Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Electrochemical Characterization
3. Experimental Section
3.1. Chemicals
3.2. Synthesis of Catalysts
3.2.1. Preparation of Silica Nanospheres
3.2.2. Preparation of Polyelectrolyte-Modified Silica Nanospheres (PP-SiO2)
3.2.3. Preparation of FexCo-HNC-T
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karumba, S.; Sethuvenkatraman, S.; Dedeoglu, V.; Jurdak, R.; Kanhere, S.S. Barriers to blockchain-based decentralised energy trading: A systematic review. Int. J. Sustain. Energy 2023, 42, 41–71. [Google Scholar] [CrossRef]
- Luo, X.J.; Ren, C.H.; Song, J.; Luo, H.; Xiao, K.; Zhang, D.W.; Hao, J.J.; Deng, Z.F.; Dong, C.F.; Li, X.G. Design and fabrication of bipolar plates for PEM water electrolyser. J. Mater. Sci. Tech. 2023, 146, 19–41. [Google Scholar] [CrossRef]
- Liu, H.M.; Liu, Q.L.; Wang, Y.R.; Wang, Y.F.; Chou, S.L.; Hu, Z.Z.; Zhang, Z.Q. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin. Chem. Lett. 2022, 33, 683–692. [Google Scholar] [CrossRef]
- Yang, L.J.; Shui, J.L.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel batteries: Past, present, and future. Adv. Mater. 2019, 31, 1804799. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.A.; Najam, T.B.; Bashir, M.S.; Peng, L.; Nazir, M.A.; Javed, M.S. Single-atom catalysts for next-generation rechargeable batteries and fuel batteries. Energy Storage Mater. 2022, 45, 301–322. [Google Scholar] [CrossRef]
- Ren, S.S.; Duan, X.D.; Liang, S.; Zhang, M.; Zheng, H. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182. [Google Scholar] [CrossRef]
- Mamtani, K.; Jain, D.; Dogu, D.; Gustin, V.; Gunduz, S.; Co, A.C.; Ozkan, U.S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Appl. Catal. B Environ. 2018, 220, 88–97. [Google Scholar] [CrossRef]
- Wang, H.F.; Tang, C.; Zhang, Q.A. Review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329. [Google Scholar] [CrossRef]
- Xu, H.M.; Ci, S.Q.; Ding, Y.C.; Wang, G.; Wen, Z. Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. J. Mater. Chem. A 2019, 7, 8006–8029. [Google Scholar] [CrossRef]
- Liu, H.T.; Guan, J.Y.; Yang, S.X.; Yu, Y.; Shao, R.; Zhang, Z.; Dou, M.; Wang, F.; Xu, Q. Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 2020, 32, 2003649. [Google Scholar] [CrossRef]
- Vijayakuma, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D.J.; Balamurugan, J.; Noh, H.S.; Kwon, D.; Kim, Y.H.; Lee, H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115. [Google Scholar] [CrossRef]
- Jasinski, R. A new fuel batteries cathode catalyst. Nature 1964, 201, 1212–1213. [Google Scholar] [CrossRef]
- Shi, Z.S.; Yang, W.Q.; Gu, Y.T.; Liao, T.; Sun, Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design. Adv. Sci. 2020, 7, 2001069. [Google Scholar] [CrossRef]
- Zhao, C.X.; Li, B.Q.; Liu, J.N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60, 4448–4463. [Google Scholar] [CrossRef]
- Huang, H.J.; Yu, D.S.; Hu, F.; Huang, S.C.; Song, J.; Chen, H.Y.; Li, L.L.; Peng, S. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 2022, 61, e202116068. [Google Scholar] [CrossRef]
- Qin, J.Y.; Liu, H.; Zou, P.C.; Zhang, R.; Wang, C.; Xin, H.L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Jose, V.; Hu, H.M.; Edison, E.; Manalastas, W., Jr.; Ren, H.; Kidkhunthod, P.; Sreejith, S.; Jayakumar, A.; Nsanzimana, J.M.; Srinivasan, M.; et al. Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods 2021, 5, 2000751. [Google Scholar] [CrossRef]
- Chi, B.; Zhang, X.R.; Liu, M.G.; Jiang, S.J.; Liao, S. Applications of M/N/C analogue catalysts in PEM fuel batteries s and metal-air/oxygen batteries: Status quo, challenges and perspectives. Prog. Nat. Sci. Mater. Int. 2020, 30, 807–814. [Google Scholar] [CrossRef]
- Zhao, X.M.; Liu, X.; Huang, B.Y.; Wang, P.; Pei, Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene-supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J. Mater. Chem. A 2019, 7, 24583–24593. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Gao, J.J.; Hu, Y.X.; Jin, Z.; Hu, K.; Reddy, K.M.; Yuan, Q.; Lin, X.; Qiu, H.J. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 2022, 22, 3392–3399. [Google Scholar] [CrossRef]
- He, Y.T.; Yang, X.X.; Li, Y.S.; Liu, L.; Guo, S.; Shu, C.; Liu, F.; Liu, Y.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Xu, X.M.; Su, C.; Tadé, M.O.; Shao, Z. Promoting bifunctional oxygen catalyst activity of double-perovskite-type cubic nanocrystallites for aqueous and quasi-solid-state rechargeable Zinc-air batteries. Catalysts 2023, 13, 1332. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Chen, J.W.; Chen, Y.; Zhang, C.; Luo, Y.; Wang, G.; Wang, R. Bi-functional electrocatalysis through synergetic coupling strategy of atomically dispersed Fe and Co active sites anchored on 3D nitrogen-doped carbon sheets for Zn-air battery. J. Catal. 2021, 397, 223–232. [Google Scholar] [CrossRef]
- Lin, S.Y.; Xia, L.X.; Cao, Y.; Meng, H.L.; Zhang, L.; Feng, J.J.; Zhao, Y.; Wang, A.J. Electronic regulation of ZnCo dual-atomic active sites entrapped in 1D@2D hierarchical N-doped carbon for efficient synergistic catalysis of oxygen reduction in Zn-Air battery. Small 2022, 18, 2107141. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lv, Y.L.; Cao, D.P. Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zhang, L.; Feng, J.J.; Li, X.S.; Wang, A.J. Water-regulated and bioinspired one-step pyrolysis of iron-cobalt nanoparticles-capped carbon nanotubes/porous honeycombed nitrogen-doped carbon composite for highly efficient oxygen reduction. J. Colloid Interface Sci. 2022, 618, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Chandran, P.; Puthusseri, D.; Ramaprabhu, S. 1D-2D integrated hybrid carbon nanostructure supported bimetallic alloy catalyst for ethanol oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy 2019, 44, 4951–4961. [Google Scholar] [CrossRef]
- Hao, X.Q.; Jiang, Z.Q.; Zhang, B.A.; Tian, X.; Song, C.; Wang, L.; Maiyalagan, T.; Hao, X.; Jiang, Z.J. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc–air batteries. Adv. Sci. 2021, 8, 2004572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yao, X.; Zhou, S.; Li, X.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 2018, 14, 1800423. [Google Scholar] [CrossRef]
- Hu, K.; Tao, L.; Liu, D.; Huo, J.; Wang, S. Sulfur-doped Fe/N/C nanosheets as highly efficient electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 19379–19385. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Chen, A.; Yi, Q. Fe/Co-loaded hollow carbon sphere nanocomposites as excellent cathodic catalysts of Zn-air battery. J. Electrochem. Soc. 2021, 168, 090512. [Google Scholar] [CrossRef]
- Hbssen, M.M.; Artyushkova, K.; Atanassov, P.; Serov, A. Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in alkaline exchange membrane fuel batteries. J. Power. Sources 2018, 375, 214–221. [Google Scholar] [CrossRef]
- Chen, Y.B.; Li, J.J.; Zhu, Y.P.; Zou, J.; Zhao, H.; Chen, C.; Cheng, Q.Q.; Yang, B.; Zou, L.L.; Zou, Z.Q.; et al. Vicinal Co atom-coordinated Fe-N-C catalysts to boost the oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 9886–9891. [Google Scholar] [CrossRef]
- Zhu, G.H.; Yang, H.Y.; Jiang, Y.; Sun, Z.; Li, X.; Yang, J.; Wang, H.; Zou, R.; Jiang, W.; Qiu, P.; et al. Modulating the electronic structure of FeCo nanoparticles in N-doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zou, R.Q.; An, L.; Xia, D.; Guo, S. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576. [Google Scholar] [CrossRef]
- Su, Y.H.; Jiang, H.L.; Zhu, Y.H.; Yang, X.; Shen, J.; Zou, W.; Chen, J.; Li, C. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287. [Google Scholar] [CrossRef]
- Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A.J.; Fischer, R.A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedral as an advanced bifunctional oxygen electrode. Angew. Chem. Int. Ed. 2016, 55, 4087–4091. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, G.; Yang, J.; Zhang, F.; Shen, Y.; Zhang, X.; Wang, X. Constructing a Fe3O4/Fe–Nx dual catalytic active center on an N-doped porous carbon as an oxygen reduction reaction catalyst for zinc–air batteries. Energy Fuels 2023, 37, 11260–11269. [Google Scholar] [CrossRef]
- Feng, Y.; Song, K.X.; Zhang, W.; Zhou, X.; Yoo, S.J.; Kim, J.G.; Qiao, S.; Qi, Y.; Zou, X.; Chen, Z.; et al. Efficient ORR catalysts for zinc-air battery: Biomass-derived ultra-stable Co nanoparticles wrapped with graphitic layers via optimizing electron transfer. J. Energy. Chem. 2022, 70, 211–218. [Google Scholar] [CrossRef]
- Mao, J.X.; Liu, P.; Li, J.W.; Yan, J.; Ye, S.; Song, W. Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR. J. Energy Chem. 2022, 73, 240–247. [Google Scholar] [CrossRef]
- Álvarez-Manuel, L.; Alegre, C.; Sebastián, D.; Eizaguerri, A.; Napal, P.F.; Lázaro, M.J. N-doped carbon xerogels from urea-resorcinol-formaldehyde as carbon matrix for Fe-NC catalysts for oxygen reduction in fuel cells. Catal. Today 2023, 37, 114067. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Wang, S.F.; Sha, Y.J.; Liu, M.; Cai, R.; Li, L.; Shao, Z. Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 9526–9535. [Google Scholar] [CrossRef]
- Wang, S.; Chen, L.; Liu, X.; Long, L.; Liu, H.; Liu, C.; Dong, S.; Jia, J. Fe/N-doped hollow porous carbon spheres for oxygen reduction reaction. Nanotechnology 2020, 31, 125404. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Xu, X.M.; Liu, P.Y.; Ran, R.; Jiang, S.P.; Wu, H.; Shao, Z. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 2020, 10, 2002992. [Google Scholar] [CrossRef]
- Zhang, S.L.; Guan, B.Y.; Lou, X.W. Co–Fe alloy/N-doped carbon hollow spheres derived from dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction. Small 2019, 15, 1805324. [Google Scholar] [CrossRef]
- Leng, Y.M.; Yang, B.L.; Zhao, Y.; Xiang, Z. Fluorinated bimetallic nanoparticles decorated carbon nanofibers as highly active and durable oxygen electrocatalyst for fuel cells. J. Energy. Chem. 2022, 73, 549–555. [Google Scholar] [CrossRef]
- Fan, X.Z.; Du, X.; Pang, Q.Q.; Zhang, S.; Liu, Z.Y.; Yue, X.Z. In situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR. ACS Appl. Mater. Interfaces 2022, 14, 8549–8556. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Q.Q.; Xiao, Z.H.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 128, 5363–5367. [Google Scholar] [CrossRef]
- Chutia, B.; Chetry, R.; Rao, K.N.; Singh, N.; Sudarsanam, P.; Bharali, P. Durable and stable bifunctional Co3O4-based nano-catalyst for oxygen reduction/evolution reactions. ACS Appl. Nano Mater. 2024, 7, 3620–3630. [Google Scholar] [CrossRef]
- Santra, S.; Bagwe, R.P.; Dutta, D.; Stanley, J.T.; Walter, G.A.; Tan, W.; Moudgil, B.M.; Mericle, R.A. Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal. Adv. Mater. 2005, 17, 2165. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.Y.; Yang, Q.Y.; Qu, Y.; Liu, Y.; Shi, G.; Jin, L. Trace detection of nitroaromatic compounds with layer-by-layer assembled {SBA/PSS}(n)/PDDA modified electrode. Sens. Actuator B Chem. 2008, 131, 432. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, X.; Zhang, Y.; Lu, Y.; Liu, X.; Zheng, Y.; Lin, J. Fe/Co/N–C/graphene derived from Fe/ZIF-67/graphene oxide three dimensional frameworks as a remarkably efficient and stable catalyst for the oxygen reduction reaction. RSC Adv. 2022, 12, 2425. [Google Scholar] [CrossRef]
- Yang, W.; Guo, J.; Ma, J.; Wu, N.; Xiao, J.; Wu, M. FeCo nanoalloys encapsulated in N-doped carbon nanofibers as a trifunctional catalyst for rechargeable Zn-air batteries and overall water electrolysis. J. Alloys Compd. 2022, 926, 166937. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Feng, R.; Ni, Y.; Song, F.; Liu, Q. Anchoring bimetal single atoms and alloys on N-doping-carbon nanofiber networks for an efficient oxygen reduction reaction and zinc–air batteries. ACS Appl. Mater. Interfaces 2022, 14, 38739. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, T.; Sun, P.; Li, P.; Wang, J.; Zhang, L.; Sun, Y.; Duan, W.; Li, Z. Facile preparation and properties of high nitrogen-containing Fe/Co/N co-doped three-dimensional graphene bifunctional oxygen catalysts for zinc air battery. Int. J. Hydrogen Energy 2023, 48, 26328–26340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Liu, W.; Zhang, J.; Bai, S.; Liu, C.; Zhang, M.; Peng, C.; Xu, X.; Jia, J. Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries. Molecules 2024, 29, 2349. https://doi.org/10.3390/molecules29102349
Deng Z, Liu W, Zhang J, Bai S, Liu C, Zhang M, Peng C, Xu X, Jia J. Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries. Molecules. 2024; 29(10):2349. https://doi.org/10.3390/molecules29102349
Chicago/Turabian StyleDeng, Ziwei, Wei Liu, Junyuan Zhang, Shuli Bai, Changyu Liu, Mengchen Zhang, Chao Peng, Xiaolong Xu, and Jianbo Jia. 2024. "Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries" Molecules 29, no. 10: 2349. https://doi.org/10.3390/molecules29102349
APA StyleDeng, Z., Liu, W., Zhang, J., Bai, S., Liu, C., Zhang, M., Peng, C., Xu, X., & Jia, J. (2024). Fe-Co Co-Doped 1D@2D Carbon-Based Composite as an Efficient Catalyst for Zn–Air Batteries. Molecules, 29(10), 2349. https://doi.org/10.3390/molecules29102349