Construction of N-Aryl-Substituted Pyrrolidines by Successive Reductive Amination of Diketones via Transfer Hydrogenation
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Procedure for Construction of N-Aryl-Substituted Pyrrolidines
3.2. Large-Scale Synthesis of 3a1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Hagan, D. Pyrrole, pyrrolidine pyridine, piperidine, azepine and tropane alkaloids. Nat. Prod. Rep. 1997, 14, 637–651. [Google Scholar] [CrossRef]
- Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. [Google Scholar] [CrossRef] [PubMed]
- La Regina, G.; Silvestri, R.; Artico, M.; Lavecchia, A.; Novellino, E.; Befani, O.; Turini, P.; Agostinelli, E. New Pyrrole inhibitors of monoamine oxidase: Synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity. J. Med. Chem. 2007, 50, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Asahina, Y.; Takei, M.; Kimura, T.; Fukuda, Y. Synthesis and antibacterial activity of novel pyrido [1, 2, 3-de][1, 4] benzoxazine-6-carboxylic acid derivatives carrying the 3-cyclopropylaminomethyl-4-substituted-1-pyrrolidinyl group as a C-10 substituent. J. Med. Chem. 2008, 51, 3238–3249. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Panneerselvam, M.; Pavithra, N.; Anandan, S.; Sundaravel, K.; Jaccob, M.; Kathiravan, A. A combined experimental and computational characterization of D–π–A dyes containing heterocyclic electron donors. J. Photochem. Photobiol. A Chem. 2017, 332, 453–464. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Nair, P.N.; Antony, A.; Lalli, C.; Grée, R. The aza-Prins reaction in the synthesis of natural products and analogues. Eur. J. Org. Chem. 2017, 2017, 1805–1819. [Google Scholar] [CrossRef]
- Verma, P.; Richter, J.M.; Chekshin, N.; Qiao, J.X.; Yu, J.-Q. Iridium (I)-catalyzed α-C (sp3)-H Alkylation of Saturated Azacycles. J. Am. Chem. Soc. 2020, 142, 5117–5125. [Google Scholar] [CrossRef]
- Popovici-Muller, J.; Lemieux, R.M.; Artin, E.; Saunders, J.O.; Salituro, F.G.; Travins, J.; Cianchetta, G.; Cai, Z.; Zhou, D.; Cui, D.; et al. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Med. Chem. Lett. 2018, 9, 300–305. [Google Scholar] [CrossRef]
- Ju, Y.; Varma, R.S. An Efficient and Simple Aqueous N-Heterocyclization of Aniline Derivatives: Microwave-Assisted Synthesis of N-Aryl Azacycloalkanes. Org. Lett. 2005, 7, 2409–2411. [Google Scholar] [CrossRef]
- Ju, Y.; Varma, R.S. Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides: Microwave-Assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives. J. Org. Chem. 2006, 71, 135–141. [Google Scholar] [CrossRef]
- Barnard, T.M.; Vanier, G.S.; Collins, M.J. Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org. Process Res. Dev. 2006, 10, 1233–1237. [Google Scholar] [CrossRef]
- Gonsalves, O.S.; Ambre, J.P.; Nemade, P.R. Improving the yield of graphene oxide-catalysed N-heterocyclization of amines through fed batch mode. New J. Chem. 2022, 46, 17410–17420. [Google Scholar] [CrossRef]
- Cui, X.; Dai, X.; Deng, Y.; Shi, F. Development of a General Non-Noble Metal Catalyst for the Benign Amination of Alcohols with Amines and Ammonia. Chem. Eur. J. 2013, 19, 3665–3675. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, C.; Gao, W.-C.; Ma, Y.; Wang, X.; Zhang, L.; Yue, J.; Tang, B. Nickel-catalyzed borrowing hydrogen annulations: Access to diversified N-heterocycles. Chem. Commun. 2019, 55, 7844–7847. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.E.R.; Paterson, K.J.; Armstrong, R.J.; Twin, H.C.; Donohoe, T.J. A hydrogen borrowing annulation strategy for the stereocontrolled synthesis of saturated aza-heterocycles. Chem. Commun. 2020, 56, 3563–3566. [Google Scholar] [CrossRef]
- Boga, C.; Manescalchi, F.; Savoia, D. Diastereoselective synthesis of 2,5-dimethylpyrrolidines and 2,6-dimethylpiperidines by reductive amination of 2,5-hexanedione and 2,6-heptanedione with hydride reagents. Tetrahedron 1994, 50, 4709–4722. [Google Scholar] [CrossRef]
- Xue, Z.; Yu, D.; Zhao, X.; Mu, T. Upgrading of levulinic acid into diverse N-containing functional chemicals. Green Chem. 2019, 21, 5449–5468. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Bruneau, C.; Fischmeister, C. Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones. ChemSusChem 2017, 10, 4150–4154. [Google Scholar] [CrossRef]
- Wu, C.; Luo, X.; Zhang, H.; Liu, X.; Ji, G.; Liu, Z.; Liu, Z. Reductive amination/cyclization of levulinic acid to pyrrolidones versus pyrrolidines by switching the catalyst from AlCl3 to RuCl3 under mild conditions. Green Chem. 2017, 19, 3525–3529. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, H.; Yu, B.; Chen, Y.; Ke, Z.; Guo, S.; Liu, Z. Lactate-based ionic liquid catalyzed reductive amination/cyclization of keto acids under mild conditions: A metal-free route to synthesize lactams. ACS Catal. 2017, 7, 7772–7776. [Google Scholar] [CrossRef]
- Muzzio, M.; Yu, C.; Lin, H.; Yom, T.; Boga, D.A.; Xi, Z.; Li, N.; Yin, Z.; Li, J.; Dunn, J.A. Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chem. 2019, 21, 1895–1899. [Google Scholar] [CrossRef]
- Xie, C.; Song, J.; Wu, H.; Hu, Y.; Liu, H.; Zhang, Z.; Zhang, P.; Chen, B.; Han, B. Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO2 Nanosheets. J. Am. Chem. Soc. 2019, 141, 4002–4009. [Google Scholar] [CrossRef]
- Irrgang, T.; Kempe, R. Transition-metal-catalyzed reductive amination employing hydrogen. Chem. Rev. 2020, 120, 9583–9674. [Google Scholar] [CrossRef]
- Duan, Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou, Y.-G. Homogenous Pd-catalyzed ASYMMETRIC HYDROGENATION of unprotected indoles: Scope and mechanistic studies. J. Am. Chem. Soc. 2014, 136, 7688–7700. [Google Scholar] [CrossRef]
- Hu, X.-N.; Shen, T.-L.; Cai, D.-C.; Zheng, J.-F.; Huang, P.-Q. The iridium-catalysed reductive coupling reaction of tertiary lactams/amides with isocyanoacetates. Org. Chem. Front. 2018, 5, 2051–2056. [Google Scholar] [CrossRef]
- Menuel, S.; Bertaut, E.; Monflier, E.; Hapiot, F. Cyclodextrin-based PNN supramolecular assemblies: A new class of pincer-type ligands for aqueous organometallic catalysis. Dalton Trans. 2015, 44, 13504–13512. [Google Scholar] [CrossRef]
- Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 2016, 116, 12564–12649. [Google Scholar] [CrossRef]
- Snelling, R.A.; Amberchan, G.; Resendez, A.; Murphy, C.L.; Porter, L.; Singaram, B. Diisobutylaluminum borohydride: An efficient reagent for the reduction of tertiary amides to the corresponding amines under ambient conditions. Tetrahedron Lett. 2017, 58, 4073–4077. [Google Scholar] [CrossRef]
- Collins, C.J.; Lanz, M.; Singaram, B. Facile reduction of tertiary lactams to cyclic amines with 9-borabicyclo [3.3. 1] nonane (9-BBN). Tetrahedron Lett. 1999, 40, 3673–3676. [Google Scholar] [CrossRef]
- Flaniken, J.M.; Collins, C.J.; Lanz, M.; Singaram, B. Aminoborohydrides. 11. Facile reduction of N-alkyl lactams to the corresponding amines using lithium aminoborohydrides. Org. Lett. 1999, 1, 799–801. [Google Scholar] [CrossRef]
- Jeffrey, J.L.; Bartlett, E.S.; Sarpong, R. Intramolecular C(sp3)-N Coupling by Oxidation of Benzylic C, N-Dianions. Angew. Chem. Int. Ed. 2013, 52, 2194–2197. [Google Scholar] [CrossRef]
- Betz, K.N.; Chiappini, N.D.; Du Bois, J. Intermolecular sp3-C–H amination for the synthesis of saturated azacycles. Org. Lett. 2020, 22, 1687–1691. [Google Scholar] [CrossRef]
- Korbad, B.L.; Lee, S.H. Synthesis of N-aryl substituted, five-and six-membered azacycles using aluminum-amide complexes. Chem. Commun. 2014, 50, 8985–8988. [Google Scholar] [CrossRef]
- Amara, Z.; Streng, E.S.; Skilton, R.A.; Jin, J.; George, M.W.; Poliakoff, M. Automated Serendipity with Self-Optimizing Continuous-Flow Reactors. Eur. J. Org. Chem. 2015, 2015, 6141–6145. [Google Scholar] [CrossRef]
- Zhang, Z.; Miao, C.; Xia, C.; Sun, W. Synergistic acid-catalyzed synthesis of N-aryl-substituted azacycles from anilines and cyclic ethers. Org. Lett. 2016, 18, 1522–1525. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, S.; Huo, Y.; Wang, Z. Titanium tetrachloride-mediated synthesis of N-aryl-substituted azacycles from cyclic ethers. RSC Adv. 2017, 7, 4363–4367. [Google Scholar] [CrossRef]
- La, M.T.; Kang, S.; Kim, H.-K. Metal-Free Synthesis of N-Aryl-Substituted Azacycles from Cyclic Ethers Using POCl3. J. Org. Chem. 2019, 84, 6689–6696. [Google Scholar] [CrossRef]
- Tran, V.H.; Hong, W.P.; Kim, H.K. Facile titanium (IV) chloride and TBD-mediated synthesis of N-aryl-substituted azacycles from arylhydrazines. Bull. Korean Chem. Soc. 2022, 43, 777–783. [Google Scholar] [CrossRef]
- Gill, D.M.; Iveson, M.; Collins, I.; Jones, A.M. A Mitsunobu reaction to functionalized cyclic and bicyclic N-arylamines. Tetrahedron Lett. 2018, 59, 238–242. [Google Scholar] [CrossRef]
- Miranda, P.O.; Carballo, R.M.; Martín, V.S.; Padrón, J.I. A new catalytic Prins cyclization leading to Oxa- and Azacycles. Org. Lett. 2009, 11, 357–360. [Google Scholar] [CrossRef]
- Liu, G.-Q.; Cui, B.; Xu, R.; Li, Y.-M. Preparation of trans-2-Substituted-4-halopiperidines and cis-2-Substituted-4-halotetrahydropyrans via AlCl3-Catalyzed Prins Reaction. J. Org. Chem. 2016, 81, 5144–5161. [Google Scholar] [CrossRef] [PubMed]
- Barluenga, J.; Nájera, C.; Yus, M. One-Pot synthesis of substituted pyrrolidines via aminomercuration-demercuration of 1, 4- and 1, 5-Hexadiene. J. Heterocyclic Chem. 1981, 18, 1297–1299. [Google Scholar] [CrossRef]
- Takeda, T.; Saito, J.; Tsubouchi, A. Formation of pyrrolidines by the titanocene (II)-promoted intramolecular reaction of N-[3, 3-bis (phenylthio) propyl] anilides. Tetrahedron Lett. 2003, 44, 5571–5574. [Google Scholar] [CrossRef]
- Qiu, H.; Du, Z.; Zhao, Y.; Yuan, S.; Xi, S.; Zhou, T.; Yang, J.; Zhang, C.; Xiong, Y.; Xia, Y.; et al. Enantioselective Synthesis and Biological Evaluation of Pyrrolidines Bearing Quaternary Stereogenic Centers. J. Med. Chem. 2023, 66, 9866–9880. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.-I.; Fujii, T.; Yamaguchi, R. Cp*Ir Complex-Catalyzed N-Heterocyclization of Primary Amines with Diols: A New Catalytic System for Environmentally Benign Synthesis of Cyclic Amines. Org. Lett. 2004, 6, 3525–3528. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lou, X.B.; Ni, J.; Liu, Y.M.; Cao, Y.; He, H.Y.; Fan, K.N. Efficient and Clean Gold-Catalyzed One-Pot Selective N-Alkylation of Amines with Alcohols. Chem. Eur. J. 2010, 16, 13965–13969. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, C.; Xiao, J. Transfer Hydrogenation in Water. Chem. Rec. 2016, 16, 2772–2786. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.; Tao, Y.; Nie, Y.; Lu, T.; Wang, J.; Zhang, Y.; Lu, X.; Xu, C.C. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts. ACS Catal. 2021, 11, 1071–1095. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, Y.; Luo, R.; Ouyang, L. Recent advances of Cp*Ir complexes for transfer hydrogenation: Focus on formic acid/formate as hydrogen donors. Org. Biomol. Chem. 2023, 21, 7484–7497. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, S.; Miao, R.; Liao, J.; Ouyang, L.; Luo, R. Synthesis of N-alkoxy amines and hydroxylamines via the iridium-catalyzed transfer hydrogenation of oximes. Org. Biomol. Chem. 2022, 20, 6394–6399. [Google Scholar] [CrossRef]
- Wen, H.; Luo, N.; Zhu, Q.; Luo, R. Amide iridium complexes as catalysts for transfer hydrogenation reduction of N-sulfonylimine. J. Org. Chem. 2021, 86, 3850–3859. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Liao, J.; Ouyang, L.; Wen, H.; Zhong, Y.; Liu, J.; Tang, W.; Luo, R. Highly selective hydroxylation and alkoxylation of silanes: One-pot silane oxidation and reduction of aldehydes/ketones. Organometallics 2020, 39, 165–171. [Google Scholar] [CrossRef]
- Luo, N.; Zhong, Y.; Shui, H.; Luo, R. pH-Mediated Selective Synthesis of N-Allylic Alkylation or N-Alkylation Amines with Allylic Alcohols via an Iridium Catalyst in Water. J. Org. Chem. 2021, 86, 15509–15521. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Miao, R.; Yang, Z.; Luo, R. Iridium-catalyzed reductive amination of carboxylic acids. J. Catal. 2023, 418, 283–289. [Google Scholar] [CrossRef]
- Ouyang, L.; Xia, Y.; Liao, J.; Luo, R. One-Pot Transfer Hydrogenation Reductive Amination of Aldehydes and Ketones by Iridium Complexes “on Water”. Eur. J. Org. Chem. 2020, 2020, 6387–6391. [Google Scholar] [CrossRef]
- Ouyang, L.; Xia, Y.; Miao, R.; Liao, J.; Luo, R. Iridium-catalyzed reductive etherification of α, β-unsaturated ketones and aldehydes with alcohols. Org. Biomol. Chem. 2022, 20, 2621–2625. [Google Scholar] [CrossRef]
- Luo, R.; Tong, J.; Ouyang, L.; Liu, L.; Liao, J. One-pot reductive amination of carbonyl compounds and nitro compounds via Ir-catalyzed transfer hydrogenation. RSC Adv. 2023, 13, 29607–29612. [Google Scholar] [CrossRef]
- CCDC Number: 2296401. Available online: https://www.ccdc.cam.ac.uk/structures/Search?access=referee&ccdc=2296401&Author=Renshi+Luo (accessed on 28 April 2024).
- Cho, H.; Madden, R.; Nisanci, B.; Török, B. The Paal-Knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and N-substituted pyrroles. Green Chem. 2015, 17, 1088–1099. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.-T.; Yang, J.-K.; Tang, W. Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source. Green Chem. 2017, 19, 3296–3301. [Google Scholar] [CrossRef]
Entry | Catalyst | Solvent | HCO2H (equiv.) | Yield of 3a1 (%) b | Yield of 3a1′ (%) b | dr c |
---|---|---|---|---|---|---|
1 | TC-1 | toluene | 20 | 41 | 55 | 60:40 |
2 | TC-2 | toluene | 20 | 59 | 51 | 59:41 |
3 | TC-3 | toluene | 20 | 42 | 52 | 63:37 |
4 | TC-4 | toluene | 20 | 48 | 48 | 64:36 |
5 | TC-5 | toluene | 20 | 44 | 54 | 50:50 |
6 | TC-6 | toluene | 20 | 48 | 48 | 58:42 |
7 | TC-2 | DMF | 20 | <5 | 65 | -- |
8 | TC-2 | dioxane | 20 | n.d. | 38 | -- |
9 | TC-2 | THF | 20 | n.d. | 76 | -- |
10 | TC-2 | MeOH | 20 | 8 | 78 | 50:50 |
11 | TC-2 | acetone | 20 | n.d. | 23 | -- |
12 | TC-2 | H2O | 20 | 80 | <5 | 71:29 |
13 | TC-2 | DMSO | 20 | <5 | 31 | -- |
14 | TC-2 | H2O | 10 | 71 | <5 | 66:34 |
15 | TC-2 | H2O | 15 | 84 | <5 | 71:29 |
16 | TC-2 | H2O | 25 | 95 | <5 | 71:29 |
17 | TC-2 | H2O | 30 | 96 (92) d | <5 | 71:29 |
18 e | TC-2 | H2O | 30 | 96 | <5 | 71:29 |
19 f | TC-2 | H2O | 30 | 94 | <5 | 71:29 |
20 g | TC-2 | H2O | 30 | 60 | <5 | 50:50 |
21 | -- | H2O | 30 | n.d. | n.d. | -- |
22 | TC-2 | H2O | -- | n.d. | n.d. | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Tong, J.; Liu, L.; Ouyang, L.; Luo, R. Construction of N-Aryl-Substituted Pyrrolidines by Successive Reductive Amination of Diketones via Transfer Hydrogenation. Molecules 2024, 29, 2565. https://doi.org/10.3390/molecules29112565
Liao J, Tong J, Liu L, Ouyang L, Luo R. Construction of N-Aryl-Substituted Pyrrolidines by Successive Reductive Amination of Diketones via Transfer Hydrogenation. Molecules. 2024; 29(11):2565. https://doi.org/10.3390/molecules29112565
Chicago/Turabian StyleLiao, Jianhua, Jinghui Tong, Liang Liu, Lu Ouyang, and Renshi Luo. 2024. "Construction of N-Aryl-Substituted Pyrrolidines by Successive Reductive Amination of Diketones via Transfer Hydrogenation" Molecules 29, no. 11: 2565. https://doi.org/10.3390/molecules29112565
APA StyleLiao, J., Tong, J., Liu, L., Ouyang, L., & Luo, R. (2024). Construction of N-Aryl-Substituted Pyrrolidines by Successive Reductive Amination of Diketones via Transfer Hydrogenation. Molecules, 29(11), 2565. https://doi.org/10.3390/molecules29112565