Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characteristics
2.2. Photocatalytic Degradation of MB Dye
2.3. LPG Sensing
3. Materials and Methods
3.1. Materials
3.2. Hydrothermal Synthesis of GTNs
3.3. Characterization
3.4. Photocatalytic Dye Degradation of MB Dye
3.5. LPG Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaiano, V. Visible-Light-Active Photocatalysts for Environmental Remediation and Organic Synthesis; MDPI: Basel, Switzerland, 2021; Volume 1, ISBN 9783036536484. [Google Scholar]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases. Sens. Actuators B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Varghese, O.K.; Grimes, C.A. Metal Oxide Nanoarchitectures for Environmental Sensing. J. Nanosci. Nanotechnol. 2003, 3, 277–293. [Google Scholar] [CrossRef]
- Sun, X.; Wang, C.; Su, D.; Wang, G.; Zhong, Y. Application of Photocatalytic Materials in Sensors. Adv. Mater. Technol. 2020, 5, 1900993. [Google Scholar] [CrossRef]
- Jada, N.; Sankaran, K.J.; Sakthivel, R.; Sethi, D.; Mohapatra, P. Synergistic Effect of MoO3/TiO2 towards Discrete and Simultaneous Photocatalytic Degradation of E. Coli and Methylene Blue in Water. Bull. Mater. Sci. 2021, 44, 167. [Google Scholar] [CrossRef]
- Verma, R.; Gangwar, J.; Srivastava, A.K. Multiphase TiO2 Nanostructures: A Review of Efficient Synthesis, Growth Mechanism, Probing Capabilities, and Applications in Bio-Safety and Health. RSC Adv. 2017, 7, 44199–44224. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Nano Materials Science Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Almohamadi, H.; Awad, S.A.; Sharma, A.K.; Fayzullaev, N. Photocatalytic Activity of Metal- and Non-Metal-Anchored ZnO and TiO2 Nanocatalysts for Advanced Photocatalysis: Comparative Study. Catalysts 2024, 14, 420. [Google Scholar] [CrossRef]
- Mahanta, S.K.; Suman, S.; Ghadei, S.K.; Balaji, U.; Sakthivel, R.; Sankaran, K.J. Direct Fabrication of Metal-Free Graphene Nanohairs/Polyimide Heterojunction for the Highly Efficient Photocatalytic Degradation of Industrial Dyes. Diam. Relat. Mater. 2023, 137, 110096. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Hao, B.; Guo, J.; Zhang, L.; Ma, H. Magnetron Sputtered TiO2/CuO Heterojunction Thin Films for Efficient Photocatalysis of Rhodamine B. J. Alloys Compd. 2022, 903, 163851. [Google Scholar] [CrossRef]
- Crespo-Monteiro, N.; Hamandi, M.; Higuita, M.A.U.; Guillard, C.; Dappozze, F.; Jamon, D.; Vocanson, F.; Jourlin, Y. Influence of the Micro-Nanostructuring of Titanium Dioxide Films on the Photocatalytic Degradation of Formic Acid under UV Illumination. Nanomaterials 2022, 12, 1008. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Cai, Y.; Zhao, J.; Gao, Z.; Song, Y.Y. The Challenges and Opportunities for TiO2 Nanostructures in Gas Sensing. ACS Sens. 2024, 9, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewska, K.; Radecka, M. TiO2-Based Nanomaterials for Gas Sensing—Influence of Anatase and Rutile Contributions. Nanoscale Res. Lett. 2017, 12, 89. [Google Scholar] [CrossRef]
- Lee, P.Y.; Widyastuti, E.; Lin, T.C.; Chiu, C.T.; Xu, F.Y.; Tseng, Y.T.; Lee, Y.C. The Phase Evolution and Photocatalytic Properties of a Ti-TiO2 Bilayer Thin Film Prepared Using Thermal Oxidation. Coatings 2021, 11, 808. [Google Scholar] [CrossRef]
- Zharvan, V.; Daniyati, R.; Nur Ichzan, A.S.; Yudoyono, G. Darminto Study on Fabrication of TiO2 Thin Films by Spin-Coating and Their Optical Properties. AIP Conf. Proc. 2016, 1719, 030018. [Google Scholar] [CrossRef]
- Nakate, U.T.; Yu, Y.T.; Park, S. Hydrothermal Synthesis of ZnO Nanoflakes Composed of Fine Nanoparticles for H2S Gas Sensing Application. Ceram. Int. 2022, 48, 28822–28829. [Google Scholar] [CrossRef]
- Gupta, T.; Samriti; Cho, J.; Prakash, J. Hydrothermal Synthesis of TiO2 Nanorods: Formation Chemistry, Growth Mechanism, and Tailoring of Surface Properties for Photocatalytic Activities. Mater. Today Chem. 2021, 20, 100428. [Google Scholar] [CrossRef]
- Abd-Elnaiem, A.M.; Hakamy, A.; Afify, N.; Omer, M.; Abdelbaki, R.F. Nanoarchitectonics of Zinc Nickel Ferrites by the Hydrothermal Method for Improved Structural and Magnetic Properties. J. Alloys Compd. 2024, 984, 173941. [Google Scholar] [CrossRef]
- Hameed, N.A.; Ali, I.M.; Hassun, H.K. Calculating Surface Roughness for a Large Scale Sem Images by Mean of Image Processing. Energy Procedia 2019, 157, 84–89. [Google Scholar] [CrossRef]
- Makarem, R.; Cristiano, F.; Muller, D.; Fazzini, P.F. An Improved STEM/EDX Quantitative Method for Dopant Profiling at the Nanoscale. Microsc. Microanal. 2020, 26, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Dennis, P.F. Oxygen Self-Diffusion in Quartz Under Hydrothermal Conditions. J. Geophys. Res. 1984, 89, 4047–4057. [Google Scholar] [CrossRef]
- Samriti; Prateek; Joshi, M.C.; Gupta, R.K.; Prakash, J. Hydrothermal Synthesis and Ta Doping of TiO2 Nanorods: Effect of Soaking Time and Doping on Optical and Charge Transfer Properties for Enhanced SERS Activity. Mater. Chem. Phys. 2022, 278, 125642. [Google Scholar] [CrossRef]
- Swamy, V.; Muddle, B.C.; Dai, Q. Size-Dependent Modifications of the Raman Spectrum of Rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118. [Google Scholar] [CrossRef]
- Chowdhury, S.; King, N.; Wong-Ng, W. Rutile TiO2 bulk Structural and Vibrational Properties: A DFT Study on the Importance of Pseudopotentials. arXiv 2018, arXiv:1811.03783. [Google Scholar]
- Wilson, G.J.; Matijasevich, A.S.; Mitchell, D.R.G.; Schulz, J.C.; Will, G.D. Modification of TiO2 for Enhanced Surface Properties: Finite Ostwald Ripening by a Microwave Hydrothermal Process. Langmuir 2006, 22, 2016–2027. [Google Scholar] [CrossRef] [PubMed]
- Gomathi Thanga Keerthana, B.; Solaiyammal, T.; Muniyappan, S.; Murugakoothan, P. Hydrothermal Synthesis and Characterization of TiO2 Nanostructures Prepared Using Different Solvents. Mater. Lett. 2018, 220, 20–23. [Google Scholar] [CrossRef]
- Miao, L.; Jin, P.; Kaneko, K.; Terai, A.; Nabatova-Gabain, N.; Tanemura, S. Preparation and Characterization of Polycrystalline Anatase and Rutile TiO2 Thin Films by Rf Magnetron Sputtering. Appl. Surf. Sci. 2003, 212–213, 255–263. [Google Scholar] [CrossRef]
- Tang, J.F.; Su, H.H.; Lu, Y.M.; Chu, S.Y. Controlled Growth of ZnO Nanoflowers on Nanowall and Nanorod Networks via a Hydrothermal Method. CrystEngComm 2015, 17, 592–597. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Y.; Shen, Y.; Xu, L.; Lu, J.; Li, M.; Lu, H.L.; Gao, L. Highly Sensitive and Selective Toluene Gas Sensors Based on ZnO Nanoflowers Decorated with Bimetallic AuPt. Molecules 2024, 29, 1657. [Google Scholar] [CrossRef]
- Yang, X.; Jin, C.; Liang, C.; Chen, D.; Wu, M.; Yu, J.C. Nanoflower Arrays of Rutile TiO2. Chem. Commun. 2011, 47, 1184–1186. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Liu, H.Y.; Lin, C.; Lin, Z. Hierarchical Rutile TiO2 Flower Cluster-Based High Efficiency Dye-Sensitized Solar Cells via Direct Hydrothermal Growth on Conducting Substrates. Small 2013, 9, 312–321. [Google Scholar] [CrossRef]
- Liu, B.; Enache-Pommer, E.; Aydil, E.S. Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. In Proceedings of the 10AIChE—2010 AIChE Annual Meeting Conference Proceedings, Salt Lake City, UT, USA, 7–12 November 2010; Volume 1. [Google Scholar]
- Ali, W.; Jaffari, G.H.; Khan, S.; Liu, Y. Morphological Control of 1D and 3D TiO2 Nanostructures with Ammonium Hydroxide and TiO2 Compact Layer on FTO Coated Glass in Hydrothermal Synthesis. Mater. Chem. Phys. 2018, 214, 48–55. [Google Scholar] [CrossRef]
- Prathan, A.; Sanglao, J.; Wang, T.; Bhoomanee, C.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D. Controlled Structure and Growth Mechanism behind Hydrothermal Growth of TiO2 Nanorods. Sci. Rep. 2020, 10, 8065. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; Lozano Morales, S.A.; Ávila-Santos, M. Synthesis of Stable TiO2 Nanotubes: Effect of Hydrothermal Treatment, Acid Washing and Annealing Temperature. Heliyon 2017, 3, e00456. [Google Scholar] [CrossRef] [PubMed]
- Jordan, V.; Javornik, U.; Plavec, J.; Podgornik, A.; Rečnik, A. Self-Assembly of Multilevel Branched Rutile-Type TiO2 Structures via Oriented Lateral and Twin Attachment. Sci. Rep. 2016, 6, 24216. [Google Scholar] [CrossRef]
- Matouq, M.; Al-Anber, Z.; Susumu, N.; Tagawa, T.; Karapanagioti, H. The Kinetic of Dyes Degradation Resulted from Food Industry in Wastewater Using High Frequency of Ultrasound. Sep. Purif. Technol. 2014, 135, 42–47. [Google Scholar] [CrossRef]
- Al-Otaibi, A.L.; Elsayed, K.A.; Manda, A.A.; Haladu, S.A.; Ibrahim Gaya, U.; Ercan, F.; Kayed, T.S.; Çevik, E.; Alhajri, U.; Ercan, İ.; et al. Pulsed Laser Ablation-Mediated Facile Fabrication of MoO3/TiO2/RGO Nanocomposite as a Photocatalyst for Dye Degradation. Opt. Laser Technol. 2024, 170, 110156. [Google Scholar] [CrossRef]
- Ahmed, M.A.; El-Katori, E.E.; Gharni, Z.H. Photocatalytic Degradation of Methylene Blue Dye Using Fe2O3/TiO2 Nanoparticles Prepared by Sol-Gel Method. J. Alloys Compd. 2013, 553, 19–29. [Google Scholar] [CrossRef]
- Al-Jawad, S.M.H.; Aboud, K.H.; Imran, N.J.; Taher, S.Y. Copper Doping of CdS Nanoflakes and Nanoflowers for Efficient Photocatalytic Degradation of MB and MV Dyes. Plasmonics 2024, 15571963. [Google Scholar] [CrossRef]
- Shelar, S.G.; Mahajan, V.K.; Patil, S.P.; Sonawane, G.H. Effect of Doping Parameters on Photocatalytic Degradation of Methylene Blue Using Ag Doped ZnO Nanocatalyst. SN Appl. Sci. 2020, 2, 820. [Google Scholar] [CrossRef]
- Chaudhary, D.; Singh, S.; Vankar, V.D.; Khare, N. ZnO Nanoparticles Decorated Multi-Walled Carbon Nanotubes for Enhanced Photocatalytic and Photoelectrochemical Water Splitting. J. Photochem. Photobiol. A Chem. 2018, 351, 154–161. [Google Scholar] [CrossRef]
- Sadeghzadeh-Attar, A. Efficient Photocatalytic Degradation of Methylene Blue Dye by SnO2 Nanotubes Synthesized at Different Calcination Temperatures. Sol. Energy Mater. Sol. Cells 2018, 183, 16–24. [Google Scholar] [CrossRef]
- Anwar, M.S.; Danish, R.; Koo, B.H. Hierarchical Flower-like Nanostructures of Rutile TiO2 and Their Photocatalytic Activity. J. Nanosci. Nanotechnol. 2016, 16, 12851–12855. [Google Scholar] [CrossRef]
- Akhter, P.; Ali, F.; Ali, A.; Hussain, M. TiO2 Decorated CNTs Nanocomposite for Efficient Photocatalytic Degradation of Methylene Blue. Diam. Relat. Mater. 2024, 141, 110702. [Google Scholar] [CrossRef]
- Xu, H.; Li, G.; Zhu, G.; Zhu, K.; Jin, S. Enhanced Photocatalytic Degradation of Rutile/Anatase TiO2 Heterojunction Nanoflowers. Catal. Commun. 2015, 62, 52–56. [Google Scholar] [CrossRef]
- Packialakshmi, J.S.; Albeshr, M.F.; Alrefaei, A.F.; Zhang, F.; Liu, X.; Selvankumar, T.; Mythili, R. Development of ZnO/SnO2/RGO Hybrid Nanocomposites for Effective Photocatalytic Degradation of Toxic Dye Pollutants from Aquatic Ecosystems. Environ. Res. 2023, 225, 115602. [Google Scholar] [CrossRef]
- Kim, M.G.; Kang, J.M.; Lee, J.E.; Kim, K.S.; Kim, K.H.; Cho, M.; Lee, S.G. Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles. ACS Omega 2021, 6, 10668–10678. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Deng, K.; Chen, X.; Zou, Z. Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO2 Nanorod Superstructutes. J. Phys. Chem. C 2007, 111, 2709–2714. [Google Scholar] [CrossRef]
- Wu, J.M.; Huang, B.; Wang, M.; Osaka, A. Titania Nanoflowers with High Photocatalytic Activity. J. Am. Ceram. Soc. 2006, 89, 2660–2663. [Google Scholar] [CrossRef]
- Molina-Reyes, J.; Romero-Moran, A.; Uribe-Vargas, H.; Lopez-Ruiz, B.; Sanchez-Salas, J.L.; Ortega, E.; Ponce, A.; Morales-Sanchez, A.; Lopez-Huerta, F.; Zuñiga-Islas, C. Study on the Photocatalytic Activity of Titanium Dioxide Nanostructures: Nanoparticles, Nanotubes and Ultra-Thin Films. Catal. Today 2020, 341, 2–12. [Google Scholar] [CrossRef]
- Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance. Anal. Chem. 2017, 89, 8531–8537. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, K.J.; Suman, S.; Sahaw, A.; Balaji, U.; Sakthivel, R. Improved LPG Sensing Properties of Nickel Doped Cobalt Ferrites Derived from Metallurgical Wastes. J. Magn. Magn. Mater. 2021, 537, 168231. [Google Scholar] [CrossRef]
- Aishwarya, K.; Nirmala, R.; Navamathavan, R. Recent Advancements in Liquefied Petroleum Gas Sensors: A Topical Review. Sens. Int. 2021, 2, 100091. [Google Scholar] [CrossRef]
- Lee, J.H. Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Jagminas, A.; Ramanavicius, A. Gas Sensors Based on Titanium Oxides (Review). Coatings 2022, 12, 699. [Google Scholar] [CrossRef]
- Patil, L.A.; Suryawanshi, D.N.; Pathan, I.G.; Patil, D.M. Nickel Doped Spray Pyrolyzed Nanostructured TiO2 Thin Films for LPG Gas Sensing. Sens. Actuators B Chem. 2013, 176, 514–521. [Google Scholar] [CrossRef]
- Smith, M.F.; Limwichean, S.; Horprathum, M.; Chaiprapa, J.; Aye, W.W.; Chananonnawathorn, C.; Patthanasettakul, V.; Eiamchai, P.; Nuntawong, N.; Klamchuen, A. Determination of density and specific surface area of nanostructured zinc oxide films by X-ray fluorescence and scanning electron microscopy. Thin Solid Films 2022, 751, 139207. [Google Scholar]
- Bhushan, B. Surface roughness analysis and measurement techniques. In Modern Tribology Handbook, Two Volume Set; CRC press: Boca Raton, FL, USA, 2000; pp. 49–119. [Google Scholar]
- Sliz, R.; Eneh, C.; Suzuki, Y.; Czajkowski, J.; Fabritius, T.; Kathirgamanathan, P.; Nathan, A.; Myllyla, R.; Jabbour, G. Large area quantitative analysis of nanostructured thin-films. RSC Adv. 2015, 5, 12409–12415. [Google Scholar] [CrossRef]
Catalysts | Light Source/Dye | Degradation Time | Dye Degradation (%) | References |
---|---|---|---|---|
MoO3/TiO2/5%rGO | UV light/MB | 60 min | 95% | [40] |
Fe2O3/TiO2 | UV light/MB | 60 min | 95% | [41] |
Cu-CdS | Xe light/MB | 260 min | 89% | [42] |
Ag doped ZnO | 500 W halogen lamp/MB | 200 min | 95% | [43] |
ZnO-CNT | UV light/MB | 120 min | 93% | [44] |
SnO2 nanotubes | UV light/MB | 180 min | 80.2% | [45] |
TiO2 nanorods | UV light/MB | 330 min | 96% | [46] |
TiO2 decorated CNT | UV light/MB | 180 min | 85% | [47] |
TiO2 | UV light/MB | 180 min | 40% | [47] |
Degussa p25 | Solar light/MB | 120 min | 57% | [48] |
Globosa like TiO2 nanostructures (GTNs) | UV light/MB | 160 min | 91% | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, M.S.; Rakesh, B.; Ojha, G.P.; Sakthivel, R.; Pant, B.; Sankaran, K.J. Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing. Molecules 2024, 29, 4063. https://doi.org/10.3390/molecules29174063
Rao MS, Rakesh B, Ojha GP, Sakthivel R, Pant B, Sankaran KJ. Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing. Molecules. 2024; 29(17):4063. https://doi.org/10.3390/molecules29174063
Chicago/Turabian StyleRao, Mutcha Shanmukha, Benadict Rakesh, Gunendra Prasad Ojha, Ramasamy Sakthivel, Bishweshwar Pant, and Kamatchi Jothiramalingam Sankaran. 2024. "Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing" Molecules 29, no. 17: 4063. https://doi.org/10.3390/molecules29174063
APA StyleRao, M. S., Rakesh, B., Ojha, G. P., Sakthivel, R., Pant, B., & Sankaran, K. J. (2024). Hydrothermally Grown Globosa-like TiO2 Nanostructures for Effective Photocatalytic Dye Degradation and LPG Sensing. Molecules, 29(17), 4063. https://doi.org/10.3390/molecules29174063