Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses and Characterization of Ti2, Ti2-Phen, and Ti2-Bphen
2.2. Structure Analyses of Ti2, Ti2-Phen, and Ti2-Bphen
2.3. Stability of Ti2, Ti2-Phen, and Ti2-Bphen
2.4. Photoelectric Properties of Ti2, Ti2-Phen, and Ti2-Bphen
2.5. Theoretical Calculation of Ti2 and Ti2-Phen
3. Materials and Methods
3.1. Materials
3.2. Preparation of Ti2, Ti2-Phen, and Ti2-Bphen
3.3. Characterization of Materials
3.4. Single-Crystal X-ray Diffraction
3.5. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, X.; Wang, J.; Wu, K.; Zhang, L.; Zhang, J. Isomerism in Titanium-Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angew. Chem. Int. Ed. 2019, 58, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liu, J.; Gao, M.; Fan, X.; Zhang, L.; Zhang, J. Assembling Polyoxo-Titanium Clusters and CdS Nanoparticles to a Porous Matrix for Efficient and Tunable H2-Evolution Activities with Visible Light. Adv. Mater. 2017, 29, 1603369. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, C.-L.; Zhang, H.; Wang, Z.-H.; Sun, F.-L.; Du, M.-H.; Zhuang, G.-L.; Wang, C.; Long, L.-S.; Zheng, L.-S.; et al. Molecular solid solution of lanthanide-titanium-oxo clusters with enhanced photocatalytic hydrogen evolution. Sci. China Chem. 2024, 67, 529–535. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, F.; Fang, J.; Zhao, C.; Li, S.; Wu, Y.; Zhang, Y.; You, S.; Wu, B.; Li, W. An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite and Organic Solar Cells. CCS Chem. 2022, 4, 880–888. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Z.; Han, F.; Xia, D.; Xiao, C.; Fang, J.; Zhang, Y.; Wu, B.; You, S.; Wu, Y.; et al. An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angew. Chem. Int. Ed. 2021, 133, 8607–8612. [Google Scholar] [CrossRef]
- Xiao, G.-B.; Mu, X.; Zhou, S.; Zhu, L.; Peng, Y.; Liang, Q.; Zou, X.; Zhang, J.; Zhang, L.; Cao, J. Directional Transformation of Heterometallic Oxo Clusters: A New Approach to Prepare Wide-Bandgap Cathode Interlayers for Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202218478. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dai, S.; Xu, S.; She, Y.; Li, Y.; Leveneur, S.; Qin, Y. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Appl. Catal. B Environ. 2021, 291, 120019. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, Y.; Na, F.; Wei, J.; Xu, S.; Li, Y.; Guo, F. Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light. Appl. Catal. B Environ. 2019, 254, 541–550. [Google Scholar] [CrossRef]
- Liu, J.-J.; Sun, S.-N.; Liu, J.; Kuang, Y.; Shi, J.-W.; Dong, L.-Z.; Li, N.; Lu, J.-N.; Lin, J.-M.; Li, S.-L.; et al. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J. Am. Chem. Soc. 2023, 145, 6112–6122. [Google Scholar] [CrossRef]
- Liu, J.-J.; Li, N.; Sun, J.-W.; Liu, J.; Dong, L.-Z.; Yao, S.-J.; Zhang, L.; Xin, Z.-F.; Shi, J.-W.; Wang, J.-X.; et al. Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO2 Photoreduction. ACS Catal. 2021, 11, 4510–4519. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.; Liu, J.-J.; Dong, L.-Z.; Li, S.-L.; Dong, B.-X.; Kan, Y.-H.; Lan, Y.-Q. Self-Assembly of a Phosphate-Centered Polyoxo-Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angew. Chem. Int. Ed. 2019, 58, 17260–17264. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Niu, H.; Wang, D.; Gao, C.; Said, A.; Liu, Y.; Wang, G.; Tung, C.-H.; Wang, Y. S-Scheme Bi-oxide/Ti-oxide Molecular Hybrid for Photocatalytic Cycloaddition of Carbon Dioxide to Epoxides. ACS Catal. 2022, 12, 8202–8213. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, L.; Qu, Z.; Zhai, F.; Yin, X.; Zhang, D.; Shen, Y.; Li, H.; Liu, W.; Mei, S. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 2023, 9, 3172–3184. [Google Scholar] [CrossRef]
- Fan, X.; Cheng, J.; Qiu, M.; Zhang, Y.; Chen, S.; Zhang, Z.; Peng, Y.; Zhang, J.; Zhang, L. Biomimetic Cu4 Cluster Encapsulated within Hollow Titanium-Oxo Nanoring for Electrochemical CO2 Reduction to Ethylene. ACS Mater. Lett. 2023, 5, 1527–1531. [Google Scholar] [CrossRef]
- Wu, X.; Li, Q.-H.; Zuo, S.; Li, Y.; Yi, X.; Yuan, L.-B.; Zheng, L.; Zhang, J.; Dong, J.; Wang, S.; et al. Bioinspired Polyoxo-titanium Cluster for Greatly Enhanced Solar-Driven CO2 Reduction. Nano Lett. 2023, 23, 11562–11568. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Z.; Wang, F.; Zhang, J. A visible-light active ellagic acid-based titanium-oxo cluster for room temperature chemiresistive sensing. Polyoxometalates 2024, 3, 9140066. [Google Scholar] [CrossRef]
- Wang, D.; Xu, R.; Zhou, D.; Zhao, J.; Zhang, J.; Chen, P.; Peng, X. Zn-Ti oxo cluster photoresists for EUV Lithography: Cluster structure and lithographic performance. Chem. Eng. J. 2024, 152315. [Google Scholar] [CrossRef]
- Rozes, L.; Sanchez, C.; Rozes, L. Titanium oxo-clusters: Precursors for a Lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 2011, 40, 1006–1030. [Google Scholar] [CrossRef] [PubMed]
- Coppens, P.; Chen, Y.; Trzop, E. Crystallography and Properties of Polyoxotitanate Nanoclusters. Chem. Rev. 2014, 114, 9645–9661. [Google Scholar] [CrossRef]
- Schubert, U. Surface chemistry of carboxylato-substituted metal oxo clusters–model systems for nanoparticles. Coordin. Chem. Rev. 2017, 350, 61–67. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, X.; Yi, X.; Lin, X.; Zhang, J. Coordination-Delayed-Hydrolysis Method for the Synthesis and Structural Modulation of Titanium-Oxo Clusters. Acc. Chem. Res. 2022, 55, 3150–3161. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-L.; Fang, W.-H.; Zhang, J. Aggregation of titanium-oxo clusters. In Aggregate; Wiley: Hoboken, NJ, USA, 2024; p. e506. [Google Scholar]
- Liu, C.; Wang, Y. Supramolecular Chemistry of Titanium Oxide Clusters. Chem. Eur. J. 2021, 27, 4270–4282. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Fang, W.-H.; Zhang, L.; Zhang, J. Recent advances in heterometallic polyoxotitanium clusters. Coordin. Chem. Rev. 2020, 404, 213099. [Google Scholar] [CrossRef]
- Chakraborty, B.; Weinstock, I.A. Water-soluble titanium-oxides: Complexes, clusters and nanocrystals. Coordin. Chem. Rev. 2019, 382, 85–102. [Google Scholar] [CrossRef]
- Liu, J.-X.; Gao, M.-Y.; Fang, W.-H.; Zhang, L.; Zhang, J. Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angew. Chem. Int. Ed. 2016, 55, 5160–5165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-Y.; Dai, J. Titanium oxo/alkoxyl clusters anchored with photoactive ligands. Coordin. Chem. Rev. 2021, 430, 213664. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, Y.; Zou, G.-D.; Duan, R.-H.; Zhang, X.; Dong, Y.-X.; Lv, H.-T.; Cao, J.-T.; Jing, Q.-S.; Fan, Y. A ferrocenecarboxylate-functionalized titanium-oxo-cluster: The ferrocene wheel as a sensitizer for photocurrent response. Dalton Trans. 2017, 46, 8057–8064. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S.; Kong, F.; Chen, N.; Wang, C. Ferrocene-sensitized titanium-oxo clusters with effective visible light absorption and excellent photoelectrochemical activity. Inorg. Chem. Front. 2022, 9, 959–967. [Google Scholar] [CrossRef]
- Fan, X.; Yuan, L.; Zhang, J.; Zhang, L. Phenol-triggered supramolecular transformation of titanium–oxo cluster based coordination capsules. Chin. Chem. Lett. 2021, 32, 2415–2418. [Google Scholar] [CrossRef]
- Fang, W.-H.; Zhang, L.; Zhang, J.; Fang, W.-H. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421. [Google Scholar] [CrossRef]
- Guo, Y.-H.; Yu, Y.-Z.; Shen, Y.-H.; Yang, L.-G.; Liu, N.-N.; Zhou, Z.-Y.; Niu, Y.-S. “Three-in-One” Structural-Building-Mode-Based Ti16-Type Titanium Oxo Cluster Entirely Protected by the Ligands Benzoate and Salicylhydroxamate. Inorg. Chem. 2022, 61, 8685–8693. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Huang, N.; Acharya, D.; Liu, Y.; Zhu, J.; Teng, J.; Wang, Z.; Qu, K.; Zhang, X.; Sun, D. All-catecholate-stabilized black titanium-oxo clusters for efficient photothermal conversion. Chem. Sci. 2024, 15, 2655–2664. [Google Scholar] [CrossRef]
- Creaven, B.S.; Donlon, D.F.; McGinley, J. Coordination chemistry of calix[4]arene derivatives with lower rim functionalisation and their applications. Coordin. Chem. Rev. 2009, 253, 893–962. [Google Scholar] [CrossRef]
- Ikeda, A.; Shinkai, S. Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. Chem. Rev. 1997, 97, 1713–1734. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Wang, X.-T.; Liao, W.; Wang, X.; Wang, X.; Zhang, H.; Gao, S. A {Co32} Nanosphere Supported by p-tert-Butylthiacalix[4]arene. J. Am. Chem. Soc. 2009, 131, 11650–11651. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Liu, B.; Zhu, X.; Wang, S.; Han, H.; Liao, W.; Liu, Y.; Hu, C. Discrete {Ni40} Coordination Cage: A Calixarene-Based Johnson-Type (J17) Hexadecahedron. J. Am. Chem. Soc. 2016, 138, 2969–2972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Z.; Si, W.-D.; Chu, H.; Zhou, L.; Li, T.; Huang, X.-Q.; Gao, Z.-Y.; Azam, M.; Tung, C.-H.; et al. Dynamic and transformable Cu12 cluster-based C-H···π-stacked porous supramolecular frameworks. Nat. Commun. 2023, 14, 6413. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Alkan, F.; Aikens, C.M.; Kurmoo, M.; Zhang, Z.-Y.; Song, K.-P.; Tung, C.-H.; Sun, D. An Ultrastable 155-Nuclei Silver Nanocluster Protected by Thiacalix[4]arene and Cyclohexanethiol for Photothermal Conversion. Angew. Chem. Int. Ed. 2022, 61, e202206742. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Wu, M.; Tan, Y.; Wang, W.; Yuan, D.; Hong, M.; Su, K. A monomeric bowl-like pyrogallol[4]arene Ti12 coordination complex. Chem. Commun. 2017, 53, 9598–9601. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.-J.; Sun, J.-W.; Dong, B.-X.; Dong, L.-Z.; Yao, S.-J.; Xin, Z.; Li, S.-L.; Lan, Y.-Q.; Li, N. Calix[8]arene-constructed stable polyoxo-titanium clusters for efficient CO2 photoreduction. Green Chem. 2020, 22, 5325–5332. [Google Scholar] [CrossRef]
- Tian, Y.-Q.; Dai, L.-F.; Mu, W.-L.; Yu, W.-D.; Yan, J.; Liu, C.; Tian, Y.-Q. Atomically accurate site-specific ligand tailoring of highly acid- and alkali-resistant Ti(iv)-based metallamacrocycle for enhanced CO2 photoreduction. Chem. Sci. 2023, 14, 14280–14289. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.-F.; Liu, X.-R.; Tian, Y.-Q.; Yi, X.-Y.; Liu, C. Auxiliary Carboxylate-Induced Assembly of Calix[6]arene-Polyoxotitanate Hybrid Systems with Photocatalytic Activity in the Oxidation of Sulfides. Inorg. Chem. 2023, 62, 6047–6054. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S.-J.; Kong, F.-G. Calixarene-Protected Titanium-Oxo Clusters and Their Photocurrent Responses and Photocatalytic Performances. Inorg. Chem. 2021, 60, 5034–5041. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lin, J.-M.; Li, R.-H.; Shi, J.-W.; Dong, L.-Z.; Liu, J.; He, J.; Lan, Y.-Q. Calix[4]arene-Functionalized Titanium-Oxo Compounds for Perceiving Differences in Catalytic Reactivity Between Mono- and Multimetallic Sites. J. Am. Chem. Soc. 2023, 145, 16098–16108. [Google Scholar] [CrossRef] [PubMed]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P. Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex. Appl. Catal. B Environ. 2007, 74, 307–312. [Google Scholar] [CrossRef]
- Sano, T.; Mera, N.; Kanai, Y.; Nishimoto, C.; Tsutsui, S.; Hirakawa, T.; Negishi, N. Origin of visible-light activity of N-doped TiO2 photocatalyst: Behaviors of N and S atoms in a wet N-doping process. Appl. Catal. B Environ. 2012, 128, 77–83. [Google Scholar] [CrossRef]
- Narayanam, N.; Chintakrinda, K.; Fang, W.-H.; Kang, Y.; Zhang, L.; Zhang, J. Azole Functionalized Polyoxo-Titanium Clusters with Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies. Inorg. Chem. 2016, 55, 10294–10301. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.-Y.; Fang, W.-H.; Wen, T.; Zhang, L.; Zhang, J. Connecting Titanium-Oxo Clusters by Nitrogen Heterocyclic Ligands to Produce Multiple Cluster Series with Photocatalytic H2 Evolution Activities. Cryst. Growth Des. 2017, 17, 3592–3595. [Google Scholar] [CrossRef]
- Wang, C.; Chen, N.; Kong, F.; Wang, S.; Wang, C. A family of oxime-based titanium-oxo clusters: Synthesis, structures, and photoelectric responses. CrystEngComm 2022, 24, 3280–3286. [Google Scholar] [CrossRef]
- Chen, S.; Fang, W.-H.; Zhang, L.; Zhang, J. Synthesis, Structures, and Photocurrent Responses of Polyoxo-Titanium Clusters with Oxime Ligands: From Ti4 to Ti18. Inorg. Chem. 2018, 57, 8850–8856. [Google Scholar] [CrossRef]
- Narayanam, N.; Fang, W.-H.; Chintakrinda, K.; Zhang, L.; Zhang, J.; Narayanam, N. Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chem. Commun. 2017, 53, 8078–8080. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.-F.; Xu, S.-H.; Yan, Z.-H.; Lu, D.-F.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A Large Titanium Oxo Cluster Featuring a Well-Defined Structural Unit of Rutile. Cryst. Growth Des. 2018, 18, 4864–4868. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Wang, P.; Wang, Y.-H.; Jiang, J.-B.; Bian, G.-Q.; Zhu, Q.-Y.; Dai, J.; Wu, Y.-Y. Metal–phenanthroline fused Ti17 clusters, a single molecular source for sensitized photoconductive films. J. Mater. Chem. A 2013, 1, 9862–9868. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Chen, W.-Z.; Wang, S.-T.; Chen, S.; Zhang, J.; Zhang, L.; Zhao, H.-F. Optical limiting effects of 1,10-phenanthroline functionalized heterometallic Sn–Ti oxo clusters with distinct π⋯π interactions. J. Mater. Chem. C 2024, 12, 4771–4778. [Google Scholar] [CrossRef]
- Chintakrinda, K.; Narayanam, N.; Chen, G.-H.; Zhang, J.; Zhang, L. Ionothermal Synthesis and Photoactivity of Ti17 and Ti19-Oxo Clusters Functionalized by Sulfate and 1,10-Phenanthroline Ligands. Chinese J. Chem. 2023, 41, 3605–3610. [Google Scholar] [CrossRef]
- Liao, L.-R.; Zheng, D.-C.; Ou, P.-X.; Zhao, Q.-X.; Xuan, W.-M.; Zheng, Q. π-conjugated chromophore functionalized high-nuclearity titanium-oxo clusters containing structural unit of anatase for photocatalytic selective oxidation of sulfides. Rare Met. 2024, 43, 1736–1746. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Si, W.-D.; Wang, L.; Dou, J.-M.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. Solvent-Induced Isomeric Cu13 Nanoclusters: Chlorine to Copper Charge Transfer Boosting Molecular Oxygen Activation in Sulfide Selective Oxidation. ACS Nano 2022, 16, 9598–9607. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-Q.; Cui, Y.-S.; Zhu, J.-H.; Xu, C.-Q.; Yi, X.-Y.; Li, J.; Liu, C. Ancillary ligand-regulated Ti(iv)-based metallocalixarene coordination cages for photocatalytic H2 evolution. Chem. Commun. 2022, 58, 9034–9037. [Google Scholar] [CrossRef]
- Sheng, K.; Wang, Z.; Li, L.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. Solvent-Mediated Separation and Reversible Transformation of 1D Supramolecular Polymorphs Built from [W10O32]4– Templated 48-Nuclei Silver(I) Cluster. J. Am. Chem. Soc. 2023, 145, 10595–10603. [Google Scholar] [CrossRef]
- Tang, Q.; Hu, G.; Fung, V.; Jiang, D.-e. Insights into Interfaces, Stability, Electronic Properties, and Catalytic Activities of Atomically Precise Metal Nanoclusters from First Principles. Acc. Chem. Res. 2018, 51, 2793–2802. [Google Scholar] [CrossRef]
- Matus, M.F.; Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 2023, 8, 372–389. [Google Scholar] [CrossRef]
- Huang, X.; Liu, S.; Zhou, Z.; Zhang, H.; Gao, Z.; Shen, G.; Wang, H.; Wang, Z.; Yao, Q.; Sun, D. The tail of imidazole regulated the assembly of two robust sandwich-type polyoxotungstate-based open frameworks with efficient visible-white-light-driven catalytic oxidation of sulfides. Inorg. Chem. Front. 2023, 10, 1465–1474. [Google Scholar] [CrossRef]
- Luo, C.-Y.; Ma, L.-J.; Liu, W.; Tan, Y.-C.; Wang, R.-N.; Hou, J.-L.; Zhu, Q.-Y. Topotactic Conversion of Titanium-Oxo Clusters to a Stable TOC-Based Metal–Organic Framework with the Selective Adsorption of Cationic Dyes. Inorg. Chem. 2024, 63, 5961–5971. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Huang, C.; Liu, Y.; Fei, P.; Zhang, D.; Qu, K.; Zi, W.; Huang, X. Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters. Molecules 2024, 29, 2566. https://doi.org/10.3390/molecules29112566
Hou J, Huang C, Liu Y, Fei P, Zhang D, Qu K, Zi W, Huang X. Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters. Molecules. 2024; 29(11):2566. https://doi.org/10.3390/molecules29112566
Chicago/Turabian StyleHou, Jinle, Chen Huang, Yuxin Liu, Pengfei Fei, Dongxu Zhang, Konggang Qu, Wenwen Zi, and Xianqiang Huang. 2024. "Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters" Molecules 29, no. 11: 2566. https://doi.org/10.3390/molecules29112566
APA StyleHou, J., Huang, C., Liu, Y., Fei, P., Zhang, D., Qu, K., Zi, W., & Huang, X. (2024). Phenanthroline-Mediated Photoelectrical Enhancement in Calix[4]arene-Functionalized Titanium-Oxo Clusters. Molecules, 29(11), 2566. https://doi.org/10.3390/molecules29112566