Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Characterization
2.1.1. XRD and Rietveld Results
2.1.2. Thermal Analysis
2.1.3. Spectroscopic Analysis
2.1.4. Morphological and Compositional Analysis
2.1.5. Adsorption Measurements
2.2. Pharmaceutical Results
2.2.1. Drug Loading and Solubility
2.2.2. Dissolution Tests
2.2.3. Contact Angle
3. Discussion
4. Materials and Methods
4.1. Syntheses
4.1.1. HAPs Synthesis
4.1.2. Hybrids’ Preparation
4.2. Physical–Chemical Characterizations
4.3. Pharmaceutical Measurements
4.3.1. Drug Loading and Solubility
4.3.2. Dissolution Test
4.3.3. Contact Angle
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discov. Nano 2023, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Higino, T.; França, R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed. Phys. Eng. Express 2022, 8, 042001. [Google Scholar] [CrossRef] [PubMed]
- Budiman, A.; Aulifa, D.L. A Comparative Study of the Pharmaceutical Properties between Amorphous Drugs Loaded-Mesoporous Silica and Pure Amorphous Drugs Prepared by Solvent Evaporation. Pharmaceuticals 2022, 15, 730. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Park, J.H.; Choi, Y.J.; Oh, J.M.; Park, J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Adv. 2023, 13, 5529–5537. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Baak, J.P.A.; Chen, T.; Ye, H.; Liao, W.; Lv, H.; Wen, C.; Zheng, S. Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023, 28, 2212. [Google Scholar] [CrossRef]
- van der Merwe, J.; Steenekamp, J.; Steyn, D.; Hamman, J. The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics 2020, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Bhardwaj, K.; Bansal, M. Polymeric Micelles as Drug Delivery System: Recent Advances, Approaches, Applications and Patents. Curr. Drug Saf. 2024, 19, 163–171. [Google Scholar] [CrossRef]
- Kumari, L.; Choudhari, Y.; Patel, P.; Das Gupta, G.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Das Kurmi, B. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life 2023, 13, 1099. [Google Scholar] [CrossRef]
- Monteforte, F.; Bruni, G.; Quinzeni, I.; Friuli, V.; Maggi, L.; Capsoni, D.; Bini, M. Meloxicam-LDH Hybrid Compound: A SuccessfulStrategy to ImproveSolubility. J. Inorg. Organomet. Polym. Mater. 2020, 30, 637–648. [Google Scholar] [CrossRef]
- Raffaini, G.; Pirozzi, P.; Catauro, M.; D’Angelo, A. Hybrid Organic–Inorganic Biomaterials as Drug Delivery Systems: A Molecular Dynamics Study of Quercetin Adsorption on Amorphous Silica Surfaces. Coatings 2024, 14, 234. [Google Scholar] [CrossRef]
- La Rocca, M.; Rinaldi, A.; Bruni, G.; Friuli, V.; Maggi, L.; Bini, M. New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids. J. Inorg. Org. Polym. Mater. 2022, 32, 2249–2259. [Google Scholar] [CrossRef]
- Friuli, V.; Maggi, L.; Bruni, G.; Caso, F.; Bini, M. Hydroxyapatite Nanorods Based Drug Delivery Systems for Bumetanide and Meloxicam, Poorly Water Soluble. Nanomaterials 2024, 14, 113. [Google Scholar] [CrossRef]
- Ahmari, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Khanbeigi, K.A. A green approach for preparation of chitosan/hydroxyapatite/graphitic carbon nitride hydrogel nanocomposite for improved 5-FU delivery. Int. J. Biol. Macromol. 2024, 258, 128736. [Google Scholar] [CrossRef] [PubMed]
- Budiul, M.M.; Vlase, G.; Negru, D.; Okolisan, D.; Bradu, I.A.; Tasala, A.; Pahomi, A.; Vlase, T.; Jumanca, D.; Galuscan, A.; et al. Dental Biopolymer Composites with Antibiotics, Bisphosphonate, and Hydroxyapatite for Possible Use in Bone Tissue Regeneration. J. Chem. 2024, 2024, 6614044. [Google Scholar] [CrossRef]
- Singh, G.; Singh Jolly, S.; Singh, R.P. Cerium substituted hydroxyapatite mesoporous nanorods: Synthesis and characterization for drug delivery applications. Mater. Today Proc. 2020, 28, 1460–1466. [Google Scholar] [CrossRef]
- Afraei, F.; Daneshjou, S.; Dabirmanesh, B. Synthesis and evaluation of nanosystem containing chondroitinase ABCI based on hydroxyapatite. AMB Express 2024, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Luger, P.; Daneck, K.; Engel, W.; Trummhtz, G.; Wagner, K. Structure and physicochemical properties of meloxicam, a new NSAID. Eur. J. Pharm. Sci. 1996, 4, 175–187. [Google Scholar] [CrossRef]
- Weyna, D.R.; Cheney, M.L.; Shan, N.; Hanna, M.; Zaworotko, M.J.; Sava, V.; Song, S.; Sanchez-Ramos, J.R. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol. Pharm. 2012, 9, 2094–2102. [Google Scholar] [CrossRef]
- Wu, X.Q.; Tang, P.X.; Li, S.S.; Zhang, L.L.; Li, H. X-ray powder diffraction data for meloxicam, C14H13N3O4S2. Powder Diffr. 2014, 29, 196–198. [Google Scholar] [CrossRef]
- Seedher, N.; Bhatia, S. Solubility enhancement of cox-2 inhibitors using various solvent systems. AAPS PharmSciTech 2003, 4, 36–44. [Google Scholar] [CrossRef]
- O’Neil, M.J. The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals; Merck and Co., Inc.: Whitehouse Station, NJ, USA, 2006. [Google Scholar]
- Chen, R.; Shen, J. The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants. Mater. Lett. 2020, 259, 126881. [Google Scholar] [CrossRef]
- Stork, L.; Muller, P.; Dronskowski, R.; Ortlepp, J.R. Chemical analyses and X-ray diffraction investigations of human hydroxyapatite minerals from aortic valve stenoses. Z. Kristallogr. 2005, 220, 201–205. [Google Scholar] [CrossRef]
- Nasiri-Tabrizi, B.; Yeong, C.H.; Thein, W.M.; Basirun, W.J. Comparative structural refinement of nanocrystalline hydroxyapatite. Mater. Lett. 2023, 336, 133882. [Google Scholar] [CrossRef]
- Friuli, V.; Urru, C.; Ferrara, C.; Conti, D.M.; Bruni, G.; Maggi, L.; Capsoni, D. Design of Etched- and Functionalized-Halloysite/Meloxicam Hybrids: A Tool for Enhancing Drug Solubility and Dissolution Rate. Pharmaceutics 2024, 16, 338. [Google Scholar] [CrossRef]
- Abushad, A.M.; Arshad, M.; Naseem, S.; Ahmed, H.; Ansari, A.; Chakradhary, V.K.; Husain, S.; Khan, W. Synthesis and role of structural disorder on the optical, magnetic anddielectric properties of Zn doped NiFe2O4 nanoferrites. J. Mol. Struct. 2022, 1253, 132205. [Google Scholar]
- Chen, Z.; Liu, Y.; Mao, L.; Gong, L.; Sun, W.; Feng, L. Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation. Ceram. Int. 2018, 44, 6002–6009. [Google Scholar] [CrossRef]
- Kadlec, K.; Adamska, K.; Voelkel, A. Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems. Talanta 2016, 147, 44–49. [Google Scholar] [CrossRef]
- Veseli, A.; Žakelj, S.; Kristl, A. A Review of Methods for Solubility Determination in Biopharmaceutical Drug Characterization. Drug Dev. Ind. Pharm. 2019, 45, 1717–1724. [Google Scholar] [CrossRef]
- Meloxicam Tablets, Official Monograph, 2018. In The United States Pharmacopeia (USP41-NF36); United States Pharmacopeia Convention, Inc.: Rockville, MD, USA, 2018; pp. 2558–2563.
- Reagents. Solution/Buffer Solutions. In United States Pharmacopeia (USP43-NF38); United States Pharmacopeial Convention, Inc.: Rockville, MD, USA, 2023.
HAP | HAP-Mlx | HAP-Mg | HAP-Mg-Mlx | |
---|---|---|---|---|
a, c (Å) | 9.4237(2), 6.8823(1) | 9.4232(1), 6.8806(2) | 9.4206(3), 6.8642(2) | 9.4285(5), 6.8643(2) |
Cry size (nm) | 22.8(1) | 22.7(1) | 13.6(2) | 12.2(2) |
Rwp/GoF | 8.45/1.17 | 8.82/1.25 | 8.59/1.20 | 8.79/1.27 |
Atomic positions | ||||
Ca1 (2/3, 1/3, z) | −0.0022(10) | −0.0016(9) | −0.0012(9) | −0.0019(8) |
Ca2 (x, y, ¼)-Mg | −0.0135(12), 0.2444(15) | −0.0139(11), 0.2436(16) | −0.0152(10), 0.2421(13) | −0.0174(11), 0.2401(15) |
P (x, y, ¼) | 0.3749(5), 0.4006(8) | 0.3757(3), 0.3993(2) | 0.3763(4), 0.3993(2) | 0.3791(3), 0.3947(1) |
O1 (x, y, ¼) | 0.4820(12), 0.3259(15) | 0.4824(11), 0.3286(16) | 0.4804(15), 0.3280(14) | 0.4855(12), 0.3350(11) |
O2 (x, y, ¼) | 0.4660(10), 0.5908(14) | 0.4669(12), 0.5922(11) | 0.4610(13), 0.5859(14) | 0.4658(16), 0.5833(14) |
O3 (x, y, z) | 0.2533(11), 0.3397(12), 0.0675(14) | 0.2525(13), 0.3380(16), 0.0716(10) | 0.2483(14), 0.3372(15), 0.0761(11) | 0.2441(15), 0.3326(16), 0.0751(10) |
O(H) (0, 0, ¼) | - | - | - | - |
Bond lengths (Å) | ||||
Ca1 Mean value | 2.4244 (x3) 2.4336 (x3) 2.8176 (x3) 2.5585 | 2.4239 (x3) 2.4367 (x3) 2.8363 (x3) 2.5656 | 2.4201 (x3) 2.4428 (x3) 2.8375 (x3) 2.5668 | 2.4361 (x3) 2.4617 (x3) 2.8693 (x3) 2.5890 |
Ca2 Mean value | 2.3046 (x2) 2.3636 2.3695 2.5392 (x2) 2.6292 2.4357 | 2.3267 (x2) 2.3640 2.3646 2.5236 (x2) 2.6455 2.4392 | 2.3529 (x2) 2.3560 2.4231 2.4831 (x2) 2.6281 2.4398 | 2.3360 (x2) 2.3501 2.4038 2.4758 (x2) 2.6744 2.4359 |
P Mean value | 1.4912 1.5533 1.6001 (x2) 1.5612 | 1.4572 1.5749 1.5869 (x2) 1.5515 | 1.4393 1.5242 1.5863 (x2) 1.5340 | 1.3734 1.5424 1.6308 (x2) 1.5444 |
HAP | HAP-Mlx | HAP-Mg | HAP-Mg-Mlx | |
---|---|---|---|---|
Ca/atom% | 19.35 | 8.52 | 16.99 | 5.87 |
Mg/atom% | - | - | 0.77 | 0.26 |
P/atom% | 11.91 | 5.57 | 11.0 | 3.78 |
Ca/P(ST) | 1.67 | 1.67 | 1.58 | 1.58 |
Ca/P(OBS) | 1.62 | 1.53 | 1.54 | 1.55 |
Mg/Ca(ST) | - | - | 0.053 | 0.053 |
Mg/Ca(OBS) | - | - | 0.045 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggi, L.; Friuli, V.; Cerea, B.; Bruni, G.; Berbenni, V.; Bini, M. Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement. Molecules 2024, 29, 2419. https://doi.org/10.3390/molecules29112419
Maggi L, Friuli V, Cerea B, Bruni G, Berbenni V, Bini M. Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement. Molecules. 2024; 29(11):2419. https://doi.org/10.3390/molecules29112419
Chicago/Turabian StyleMaggi, Lauretta, Valeria Friuli, Beatrice Cerea, Giovanna Bruni, Vittorio Berbenni, and Marcella Bini. 2024. "Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement" Molecules 29, no. 11: 2419. https://doi.org/10.3390/molecules29112419
APA StyleMaggi, L., Friuli, V., Cerea, B., Bruni, G., Berbenni, V., & Bini, M. (2024). Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement. Molecules, 29(11), 2419. https://doi.org/10.3390/molecules29112419