Engineering Electron Transfer Pathway of Cytochrome P450s
Abstract
:1. Introduction
2. Cytochrome P450s
2.1. Classification of P450s Systems
2.2. P450 Catalytic Mechanism
3. Electron Transfer Pathway Engineering
3.1. Cofactor Regeneration
3.2. Selection of Redox-Partner
3.3. P450s and CRP Engineering
3.3.1. Key Amino Acid Mutation
3.3.2. Protein Fusion
3.3.3. Enzyme Immobilization
3.4. Electro/Photo-Chemically Driven Electron Transfer Engineering
3.4.1. Electrochemically Driven Electron Transfer Engineering
3.4.2. Photochemically Driven Electron Transfer Engineering
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, D.R.; Kamataki, T.; Waxman, D.J.; Guengerich, F.P. The P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers, Early Trivial Names of Enzymes, and Nomenclature. DNA Cell Biol. 1993, 12, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 2001, 14, 611–650. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat. Prod. Rep. 2017, 34, 1061–1089. [Google Scholar] [CrossRef] [PubMed]
- Schuler, M.A.; Werck-Reichhart, D. Functional genomics of P450s. Annu. Rev. Plant Biol. 2003, 54, 629–667. [Google Scholar] [CrossRef] [PubMed]
- Vermilion, J.L.; Ballou, D.P.; Massey, V.; Coon, M.J. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J. Biol. Chem. 1981, 256, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Renault, H.; Bassard, J.E.; Hamberger, B.; Werck-Reichhart, D. Cytochrome P450-mediated metabolic engineering: Current progress and future challenges. Curr. Opin. Plant Biol. 2014, 19, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Keasling, J.D. Semi-synthetic artemisinin: A model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 2014, 12, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Isin, E.M.; Guengerich, F.P. Substrate binding to cytochromes P450. Anal. Bioanal. Chem. 2008, 392, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Smolke, C.D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 2020, 585, 614–619. [Google Scholar] [CrossRef]
- Brown, S.; Clastre, M.; Courdavault, V.; O’connor, S.E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl. Acad. Sci. USA 2015, 112, 3205–3210. [Google Scholar] [CrossRef]
- Ajikumar, P.K.; Xiao, W.H.; Tyo, K.E.J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephnopoulos, G. Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Science 2010, 330, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, F. An epidemiological modelling study to estimate the composition of HIV-positive populations including migrants from endemic settings. AIDS 2017, 31, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Cravens, A.; Payne, J.; Smolke, C.D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 2019, 10, 2142. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Smolke, C.D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem. 2018, 10, 395–404. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 2002, 1, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Bakkes, P.J.; Biemann, S.; Bokel, A.; Eickholt, M.; Girhard, M.; Urlacher, V.B. Design and improvement of artificial redox modules by molecular fusion of flavodoxin and flavodoxin reductase from Escherichia coli. Sci. Rep. 2015, 5, 12158. [Google Scholar] [CrossRef] [PubMed]
- Amarneh, B.; Simpson, E.R. Expression of a recombinant derivative of human aromatase P450 in insect cells utilizing the baculovirus vector system. Mol. Cell. Endocrinol. 1995, 109, R1–R5. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Osbourn, A. Engineering terpenoid production through transient expression in Nicotiana benthamiana. Plant Cell Rep. 2018, 37, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Stephenson, M.J.; Miettinen, K.; Brouwer, B.; Leveau, A.; Brett, P.; Goss, R.J.M.; Goossens, A.; O’connell, M.A.; Osbourn, A. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab. Eng. 2017, 42, 185–193. [Google Scholar] [CrossRef]
- Bernhardt, R.; Urlacher, V.B. Cytochromes P450 as promising catalysts for biotechnological application: Chances and limitations. Appl. Microbiol. Biotechnol. 2014, 98, 6185–6203. [Google Scholar] [CrossRef]
- Wang, H.; Napoli, K.L.; Strobel, H.W. Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones. Mol. Cell. Biochem. 2000, 213, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Sono, M.; Roach, M.P.; Coulter, E.D.; Dawson, J.H. Heme-Containing Oxygenases. Chem. Rev. 1996, 96, 2841–2888. [Google Scholar] [CrossRef]
- Denisov, I.G.; Makris, T.M.; Sligar, S.G. Structure and Chemistry of Cytochrome P450. ChemInform 2005, 36, 2253–2278. [Google Scholar] [CrossRef]
- Hannemann, F.; Bichet, A.; Ewen, K.M.; Bernhardt, R. Cytochrome P450 systems--biological variations of electron transport chains. Biochim. Biophys. Acta 2007, 1770, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Du, L.; Bernhardt, R. Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol. 2020, 28, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.J.; Finnigan, J.D.; Cook, K.; Black, G.W.; Charnock, S.J. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application. Adv. Protein Chem. Struct. Biol. 2016, 105, 105–126. [Google Scholar] [PubMed]
- Guengerich, F.P. Rate-limiting steps in cytochrome P450 catalysis. Biol. Chem. 2002, 383, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Peng, W.; Li, Z.; You, C.; Zhao, Y.; Tang, D.; Wang, B.; Li, S. Unexpected Reactions of α,β-Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew. Chem. Int. Ed. 2021, 60, 24694–24701. [Google Scholar] [CrossRef]
- Munro, A.W.; Mclean, K.J.; Grant, J.L.; Makris, T.M. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem. Soc. Trans. 2018, 46, 183–196. [Google Scholar] [CrossRef]
- Matthews, S.; Belcher, J.D.; Tee, K.L.; Girvan, H.M.; Mclean, K.J.; Rigby, S.E.; Levy, C.W.; Leys, D.; Parker, D.A.; Blankley, R.T.; et al. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleT(JE). J. Biol. Chem. 2017, 292, 5128–5143. [Google Scholar] [CrossRef]
- Wise, C.E.; Hsieh, C.H.; Poplin, N.L.; Makris, T.M. Dioxygen Activation by the Biofuel-Generating Cytochrome P450 OleT. ACS Catal. 2018, 8, 9342–9352. [Google Scholar] [CrossRef]
- Kumar, S.; Liu, H.; Halpert, J. Engineering of Cytochrome P 450 3 A 4 for Enhanced Peroxide-Mediated Substrate Oxidation Using Directed Evolution and Site-Directed Mutagenesis. Drug Metab. Dispos. 2006, 34, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Cong, Z. Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes. Acc. Chem. Res. 2024, 57, 613–624. [Google Scholar] [CrossRef]
- Podgorski, M.N.; Akter, J.; Churchman, L.R.; Bruning, J.B.; De Voss, J.J.; Bell, S.G. Engineering Peroxygenase Activity into Cytochrome P450 Monooxygenases through Modification of the Oxygen Binding Region. ACS Catal. 2024, 14, 7426–7443. [Google Scholar] [CrossRef]
- Bakkes, P.J.; Riehm, J.L.; Sagadin, T.; Ruhlmann, A.; Schubert, P.; Biemann, S.; Girhard, M.; Hutter, M.C.; Bernhardt, R.; Urlacher, V.B. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Sci. Rep. 2017, 7, 9570. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catal. 2018, 8, 10964–10976. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tian, C.; Song, X.; Liu, C.; Jiang, Z. Methods for the regeneration of nicotinamide coenzymes. Green. Chem. 2013, 15, 1773–1789. [Google Scholar] [CrossRef]
- Wittmann, C. Biosystems Engineering I: Creating Superior Biocatalysts; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wang, X.; Saba, T.; Yiu, H.H.P.; Howe, R.F.; Shi, J. Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. Chem 2017, 2, 621–654. [Google Scholar] [CrossRef]
- Hollmann, F.; Arends, I.W.C.E.; Holtmann, D. Enzymatic reductions for the chemist. Green. Chem. 2011, 13, 2285–2314. [Google Scholar] [CrossRef]
- Ganguli, P.; Khanna, R.; Prickril, B. Technology Transfer in Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ma, W.; Geng, Q.; Chen, C.; Zheng, Y.C.; Yu, H.L.; Xu, J.H. Engineering a Formate Dehydrogenase for NADPH Regeneration. Chembiochem 2023, 24, e202300390. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, H.; Yu, H.; Deng, T.; Wang, Z.; Zhang, H.; Wu, J.; Yang, L. Computational design of highly stable and soluble alcohol dehydrogenase for NADPH regeneration. Bioresour. Bioprocess. 2021, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Chen, H.; Liu, R.; Yu, H.; Zhuo, M.; Zhou, T.; Li, S. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production. Bioresour. Bioprocess. 2021, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Müller, B.; Kirkeby, T.R.; Kara, S.; Loderer, C. Development of a Thioredoxin-Based Cofactor Regeneration System for NADPH-Dependent Oxidoreductases. ChemCatChem 2022, 14, e202101625. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Kurata, H. Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose. Front. Bioeng. Biotechnol. 2020, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, Y.; Wang, Q.; Wang, X.; Zhao, Z.K. Non-natural Cofactor and Formate Driven Reductive Carboxylation of Pyruvate. Angew. Chem. Int. Ed. 2019, 59, 3143–3146. [Google Scholar] [CrossRef] [PubMed]
- Black, W.B.; Zhang, L.; Mak, W.S.; Maxel, S.; Cui, Y.; King, E.; Fong, B.; Sanchez Martinez, A.; Siegel, J.B.; Li, H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat. Chem. Biol. 2020, 16, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Chiliza, Z.E.; Martinez-Oyanedel, J.; Syed, K. An overview of the factors playing a role in cytochrome P450 monooxygenase and ferredoxin interactions. Biophys. Rev. 2020, 12, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shaik, S.; Wang, B. Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450(TT). J. Am. Chem. Soc. 2021, 143, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Mellor, S.B.; Vinde, M.H.; Nielsen, A.Z.; Hanke, G.T.; Abdiaziz, K.; Roessler, M.M.; Burow, M.; Motawia, M.S.; Moller, B.L.; Jensen, P.E. Defining optimal electron transfer partners for light-driven cytochrome P450 reactions. Metab. Eng. 2019, 55, 33–43. [Google Scholar] [CrossRef]
- Jensen, K.; Moller, B.L. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry 2010, 71, 132–141. [Google Scholar] [CrossRef]
- Sabbadin, F.; Hyde, R.; Robin, A.; Hilgarth, E.M.; Delenne, M.; Flitsch, S.; Turner, N.; Grogan, G.; Bruce, N.C. LICRED: A versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. Chembiochem 2010, 11, 987–994. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Sun, T.; Guo, J.; Zhang, X.; Zheng, X.; Du, L.; Zhang, W.; Ma, L.; Li, S. Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution. Commun. Biol. 2022, 5, 791. [Google Scholar] [CrossRef]
- Giang, P.D.; Churchman, L.R.; Stok, J.E.; Bell, S.G.; De Voss, J.J. Cymredoxin, a [2Fe-2S] ferredoxin, supports catalytic activity of the p-cymene oxidising P450 enzyme CYP108N12. Arch. Biochem. Biophys. 2023, 737, 109549. [Google Scholar] [CrossRef] [PubMed]
- Trenchard, I.J.; Smolke, C.D. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab. Eng. 2015, 30, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Du, W.; Wan, J.; Fan, J.; Pi, J.; Wu, M.; Wei, Y. Mining and functional characterization of NADPH-cytochrome P450 reductases of the DNJ biosynthetic pathway in mulberry leaves. BMC Plant Biol. 2024, 24, 133. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Su, X.; Sun, M.; Zhang, M.; Wu, J.; Xing, J.; Wang, Y.; Xue, J.; Liu, X.; Sun, W.; et al. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Microb. Cell Fact. 2019, 18, 95. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, C.; Sun, W.; Zhou, A.; Wang, Y.; Zhang, G.; Zhou, X.; Huo, Y.; Li, C. Boosting 11-oxo-beta-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metab. Eng. 2018, 45, 43–50. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Y.; Sun, Z.; Wang, D.; Qu, G.; Ma, X.; Fan, F.; Zhang, L.; Li, S.; Zhang, X. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2alpha hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab. Eng. 2019, 51, 70–78. [Google Scholar] [CrossRef]
- Zhang, W.; Du, L.; Li, F.; Zhang, X.; Qu, Z.; Han, L.; Li, Z.; Sun, J.; Qi, F.; Yao, Q. Mechanistic Insights into Interactions between Bacterial Class I P450 Enzymes and Redox Partners. ACS Catal. 2018, 8, 992–10003. [Google Scholar] [CrossRef]
- Istiandari, P.; Yasumoto, S.; Seki, H.; Fukushima, E.O.; Muranaka, T. Class I and II NADPH-cytochrome P450 reductases exhibit different roles in triterpenoid biosynthesis in Lotus japonicus. Front. Plant Sci. 2023, 14, 1214602. [Google Scholar] [CrossRef]
- Biggs, B.W.; Lim, C.G.; Sagliani, K.; Shankar, S.; Stephanopoulos, G.; De Mey, M.; Ajikumar, P.K. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 2016, 113, 3209–3214. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Guengerich, F.P.; Ma, L.; Li, S.; Zhang, W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem. 2020, 295, 833–849. [Google Scholar] [CrossRef]
- Xu, L.H.; Du, Y.L. Rational and semi-rational engineering of cytochrome P450s for biotechnological applications. Synth. Syst. Biotechnol. 2018, 3, 283–290. [Google Scholar] [CrossRef]
- Giuriato, D.; Correddu, D.; Catucci, G.; Di Nardo, G.; Bolchi, C.; Pallavicini, M.; Gilardi, G. Design of a H2O2-generating P450(SPalpha) fusion protein for high yield fatty acid conversion. Protein Sci. 2022, 31, e4501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.T.; Li, T.; Deng, S.K.; Spain, J.C.; Zhou, N.Y. A cytochrome P450 system initiates 4-nitroanisole degradation in Rhodococcus sp. strain JS3073. J. Hazard. Mater. 2023, 458, 131886. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Kim, S.Y.; Park, J.; Park, W.; Hwang, K.Y.; Yoon, Y.J.; Oh, W.K.; Kim, B.Y.; Ahn, J.S. Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library. J. Appl. Microbiol. 2007, 102, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Correddu, D.; Di Nardo, G.; Gilardi, G. Self-Sufficient Class VII Cytochromes P450: From Full-Length Structure to Synthetic Biology Applications. Trends Biotechnol. 2021, 39, 1184–1207. [Google Scholar] [CrossRef]
- Munro, A.W.; Leys, D.G.; Mclean, K.J.; Marshall, K.R.; Ost, T.W.; Daff, S.; Miles, C.S.; Chapman, S.K.; Lysek, D.A.; Moser, C.C.; et al. P450 BM3: The very model of a modern flavocytochrome. Trends Biochem. Sci. 2002, 27, 250–257. [Google Scholar] [CrossRef]
- Yildirim, D.; Ozic, C.; Ensari, Y. Expression and Characterization of a New Self-Sufficient P450 Monooxygenase (P450 AZC1) from Azorhizobium caulinodans. Chembiochem 2023, 24, e202300065. [Google Scholar] [CrossRef]
- Cha, Y.; Li, W.; Wu, T.; You, X.; Chen, H.; Zhu, C.; Zhuo, M.; Chen, B.; Li, S. Probing the Synergistic Ratio of P450/CPR To Improve (+)-Nootkatone Production in Saccharomyces cerevisiae. J. Agric. Food Chem. 2022, 70, 815–825. [Google Scholar] [CrossRef]
- Campelo, D.; Esteves, F.; Brito Palma, B.; Costa Gomes, B.; Rueff, J.; Lautier, T.; Urban, P.; Truan, G.; Kranendonk, M. Probing the Role of the Hinge Segment of Cytochrome P450 Oxidoreductase in the Interaction with Cytochrome P450. Int. J. Mol. Sci. 2018, 19, 3914. [Google Scholar] [CrossRef] [PubMed]
- Urlacher, V.B.; Girhard, M. Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol. 2019, 37, 882–897. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, Y.D.; Taldaev, A.; Lisitsa, A.V.; Ponomarenko, E.A.; Archakov, A.I. Prediction of Monomeric and Dimeric Structures of CYP102A1 Using AlphaFold2 and AlphaFold Multimer and Assessment of Point Mutation Effect on the Efficiency of Intra- and Interprotein Electron Transfer. Molecules 2022, 27, 1386. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Li, Z.; Ji, Y.; Ruff, A.J.; Liu, L.; Davari, M.D.; Schwaneberg, U. Introduction of aromatic amino acids in electron transfer pathways yielded improved catalytic performance of cytochrome P450s. Chin. J. Catal. 2023, 49, 81–90. [Google Scholar] [CrossRef]
- Zhao, L.; Guven, G.; Li, Y.; Schwaneberg, U. First steps towards a Zn/Co(III)sep-driven P450 BM3 reactor. Appl. Microbiol. Biotechnol. 2011, 91, 989–999. [Google Scholar] [CrossRef]
- Velazquez, M.N.R.; Noebauer, M.; Pandey, A.V. Loss of Protein Stability and Function Caused by P228L Variation in NADPH-Cytochrome P450 Reductase Linked to Lower Testosterone Levels. Int. J. Mol. Sci. 2022, 23, 10141. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ge, J.; Yu, H.; Ye, L. Improved Bioproduction of the Nylon 12 Monomer by Combining the Directed Evolution of P450 and Enhancing Heme Synthesis. Molecules 2023, 28, 1758. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yang, H.; Wang, L.; Yu, B. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli. ACS Synth. Biol. 2016, 5, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Bai, P.; Liu, T.; Li, D.; Zhang, X.; Lu, W.; Yuan, Y. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2016, 113, 1787–1795. [Google Scholar] [CrossRef]
- Guo, X.; Sun, J.; Li, D.; Lu, W. Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica. Biochem. Eng. J. 2018, 137, 125–131. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, C.; Nan, W.; Li, D.; Ke, D.; Lu, W. Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chem. Eng. Sci. 2019, 196, 82–90. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Zhang, C.; Sun, J.; Zhou, Z.; Lu, W. Production of Triterpene Ginsenoside Compound K in the Non-conventional Yeast Yarrowia lipolytica. J. Agric. Food Chem. 2019, 67, 2581–2588. [Google Scholar] [CrossRef] [PubMed]
- Aalbers, F.S.; Fraaije, M.W. Enzyme Fusions in Biocatalysis: Coupling Reactions by Pairing Enzymes. Chembiochem 2019, 20, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Papaleo, E.; Saladino, G.; Lambrughi, M.; Lindorff-Larsen, K.; Gervasio, F.L.; Nussinov, R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem. Rev. 2016, 116, 6391–6423. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Lee, K.; Lee, J.H.; Lee, P.C. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microb. Cell Fact. 2020, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Haga, T.; Hirakawa, H.; Nagamune, T. Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker. PLoS ONE 2013, 8, e75114. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Wei, P.; Gao, X.; Li, M.; Zhang, C.; Zhou, Z.; Lu, W. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production. Chem. Eng. Sci. 2020, 218, 115529. [Google Scholar] [CrossRef]
- Park, S.Y.; Eun, H.; Lee, M.H.; Lee, S.Y. Metabolic engineering of Escherichia coli with electron channelling for the production of natural products. Nat. Catal. 2022, 5, 726–737. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, Y.; Azi, F.; Wang, Z.; Xu, W.; Wang, D.; Dong, M.; Xia, X. Constructing Protein-Scaffolded Multienzyme Assembly Enhances the Coupling Efficiency of the P450 System for Efficient Daidzein Biosynthesis from (2S)-Naringenin. J. Agric. Food Chem. 2024, 72, 5849–5859. [Google Scholar] [CrossRef]
- Cirino, P.C.; Arnold, F.H. A Self-Sufficient Peroxide-Driven Hydroxylation Biocatalyst. Angew. Chem. Int. Ed. 2003, 42, 3299–3301. [Google Scholar] [CrossRef]
- Zhao, H.; Donk, W.A. Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 2003, 14, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, F.; Arends, I.W.C.E.; Buehler, K. Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. Chemcatchem 2010, 2, 762–782. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, Y.C.; Kim, D.M.; Park, C.B. Cytochrome P450-catalyzed O-dealkylation coupled with photochemical NADPH regeneration. Biotechnol. Bioeng. 2013, 110, 383–390. [Google Scholar] [CrossRef]
- Jensen, K.; Jensen, P.E.; Moller, B.L. Light-driven cytochrome p450 hydroxylations. ACS Chem. Biol. 2011, 6, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Kim, M.; Jin, Y.S.; Seo, J.H. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl. Microbiol. Biotechnol. 2013, 97, 2761–2772. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 2006, 124, 128–145. [Google Scholar] [CrossRef]
- Mi, L.; Wang, Z.; Yang, W.; Huang, C.; Zhou, B.; Hu, Y.; Liu, S. Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. TrAC Trends Anal. Chem. 2023, 158, 116791. [Google Scholar] [CrossRef]
- Guengerich, F.P. Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions. Chem. Res. Toxicol. 2017, 30, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.V.; Koroleva, P.I.; Bulko, T.V.; Shkel, T.V.; Gilep, A.A.; Veselovsky, A.V. Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4. Bioelectrochemistry 2023, 149, 108277. [Google Scholar] [CrossRef]
- Brett, C.; Brett, A.M.O. Electrochemistry. Principles, methods and applications: Christopher, M.A. Brett and Ana Maria Oliveira Brett Oxford Science Publications 1993, 427 pp., 25. Electrochim. Acta 1994, 39, 853. [Google Scholar]
- Shumyantseva, V.V.; Kuzikov, A.V.; Masamrekh, R.A.; Bulko, T.V.; Archakov, A.I. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens. Bioelectron. 2018, 121, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Masamrekh, R.A.; Kuzikov, A.V.; Haurychenka, Y.I.; Shcherbakov, K.A.; Veselovsky, A.V.; Filimonov, D.A.; Dmitriev, A.V.; Zavialova, M.G.; Gilep, A.A.; Shkel, T.V.; et al. In vitro interactions of abiraterone, erythromycin, and CYP3A4: Implications for drug-drug interactions. Fundam. Clin. Pharmacol. 2020, 34, 120–130. [Google Scholar] [CrossRef]
- Castrignano, S.; Di Nardo, G.; Sadeghi, S.J.; Gilardi, G. Influence of inter-domain dynamics and surrounding environment flexibility on the direct electrochemistry and electrocatalysis of self-sufficient cytochrome P450 3A4-BMR chimeras. J. Inorg. Biochem. 2018, 188, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Algov, I.; Grushka, J.; Zarivach, R.; Alfonta, L. Highly efficient flavin-adenine dinucleotide glucose dehydrogenase fused to a minimal cytochrome c domain. J. Am. Chem. Soc. 2017, 139, 17217–17220. [Google Scholar] [CrossRef] [PubMed]
- Udit, A.K.; Hindoyan, N.; Hill, M.G.; Arnold, F.H.; Gray, H.B. Protein-surfactant film voltammetry of wild-type and mutant cytochrome P450 BM3. Inorg. Chem. 2005, 44, 4109–4111. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Mi, L.; Xu, X.; Lu, J.; Qian, J.; Liu, S. Nanocomposites of Graphene and Cytochrome P450 2D6 Isozyme for Electrochemical-Driven Tramadol Metabolism. Langmuir 2014, 30, 11833–11840. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Kato, D.; Kamata, T.; Niwa, O. Cytochrome P450 Modified Polycrystalline Indium Tin Oxide Film as a Drug Metabolizing Electrochemical Biosensor with a Simple Configuration. Anal. Chem. 2013, 85, 9996–9999. [Google Scholar] [CrossRef]
- Zernia, S.; Ott, F.; Bellmann-Sickert, K.; Frank, R.; Klenner, M.; Jahnke, H.G.; Prager, A.; Abel, B.; Robitzki, A.A.; Beck-Sickinger, A.G. Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant. Bioconjug Chem. 2016, 27, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Rusling, J.F. ChemInform Abstract: Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films. ChemInform 1998, 31, 363–369. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Kuzikov, A.V.; Masamrekh, R.A.; Konyakhina, A.Y.; Romanenko, I.; Max, J.B.; Köhler, M.; Gilep, A.A.; Usanov, S.A.; et al. All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochim. Acta 2020, 336, 135579. [Google Scholar] [CrossRef]
- Panicco, P.; Castrignano, S.; Sadeghi, S.J.; Nardo, G.D.; Gilardi, G. Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry 2021, 138, 107729. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.; Bulko, T.; Koroleva, P.; Shich, E.; Makhova, A.; Kisel, M.; Haidukevich, I.; Gilep, A. Human Cytochrome P450 2C9 and its Polymorphic Modifications: Electroanalysis, Catalytic Properties and Approaches to the Regulation of Enzymatic Activity; Social Science Electronic Publishing: New York NY, USA, 2022. [Google Scholar]
- Kuzikov, A.V.; Filippova, T.A.; Masamrekh, R.A.; Shumyantseva, V.V. Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. J. Electroanal. Chem. 2022, 904, 115937. [Google Scholar] [CrossRef]
- Yang, M.; Kabulski, J.L.; Wollenberg, L.; Chen, X.; Subramanian, M.; Tracy, T.S.; Lederman, D.; Gannett, P.M.; Wu, N. Electrocatalytic drug metabolism by CYP2C9 bonded to a self-assembled monolayer-modified electrode. Drug Metab. Dispos. 2009, 37, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Kuzikov, A.V.; Filippova, T.A.; Masamrekh, R.A.; Shumyantseva, V.V. Biotransformation of phenytoin in the electrochemically-driven CYP2C19 system. Biophys. Chem. 2022, 291, 106894. [Google Scholar] [CrossRef]
- Vargas, A.F.L.; Buitrago, W.G.Q.; Silva, D.C.C. Voltammetric Responses of a CYP2D6-Based Biosensor to 3,4-methylenedioxymethamphetamine (MDMA) and the Synthetic Cathinone α-pyrrolidinopentiophenone (α-PVP). Chem. Sel. 2022, 42, e202202748. [Google Scholar] [CrossRef]
- Shu, T.; Wang, J.; Li, X.; Wang, X.; Wang, S. Cytochrome P450 2D6 biosensor for perphenazine based on multi-walled carbon nanotube/ionic liquid and tetrathiafulvalene-tetracyanoquinodimethane salt/ionic liquid gels. Electrochim. Acta 2023, 439, 141656. [Google Scholar] [CrossRef]
- Kuzikov, A.V.; Masamrekh, R.A.; Filippova, T.A.; Tumilovich, A.M.; Strushkevich, N.V.; Gilep, A.A.; Khudoklinova, Y.Y.; Shumyantseva, V.V. Bielectrode Strategy for Determination of CYP2E1 Catalytic Activity: Electrodes with Bactosomes and Voltammetric Determination of 6-Hydroxychlorzoxazone. Biomedicines 2024, 12, 152. [Google Scholar] [CrossRef]
- Koroleva, P.I.; Gilep, A.A.; Kraevsky, S.V.; Tsybruk, T.V.; Shumyantseva, V.V. Improving the Efficiency of Electrocatalysis of Cytochrome P450 3A4 by Modifying the Electrode with Membrane Protein Streptolysin O for Studying the Metabolic Transformations of Drugs. Biosensors 2023, 13, 457. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Koroleva, P.I.; Gilep, A.A.; Napolskii, K.S.; Ivanov, Y.D.; Kanashenko, S.L.; Archakov, A.I. Increasing the Efficiency of Cytochrome P450 3A4 Electrocatalysis Using Electrode Modification with Spatially Ordered Anodic Aluminum Oxide-Based Nanostructures for Investigation of Metabolic Transformations of Drugs. Dokl. Biochem. Biophys. 2022, 506, 215–219. [Google Scholar] [CrossRef]
- Cheropkina, H.; Catucci, G.; Cesano, F.; Marucco, A.; Gilardi, G.; Sadeghi, S.J. Bioelectrochemical platform with human monooxygenases: FMO1 and CYP3A4 tandem reactions with phorate. Bioelectrochemistry 2023, 150, 108327. [Google Scholar] [CrossRef]
- Kuzikov, A.; Masamrekh, R.; Shkel, T.; Strushkevich, N.; Gilep, A.; Usanov, S.; Archakov, A.; Shumyantseva, V. Assessment of electrocatalytic hydroxylase activity of cytochrome P450 3A4 (CYP3A4) by means of derivatization of 6beta-hydroxycortisol by sulfuric acid for fluorimetric assay. Talanta 2019, 196, 231–236. [Google Scholar] [CrossRef]
- Kuzikov, A.V.; Masamrekh, R.A.; Filippova, T.A.; Haurychenka, Y.I.; Gilep, A.A.; Shkel, T.V.; Strushkevich, N.V.; Usanov, S.A.; Shumyantseva, V.V. Electrochemical oxidation of estrogens as a method for CYP19A1 (aromatase) electrocatalytic activity determination. Electrochim. Acta 2020, 333, 135539. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, N.; He, Z.; Yang, Y.; Li, Y. Direct electrochemical detection of extracellular nitric oxide in Arabidopsis protoplast based on cytochrome P450 55B1 biosensor. Nitric Oxide 2023, 132, 8–14. [Google Scholar] [CrossRef]
- Ray, M.; Mhaske, S.D.; Haram, S.K.; Mazumdar, S. Covalent Conjugation of Single-Walled Carbon Nanotube with CYP101 mutant for Direct Electrocatalysis. Anal. Biochem. 2021, 626, 114204. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Kuzikov, A.V.; Masamrekh, R.A.; Khatri, Y.; Zavialova, M.G.; Bernhardt, R.; Archakov, A.I. Direct electrochemistry of CYP109C1, CYP109C2 fraom Sorangium cellulosum So ce56. Electrochim. Acta 2016, 192, 72–79. [Google Scholar] [CrossRef]
- Dai, Q.; Yang, L.; Wang, Y.; Cao, X.; Xu, X. Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles. Anal. Bioanal. Chem. 2020, 412, 4703–4712. [Google Scholar] [CrossRef]
- Chen, X.; Cao, Y.; Li, F.; Tian, Y.; Song, H. Enzyme-Assisted Microbial Electrosynthesis of Poly(3-hydroxybutyrate) via CO2 Bioreduction by Engineered Ralstonia eutropha. ACS Catal. 2018, 8, 4429–4437. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Y.; Hu, Y.; Cao, B.; Rice, S.A.; Kjelleberg, S.; Song, H. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway. ACS Synth. Biol. 2015, 4, 815–823. [Google Scholar] [CrossRef]
- Rowe, S.F.; Le Gall, G.; Ainsworth, E.V.; Davies, J.A.; Lockwood, C.W.J.; Shi, L.; Elliston, A.; Roberts, I.N.; Waldron, K.W.; Richardson, D.J.; et al. Light-Driven H-2 Evolution and C=C or C=O Bond Hydrogenation by Shewanella oneidensis: A Versatile Strategy for Photocatalysis by Nonphotosynthetic Microorganisms. ACS Catal. 2017, 7, 7558–7566. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, F.; Cao, Y.; Tian, Y.; Song, H. Electricity-driven 7α-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast. Catal. Sci. Technol. 2019, 9, 4877–4887. [Google Scholar] [CrossRef]
- Shalan, H.; Kato, M.; Cheruzel, L. Keeping the spotlight on cytochrome P450. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 80–87. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24, 1658–1671. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.H.; Cha, G.S.; Da, S.C.; Chan, B.P. Cofactor-Free Light-Driven Whole-Cell Cytochrome P450 Catalysis. Angew. Chem. 2015, 54, 969–973. [Google Scholar] [CrossRef]
- Kato, M.; Lam, Q.; Bhandarkar, M.; Banh, T.; Heredia, J.; Andrew, U.; Cheruzel, L. Selective C–H bond functionalization with light-driven P450 biocatalysts. Comptes Rendus Chim. 2016, 20, 237–242. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, D.S.; Kuk, S.K.; Park, C.B. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew. Chem. 2017, 57, 7958–7985. [Google Scholar] [CrossRef]
- Girhard, M.; Kunigk, E.; Tihovsky, S.; Shumyantseva, V.V.; Urlacher, V.B. Light-driven biocatalysis with cytochrome P450 peroxygenases. Biotechnol. Appl. Biochem. 2013, 60, 111–118. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hara, M.; Ikebukuro, K.; Miyake, J.; Karube, I. Photo-induced activation of cytochrome P450/reductase fusion enzyme coupled with spinach chloroplasts. Biotechnol. Technol. 1996, 10, 717–720. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, M.; Wang, J.; Bai, L.; Yang, Y.; Dai, H.; Cui, D.; Zhao, M. Light-driven biodegradation of azo dyes by Shewanella decolorationis-CdS biohybrid in wastewater lacking electron donors. Appl. Microbiol. Biotechnol. 2023, 107, 447–457. [Google Scholar] [CrossRef]
- Liu, K.; Wang, F.-Q.; Liu, K.; Zhao, Y.; Gao, B.; Tao, X.; Wei, D. Light-driven progesterone production by InP–(M. neoaurum) biohybrid system. Bioresour. Bioprocess. 2022, 9, 93. [Google Scholar] [CrossRef]
- Torrado, A.; Connabeer, H.M.; Rottig, A.; Pratt, N.; Baylay, A.J.; Terry, M.J.; Moore, C.M.; Bibby, T.S. Directing cyanobacterial photosynthesis in a cytochrome c oxidase mutant using a heterologous electron sink. Plant Physiol. 2022, 189, 2554–2566. [Google Scholar] [CrossRef]
- Le, T.K.; Kim, J.; Anh Nguyen, N.; Huong Ha Nguyen, T.; Sun, E.G.; Yee, S.M.; Kang, H.S.; Yeom, S.J.; Beum Park, C.; Yun, C.H. Solar-Powered Whole-Cell P450 Catalytic Platform for C-Hydroxylation Reactions. ChemSusChem 2021, 14, 3054–3058. [Google Scholar] [CrossRef]
- Le, T.-K.; Park, J.H.; Choi, D.S.; Lee, G.-Y.; Choi, W.S.; Jeong, K.J.; Park, C.B.; Yun, C.-H. Solar-driven biocatalytic C-hydroxylation through direct transfer of photoinduced electrons. Green. Chem. 2019, 21, 515–525. [Google Scholar] [CrossRef]
- Archakov, V. Fluorescence Spectroscopy Study of the Interaction of Cytochrome P450 2B4 with Riboflavin. Biophysics 2004, 49, 13–18. [Google Scholar]
- Qian, J.; Zhu, W.; Mi, L.; Xu, X.; Yu, J.; Cui, D.; Xue, Y.; Liu, S. Nanohybrids of quantum dots and cytochrome P450 for light-driven drug metabolism. J. Electroanal. Chem. 2014, 733, 27–32. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Li, M.; Niu, P.; Wang, T.; Chen, D.; Chen, P.; Zou, J.-P. A new strategy for triggering photocatalytic activity of Cytrochrome P450 by coupling of semiconductors. Chem. Eng. J. 2019, 358, 58–66. [Google Scholar] [CrossRef]
- Sosa, V.; Melkie, M.; Sulca, C.; Li, J.; Tang, L.; Li, J.; Faris, J.; Foley, B.; Banh, T.; Kato, M.; et al. Selective Light-Driven Chemoenzymatic Trifluoromethylation/Hydroxylation of Substituted Arenes. ACS Catal. 2018, 8, 2225–2229. [Google Scholar] [CrossRef]
- Li, N.; Yan, S.; Wu, P.; Li, J.; Wang, B. Local Electric Fields Drives the Proton-Coupled Electron Transfer within Cytochrome P450 Reductase. ACS Catal. 2024, 14, 7893–7900. [Google Scholar] [CrossRef]
- Agustinus, B.; Gillam, E.M.J. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J. Inorg. Biochem. An. Interdiscip. J. 2023, 245, 112242. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Koroleva, P.I.; Bulko, T.V.; Agafonova, L.E. Alternative Electron Sources for Cytochrome P450s Catalytic Cycle: Biosensing and Biosynthetic Application. Processes 2023, 11, 1801. [Google Scholar] [CrossRef]
Species | Electrodes | Km/μM | Substrate | Reference |
---|---|---|---|---|
CYP2C9 | SPE 1/DDAB 2 | 45 ± 5 | diclofenac | [114] |
CYP2C9 | CE 3/DDAB | 3.03 ± 0.38 | (S)-7-hydroxywarfarin | [115] |
CYP2C9 | GOLD/SAM | 3 | warfarin | [116] |
CYP2C19 | CE/DDAB | 25.8 ± 2.0 | 4-hydroxyphenytoin | [117] |
CYP2D6 | CE/SPE | - | MDMA and α-PVP | [118] |
CYP2D6 | MWNT/[BMIM][PF6]-[TTF–TCNQ]/[BMIM][PF6] | 5.52 | Perphenazine | [119] |
CYP2E1 | SPE/DDAB | 78 ± 9 | chlorzoxazone | [120] |
CYP3A4 | SPE/DDAB/SLO 4 | 207 ± 2.5 | erythromycin | [121] |
CYP3A4 | DDAB | 70 | erythromycin | [101] |
CYP3A4 | DDAB | - | - | [122] |
CYP3A4 | GCE/GO/DDAB | 29.6 ± 4.1 | phorate | [123] |
CYP3A4 | SPE/(PB-b-PDMAEMA/MWCNTs) | 48 ± 8 | diclofenac | [112] |
CYP3A4 | SPE/DDAB | 10 ± 2 | 6β-hydroxycortisol | [124] |
CYP19A1 | GE/DDAB | 4.2 ± 1.5 | estrone | [125] |
CYP55B1 | PGE/GA/BSA | 11.64 × 10−3 | Nitric oxide reductase | [126] |
CYP101 | GC/SWCNT | - | - | [127] |
CYP109D1 | SPE/DDAB | - | myristic acid | [128] |
P450 BM3 | GCE/NH2-DMSN | 244.82 | testosterone | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Liu, X.; Li, C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024, 29, 2480. https://doi.org/10.3390/molecules29112480
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules. 2024; 29(11):2480. https://doi.org/10.3390/molecules29112480
Chicago/Turabian StyleHe, Jingting, Xin Liu, and Chun Li. 2024. "Engineering Electron Transfer Pathway of Cytochrome P450s" Molecules 29, no. 11: 2480. https://doi.org/10.3390/molecules29112480
APA StyleHe, J., Liu, X., & Li, C. (2024). Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules, 29(11), 2480. https://doi.org/10.3390/molecules29112480