A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles
Abstract
:1. Introduction
2. Models and Calculation Methods
3. Discussion
3.1. ABX3 Crystal Structure
3.2. Band Strucure
3.3. Defect Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, X.; Sun, L.; Wu, T.; Chu, T.S.; Deng, W.Q.; Han, K.L. First-Principles Screening of All-Inorganic Lead-Free ABX3 Perovskites. J. Phys. Chem. C 2018, 122, 7670–7675. [Google Scholar] [CrossRef]
- Kshirsagar, B.; Jaykhedkar, N.; Jain, K.; Kishor, S.; Shah, V.; Ramaniah, L.M.; Tiwari, S. Green CsSnX3 (X = Cl, Br, I)-Derived Quantum Dots for Photovoltaic Applications: First-Principles Investigations. J. Phys. Chem. C 2021, 125, 2592–2606. [Google Scholar] [CrossRef]
- Guo, H.; Yoon, G.W.; Li, Z.J.; Yun, Y.; Lee, S.W.; Seo, Y.H.; Jeon, N.J.; Han, G.S.; Jung, H.S. In Situ Polymerization of Cross-Linked Perovskite-Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells. Adv. Energy Mater. 2024, 14, 2302743. [Google Scholar] [CrossRef]
- Ali, L.; Ahmad, M.; Shafiq, M.; Zeb, T.; Ahmad, R.; Maqbool, M.; Ahmad, I.; Jalali-Asadabadi, S.; Amin, B. Theoretical studies of CsSnX3 (X= Cl, Br and I) for energy storage and hybrid solar cell applications. Mater. Today Commun. 2020, 25, 101517. [Google Scholar] [CrossRef]
- Milstein, T.J.; Kroupa, D.M.; Gamelin, D.R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 2018, 18, 3792–3799. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Hu, X.; Mo, L.; Jiang, X.; Xing, X.; Shui, L.; Priya, S.; Wang, K.; Zhou, G. Progresses on Novel B-Site Perovskite Nanocrystals. Adv. Opt. Mater. 2021, 9, 2100261. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.H.; Yu, S.Q.; Shen, T.; Deng, H.X.; Chu, X.B.; Peng, X.X.; Yuan, Y.B.; Zhang, X.W.; et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ren, F.M.; Sun, D.R.; Li, S.B.; Zheng, G.H.J.; Wang, J.A.; Raza, H.; Chen, R.; Wang, H.X.; Liu, S.W.; et al. Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 2023, 16, 2295–2303. [Google Scholar] [CrossRef]
- Li, J.H.; Du, P.P.; Guo, Q.X.; Sun, L.; Shen, Z.X.; Zhu, J.X.; Dong, C.; Wang, L.; Zhang, X.; Li, L.Y.; et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photonics 2023, 17, 435–441. [Google Scholar] [CrossRef]
- Zhou, Y.; Fei, C.B.; Uddin, M.A.; Zhao, L.; Ni, Z.Y.; Huang, J.S. Self-powered perovskite photon-counting detectors. Nature 2023, 616, 712–718. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xiao, K.; Lin, R.; Zhao, S.; Wang, W.; Dayneko, S.; Duan, C.; Ji, C.; Sun, H.; Bui, A.D.; et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 2024, 383, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tan, L.; Liu, Y.; Li, H.; Liu, X.; Li, M.; Wang, S.; Zhang, Y.; Jiang, C.; Hua, R.; et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule, 2024; in press. [Google Scholar] [CrossRef]
- Wu, X.; Song, W.; Li, Q.; Zhao, X.; He, D.; Quan, Z. Synthesis of Lead-free CsGeI3 Perovskite Colloidal Nanocrystals and Electron Beam-induced Transformations. Chem.—Asian J. 2018, 13, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Rao, H.; Fang, Y.; Zeng, J.; Pan, Z.; Zhong, X. Antioxidative Stannous Oxalate Derived Lead-Free Stable CsSnX3 (X=Cl, Br, and I) Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2021, 60, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Hu, Y.H.; Hu, Y.Q.; Qiu, T.; Miao, X.L.; Zhang, S.F. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 2018, 184, 15–21. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Cai, W.S.; Wang, H.X.; Zang, Z.G.; Chen, J.Z. All-Inorganic Lead-Free Perovskite(-Like) Single Crystals: Synthesis, Properties, and Applications. Small Methods 2021, 5, 2001308. [Google Scholar] [CrossRef] [PubMed]
- Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Gratzel, M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004. [Google Scholar] [CrossRef]
- Sun, C.; Yang, P.P.; Nan, Z.; Tian, C.B.; Cai, Y.T.; Chen, J.F.; Qi, F.F.; Tian, H.R.; Xie, L.Q.; Meng, L.Y.; et al. Well-Defined Fullerene Bisadducts Enable High-Performance Tin-Based Perovskite Solar Cells. Adv. Mater. 2023, 35, 2205603. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Li, D.B.; Dong, Z.L.; Jiang, Y.; Li, X.; Chu, Y.Q.; Xu, J.Y. Lead-Free Cs2AgBiBr6 Nanocrystals Confined in MCM-48 Mesoporous Molecular Sieve for Efficient Photocatalytic CO2 Reduction. Sol. RRL 2023, 7, 2300038. [Google Scholar] [CrossRef]
- Qian, J.Y.; Hu, H.; Liang, Y.; Zhang, Z.J. Mesoporous TiO2 matrix embeded with Cs2CuBr4 perovskite quantum dots as a step-scheme-based photocatalyst for boosting charge separation and CO2 photoconversion. Appl. Surf. Sci. 2024, 648, 159084. [Google Scholar] [CrossRef]
- Dong, Z.L.; Su, S.W.; Zhang, Z.J.; Jiang, Y.; Xu, J.Y. NiFe-Layered Double Hydroxides/Lead-free Cs2AgBiBr6 Perovskite 2D/2D Heterojunction for Photocatalytic CO2 Conversion. Inorg. Chem. 2023, 62, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Buin, A.; Pietsch, P.; Xu, J.X.; Voznyy, O.; Ip, A.H.; Comin, R.; Sargent, E.H. Materials Processing Routes to Trap-Free Halide Perovskites. Nano Lett. 2014, 14, 6281–6286. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.J.; Shi, T.T.; Yan, Y.F. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, S.Y.; Xiang, H.J.; Gong, X.G.; Wei, S.H. Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnl(3). Chem. Mater. 2014, 26, 6068–6072. [Google Scholar] [CrossRef]
- Liu, Q.; Li, A.K.; Chu, W.B.; Prezhdo, O.V.; Liang, W.Z. Influence of intrinsic defects on the structure and dynamics of the mixed Pb-Sn perovskite: First-principles DFT and NAMD simulations. J. Mater. Chem. A 2021, 10, 234–244. [Google Scholar] [CrossRef]
- Lany, S.; Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys. Rev. B 2008, 78, 1879–1882. [Google Scholar] [CrossRef]
- Un-Gi, J.; Chol-Jun, Y.; Yun-Hyok, K.; Yong-Guk, C.; Wei, H.; Shuzhou, L. First-Principles Study on Structural, Electronic, and Optical Properties of Inorganic Ge-Based Halide Perovskites. Inorg. Chem. 2019, 58, 4134–4140. [Google Scholar]
- Qian, J.Y.; Xu, B.; Tian, W.J. A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 2016, 37, 61–73. [Google Scholar] [CrossRef]
- Yunakova, O.N.; Miloslavsky, V.K.; Kovalenko, E.N.; Kovalenko, V.V. Effect of structural phase transitions on the exciton absorption spectrum of thin CsPbCl3 films. Low Temp. Phys. 2014, 40, 690–693. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.H.; Wang, B.; Ming, S.; Su, J. Structure, electronic and optical properties of CsPbX3 halide perovskite: A first-principles study. J. Alloys Compd. 2021, 862, 158442. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, J.; Niu, G.; Tang, J. Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Sol. RRL 2017, 1, 1700048. [Google Scholar] [CrossRef]
- Borriello, I.; Cantele, G.; Ninno, D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 2008, 77, 235214. [Google Scholar] [CrossRef]
- Sabba, D.; Mulmudi, H.K.; Prabhakar, R.R.; Krishnamoorthy, T.; Baikie, T.; Boix, P.P.; Mhaisalkar, S.; Mathews, N. Impact of Anionic Br- Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI3-xBrx) Solar Cells. J. Phys. Chem. C 2015, 119, 1763–1767. [Google Scholar] [CrossRef]
- Lin, Z.G.; Tang, L.C.; Chou, C.P. Characterization and properties of infrared NLO crystals: AGeX3 (A = Rb, Cs; X = Cl, Br). J. Cryst. Growth 2008, 310, 3224–3229. [Google Scholar] [CrossRef]
- Tang, L.C.; Chang, C.S.; Huang, J.Y. Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J. Phys.-Condens. Matter 2000, 12, 9129–9143. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M.G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494. [Google Scholar] [CrossRef]
- Lai, M.L.; Tay, T.Y.S.; Sadhanala, A.; Dutton, S.E.; Li, G.R.; Friend, R.H.; Tan, Z.K. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. J. Phys. Chem. Lett. 2016, 7, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Zhong, A.G. Dissecting the nature of halogen bonding interactions from energy decomposition and wavefunction analysis. Monatsh. Chem. 2017, 148, 1259–1267. [Google Scholar]
- Zhong, A.G.; Chen, D.; Li, R.R. Revisiting the beryllium bonding interactions from energetic and wavefunction perspectives. Chem. Phys. Lett. 2015, 633, 265–272. [Google Scholar] [CrossRef]
- Ju, M.G.; Dai, J.; Ma, L.; Zeng, X.C. Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Adv. Energy Mater. 2017, 7, 1700216. [Google Scholar] [CrossRef]
- Swift, M.W.; Lyons, J.L. Deep levels in cesium lead bromide from native defects and hydrogen. J. Mater. Chem. A 2021, 9, 7491–7495. [Google Scholar] [CrossRef]
- Wei, S.H. Overcoming the doping bottleneck in semiconductors. Comput. Mater. Sci. 2004, 30, 337–348. [Google Scholar] [CrossRef]
- Ball, J.M.; Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1, 16149. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, Y.C.; Xie, H.P.; Lyu, L.; Liu, X.L.; Gao, Y.L.; Huang, J.S. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 2014, 105, 163508. [Google Scholar] [CrossRef]
- Maiti, A.; Chatterjee, S.; Peedikakkandy, L.; Pal, A.J. Defects and Their Passivation in Hybrid Halide Perovskites toward Solar Cell Applications. Sol. RRL 2020, 4, 2000505. [Google Scholar] [CrossRef]
- Zhang, X.; Turiansky, M.E.; Van de Walle, C.G. All-inorganic halide perovskites as candidates for efficient solar cells. Cell Rep. Phys. Sci. 2021, 2, 100604. [Google Scholar] [CrossRef]
- Zhang, X.; Turiansky, M.E.; Shen, J.-X.; Van de Walle, C.G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Phys. Rev. B 2020, 101, 140101. [Google Scholar] [CrossRef]
Materials | CsPbCl3 | CsPbBr3 | CsPbI3 | CsSnCl3 | CsSnBr3 | CsSnI3 | CsGeCl3 | CsGeBr3 | CsGeI3 |
---|---|---|---|---|---|---|---|---|---|
Lattice constants | 5.73 | 5.99 | 6.42 | 5.55 | 5.79 | 6.21 | 5.43 | 5.64 | 5.98 |
Tolerance factor | 0.82 | 0.81 | 0.81 | 0.90 | 0.89 | 0.88 | 0.97 | 0.96 | 0.94 |
Materials | PBE | HSE06 | HSE06 Value | Experimental Value |
---|---|---|---|---|
CsPbCl3 | 2.15 | 2.78 | 2.89 [31] | 3.00 [32] |
CsPbBr3 | 1.68 | 2.12 | 2.35 [31] | 2.25 [33] |
CsPbI3 | 1.45 | 2.01 | 2.02 [34] | 1.73 [35] |
CsSnCl3 | 0.94 | 1.38 | 1.50 [31] | 2.90 [36] |
CsSnBr3 | 0.39 | 0.70 | 1.05 [31] | 1.75 [37] |
CsSnI3 | 0.40 | 0.87 | 0.74 [31] | 1.27 [37] |
CsGeCl3 | 1.36 | 1.91 | 1.69 [31] | 3.31 [38] |
CsGeBr3 | 0.90 | 1.25 | 1.15 [31] | 2.37 [38] |
CsGeI3 | 0.71 | 1.19 | 1.55 [31] | 1.51 [39] |
X = Cl | X = Br | X = I | |
---|---|---|---|
B = Pb | BCs, BX | BX, VX | BCs, BX |
B = Sn | VX, BCs | BX, VX | VX, BX |
B = Ge | BCs, BX | BX, CsX | BCs, BX |
X = Cl | X = Br | X = I | |
---|---|---|---|
B = Pb | Bi, Csi | Bi, Csi | Bi, Csi |
B = Sn | Bi, Csi | Bi, Csi | CsX, Csi |
B = Ge | Bi, Csi | Bi, Csi | CsX, Csi |
X = Cl | X = Br | X = I | |
---|---|---|---|
B = Pb | XB, XCs | VCs, VB | XCs, VCs |
B = Sn | XCs, VCs | VCs, VB | XCs, VCs |
B = Ge | XCs, VCs | VCs, VB | XCs, VCs |
X = Cl | X = Br | X = I | |
---|---|---|---|
B = Pb | CsB, Xi | XB, Xi | CsB, Xi |
B = Sn | Xi, CsB | XB, Xi | Xi, CsB |
B = Ge | Xi, CsB | XB, Xi | Xi, CsB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wang, H.; Huang, W.; Zuo, Y.; Cheng, J. A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles. Molecules 2024, 29, 2479. https://doi.org/10.3390/molecules29112479
Zhang C, Wang H, Huang W, Zuo Y, Cheng J. A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles. Molecules. 2024; 29(11):2479. https://doi.org/10.3390/molecules29112479
Chicago/Turabian StyleZhang, Chunqian, Hao Wang, Wenqi Huang, Yuhua Zuo, and Jin Cheng. 2024. "A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles" Molecules 29, no. 11: 2479. https://doi.org/10.3390/molecules29112479
APA StyleZhang, C., Wang, H., Huang, W., Zuo, Y., & Cheng, J. (2024). A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles. Molecules, 29(11), 2479. https://doi.org/10.3390/molecules29112479