
- Li, S.; Xiong, Q.; Lai, X.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J. Molecular modification of polysaccharides and resulting bioactivities. Compr. Rev. Food Sci. Food Saf. 2016, 15, 237–250. [Google Scholar] [CrossRef]
- Fu, Y.-J.; Liu, W.; Zu, Y.-G.; Shi, X.-G.; Liu, Z.-G.; Schwarz, G.; Efferth, T. Breaking the spores of the fungus Ganoderma lucidum by supercritical CO2. Food Chem. 2009, 112, 71–76. [Google Scholar] [CrossRef]
- Bolade, O.P.; Akinsiku, A.A.; Adeyemi, A.O.; Williams, A.B.; Benson, N.U. Dataset on phytochemical screening, FTIR and GC–MS characterisation of Azadirachta indica and Cymbopogon citratus as reducing and stabilising agents for nanoparticles synthesis. Data Brief 2018, 20, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle-Keil, G.; Kumi, G.; Kotchoni, S. Spectral mapping of polysaccharides and lignan in Arabidopsis thaliana cotyledons using infrared microspectroscopy. Abstr. Pap. Am. Chem. Soc. 2016, 252, 1. [Google Scholar]
- Wang, J.; Ge, B.; Li, Z.; Guan, F.; Li, F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr. Polym. 2016, 140, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Du, J.; Jiang, Y.; Goff, H.D.; Cui, S.W. Pectic polysaccharides from hawthorn: Physicochemical and partial structural characterization. Food Hydrocoll. 2019, 90, 146–153. [Google Scholar] [CrossRef]
- Xie, J.-H.; Shen, M.-Y.; Nie, S.-P.; Liu, X.; Zhang, H.; Xie, M.-Y. Analysis of monosaccharide composition of Cyclocarya paliurus polysaccharide with anion exchange chromatography. Carbohydr. Polym. 2013, 98, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Lai, P.F.H.; Chen, J.; Xie, F.; Xia, Y.; Ai, L. Fractionation, chemical characterization and immunostimulatory activity of β-glucan and galactoglucan from Russula vinosa Lindblad. Carbohydr. Polym. 2021, 256, 117559. [Google Scholar] [CrossRef]
- Xie, L.; Yan, H.; Han, L.; Cui, L.; Hussain, H.; Feng, Q.; Zhao, Y.; Zhang, Z.; Li, J.; Aziz, S.; et al. Structural characterization and anti-inflammatory activity of neutral polysaccharides from American ginseng. Int. J. Biol. Macromol. 2023, 248, 125586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hu, Y.; He, J.; Guo, D.; Zhao, J.; Li, P. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lycopi Herba. Front. Pharmacol. 2021, 12, 691995. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G. Extraction, structure characterization and biological activity of polysaccharide from coconut peel. Chem. Biol. Technol. Agric. 2023, 10, 15. [Google Scholar] [CrossRef]
- Roslund, M.U.; Säwén, E.; Landström, J.; Rönnols, J.; Jonsson, K.H.M.; Lundborg, M.; Svensson, M.V.; Widmalm, G. Complete 1H and 13C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper. Carbohydr. Res. 2011, 346, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Golovchenko, V.; Popov, S.; Smirnov, V.; Khlopin, V.; Vityazev, F.; Naranmandakh, S.; Dmitrenok, A.S.; Shashkov, A.S. Polysaccharides of Salsola passerina: Extraction, Structural Characterization and Antioxidant Activity. Int. J. Mol. Sci. 2022, 23, 13175. [Google Scholar] [CrossRef] [PubMed]
Monosaccharide Compositions | Ratio (%) |
---|---|
Galactose | 3.1 |
Glucose | 87.5 |
Mannose | 0.7 |
Fructose | 8.7 |
RT (min) | Mass Fragments (m/z) | Type of Linkage |
---|---|---|
12.655 | 45, 59, 74, 87, 101, 117, 145, 161, 162, 182, 205, 220, 265, 269 | Glcp–(1→ |
13.314 | 45, 58, 71, 87, 101, 102, 117, 129, 159, 161, 173, 201, 217, 233, 234, 277 | →3)–Glcp–(1→ →4)–Glcp–(1→ |
13.529 | 43, 59, 71, 82, 87, 88, 99, 101, 117, 129, 159, 161, 173, 197, 226, 233, 247, 263, 266 | →6)–Glcp–(1→ |
14.150 | 45, 58, 71, 85, 87, 101, 110, 117, 127, 136, 149, 159, 173, 192, 222, 233, 239, 248, 267, 292 | →3,6)–Glcp–(1→ |
Glycosidic Linkage | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
→4-α-Glcp-(1→ (A) | H C | 5.25 99.26 | 3.54 69.50 | 3.58 70.31 | 3.64 79.72 | 3.38 75.32 | 3.42 60.46 |
α-t-Glcp-(1→ (B) | H C | 5.06 91.48 | 3.53 74.03 | 3.78 79.72 | 3.64 75.32 | 3.58 70.31 | 3.39 60.46 |
β-t-Glcp-(1→ (C) | H C | 4.86 97.48 | 3.73 71.44 | 3.64 74.03 | 3.78 79.72 | 3.71 70.31 | 3.61 61.74 |
→6)-β-Glcp-(1→ (D) | H C | 4.62 102.50 | 3.23 74.03 | 3.39 67.56 | 3.43 72.74 | 3.64 75.32 | 3.90 71.44 |
→3,6)-β-Glcp-(1→ (E) | H C | 4.41 102.50 | 3.20 72.74 | 3.38 68.51 | 3.42 72.74 | 3.78 74.68 | 4.09 83.74 |
→3)-β-Glcp-(1→ (F) | H C | 4.39 102.16 | 3.17 68.51 | 3.20 75.32 | 3.28 68.85 | 3.42 72.74 | 3.38 60.46 |
Group | Mice (n) | Tumor (g, Mean ± SD) | TGI (%) |
---|---|---|---|
NS | 10 | 4.07 ± 0.51 | |
CTX (100 mg/kg) | 10 | 0.413 ± 0.20 ** | 89.85 |
GLSP (12.5 mg/kg) | 10 | 3.11 ± 0.45 ** | 23.39 |
GLSP (25 mg/kg) | 10 | 2.77 ± 0.55 ** | 31.94 |
GLSP (50 mg/kg) | 10 | 2.67 ± 0.48 ** | 34.40 |
Group | Mice (n) | Tumor (g, Mean ± SD) | TGI (%) |
---|---|---|---|
NS | 8 | 1.31 ± 0.23 | |
CTX (100 mg/kg) | 8 | 0.108 ± 0.07 ** | 91.75 |
GLSP (12.5 mg/kg) | 8 | 1.00 ± 0.14 ** | 23.66 |
GLSP (25 mg/kg) | 8 | 0.891 ± 0.16 ** | 31.98 |
GLSP (50 mg/kg) | 8 | 0.835 ± 0.09 ** | 36.25 |
Group | Mice (n) | Tumor (g, Mean ± SD) | TGI (%) |
---|---|---|---|
NS | 10 | 3.61 ± 0.48 | |
5-Fu (30 mg/kg) | 10 | 1.86 ± 0.36 ** | 48.48 |
GLSP (12.5 mg/kg) | 10 | 2.66 ± 0.40 ** | 26.32 |
GLSP (25 mg/kg) | 10 | 2.48 ± 0.35 ** | 31.30 |
GLSP (50 mg/kg) | 10 | 2.39 ± 0.28 ** | 33.80 |
Group | Mice (n) | Tumor (g, Mean ± SD) | TGI (%) |
---|---|---|---|
NS | 8 | 3.60 ± 0.50 | |
DDP (7 mg/kg) | 8 | 0.30 ± 0.10 ** | 91.66 |
GLSP (12.5 mg/kg) | 8 | 2.40 ± 0.20 ** | 36.11 |
GLSP (25 mg/kg) | 8 | 2.30 ± 0.20 ** | 37.68 |
GLSP (50 mg/kg) | 8 | 2.20 ± 0.20 ** | 38.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-M.; Cheng, J.; Wang, X.-Y.; Jiang, Y.; Ni, J.; Zhang, Y.; Wang, W. Structure Identification of Ganoderma lucidum Spore Polysaccharides and Their Antitumor Activity In Vivo. Molecules 2024, 29, 2348. https://doi.org/10.3390/molecules29102348
Liu H-M, Cheng J, Wang X-Y, Jiang Y, Ni J, Zhang Y, Wang W. Structure Identification of Ganoderma lucidum Spore Polysaccharides and Their Antitumor Activity In Vivo. Molecules. 2024; 29(10):2348. https://doi.org/10.3390/molecules29102348
Chicago/Turabian StyleLiu, Hui-Min, Jun Cheng, Xiao-Yi Wang, Yan Jiang, Jia Ni, Yun Zhang, and Wei Wang. 2024. "Structure Identification of Ganoderma lucidum Spore Polysaccharides and Their Antitumor Activity In Vivo" Molecules 29, no. 10: 2348. https://doi.org/10.3390/molecules29102348
APA StyleLiu, H. -M., Cheng, J., Wang, X. -Y., Jiang, Y., Ni, J., Zhang, Y., & Wang, W. (2024). Structure Identification of Ganoderma lucidum Spore Polysaccharides and Their Antitumor Activity In Vivo. Molecules, 29(10), 2348. https://doi.org/10.3390/molecules29102348