Unveiling the Unusual Mn(CO)3 Migration in a Manganese Cyclohexenyl Complex by DFT Computations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pathways for the Mn(CO)3 Migration
2.2. Characterization of Agostic Complexes
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose-Munch, F.; Marti, A.; Cetiner, D.; Tranchier, J.-P.; Rose, E. New access to (η5-cyclohexadienyl)Mn(CO)3 and cationic (η6-arene)Mn(CO)3 complexes by Suzuki–Miyaura reaction. Dalton Trans. 2011, 40, 1567–1575. [Google Scholar] [CrossRef]
- Cetiner, D.; Norel, L.; Tranchier, J.-P.; Rose-Munch, F.; Rose, E.; Herson, P. Synthesis and Reactivity of (η5-Hydroxyalkylcyclohexadienyl)Mn(CO)3 Complexes. Organometallics 2010, 29, 1778–1788. [Google Scholar] [CrossRef]
- Oh, M.; Reingold, J.A.; Carpenter, G.B.; Sweigart, D.A. Manganese tricarbonyl transfer (MTT) reagents in the construction of novel organometallic systems. Coord. Chem. Rev. 2004, 248, 561–569. [Google Scholar] [CrossRef]
- Reginato, N.; McGlinchey, M.J. Unexpected Reaction of (trindane)Mn(CO)3+BF4− with Potassium tert-Butoxide: Three C−H Insertions and a Haptotropic Shift. Organometallics 2001, 20, 4147–4149. [Google Scholar] [CrossRef]
- Brookhart, M.; Lamanna, W.; Humphrey, M.B. Structural Characterization and Fluxional Behavior of Cyclohexenylmanganese Tricarbonyl. Intramolecular C-H Bond Activation via a Two-Electron, Three-Center Mn…H…C Interaction. J. Am. Chem. Soc. 1982, 104, 2117–2126. [Google Scholar] [CrossRef]
- Brookhart, M.; Lamanna, W.; Pinhas, A.R. Synthesis and Reactivity of Cyclohexenylmanganese Tricarbonyl, a Complex Containing a Two-Electron, Three-Center Mn…H…C Interaction. Organometallics 1983, 2, 638–649. [Google Scholar] [CrossRef]
- Brookhart, M.; Green, M.L.; Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914. [Google Scholar] [CrossRef]
- Xu, H.; White, P.B.; Hu, C.; Diao, T. Structure and Isotope Effects of the β-H Agostic (α-Diimine)Nickel Cation as a Polymerization Intermediate. Angew. Chem. Int. Ed. 2017, 56, 1535–1538. [Google Scholar] [CrossRef]
- Lein, M. Characterization of agostic interactions in theory and computation. Coord. Chem. Rev. 2009, 253, 625–634. [Google Scholar] [CrossRef]
- Scherer, W.; McGrady, G.S. Agostic interactions in d0 metal alkyl complexes. Angew. Chem. Int. Ed. 2004, 43, 1782–1806. [Google Scholar] [CrossRef]
- Sheridan, J.B.; Padda, R.S.; Chaffee, K.; Wang, C.; Huang, Y.; Lalancette, R. Synthesis and reactions of acyl(cyclohexadienyl)manganates. J. Chem. Soc., Dalton Trans. 1992, 1992, 1539–1549. [Google Scholar] [CrossRef]
- Tritcak, T.R.; Sheridan, J.B.; Coté, M.L.; Lalancette, R.A.; Rose, J.P. Unusual migration of manganese to an arene via protonation of an agostic η3:CH-cyclohexenyl complex. J. Chem. Soc., Dalton Trans. 1995, 1995, 931–935. [Google Scholar] [CrossRef]
- Padda, R.S.; Sheridan, J.B.; Chaffee, K. Synthesis and protonation of cyclohexadienyl manganese acylmetallates; alkyl and aryl group transfer from an acyl to a dienyl ligand. J. Chem. Soc., Chem. Commun. 1990, 1990, 1226–1228. [Google Scholar] [CrossRef]
- Zaitsev, K.V.; Gloriozov, I.P.; Oprunenko, Y.F.; Lermontova, E.K.; Churakov, A.V. Chromium carbonyl complexes with aryl mono- and oligogermanes: Ability for haptotropic rearrangement. J. Organomet. Chem. 2019, 897, 217–227. [Google Scholar] [CrossRef]
- Czerwinski, C.J.; Guzei, I.A.; Riggle, K.M.; Schroeder, J.R.; Spencer, L.C. Haptotropic rearrangement in tricarbonylchromium complexes of 2-aminobiphenyl and 4-aminobiphenyl. Dalton Trans. 2011, 40, 9439–9446. [Google Scholar] [CrossRef]
- Czerwinski, C.J.; Fetisov, E.O.; Gloriozov, I.P.; Oprunenko, Y.F. DFT study of intramolecular interring η6,η6-haptotropic rearrangements in tricarbonylchromium complexes of 2-aminobiphenyl and 4-aminobiphenyl. Dalton Trans. 2013, 42, 10487–10494. [Google Scholar] [CrossRef]
- Pan, J.; Kampf, J.W.; Ashe, A.J. Switchable Haptotropic Migrations of Tricarbonylchromium Complexes of 1,2-Dihydro-2-phenyl-1,2-azaborine. Organometallics 2006, 25, 197–202. [Google Scholar] [CrossRef]
- Pan, J.; Wang, J.; Banaszak Holl, M.M.; Kampf, J.W.; Ashe, A.J. Haptotropic Migration from the Six- to the Five-Membered Ring of (3a,7a-Azaborindenyl)tricarbonylchromium Anion. Organometallics 2006, 25, 3463–3467. [Google Scholar] [CrossRef]
- Fetisov, E.O.; Gloriozov, I.P.; Nechaev, M.S.; Kahlal, S.; Saillard, J.-Y.; Oprunenko, Y.F. Thermally induced inter-ring haptotropic rearrangements in π-complexes of molybdenum with nitrogen containing polyaromatic heterocycles: A DFT study. J. Organomet. Chem. 2017, 830, 212–218. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, W.; Liang, G. Theoretical Investigations on the Agostic Interactions of the Molybdenum and Manganese Complexes. Eur. J. Inorg. Chem. 2023, 26, e202300183. [Google Scholar] [CrossRef]
- Liang, G.; Zhang, M. Insights into the Fluxional Processes of Monomethylcyclohexenyl Manganese Tricarbonyl. Molecules 2023, 28, 3232. [Google Scholar] [CrossRef]
- Letterman, R.G.; DeYonker, N.J.; Burkey, T.J.; Webster, C.E. Calibrating Reaction Enthalpies: Use of Density Functional Theory and the Correlation Consistent Composite Approach in the Design of Photochromic Materials. J. Phys. Chem. A 2016, 120, 9982–9997. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Chang, J.-T.; Shih, C.-C. Application of the Stabilization Method to Temporary Anion States of π-Ligand Transition-Metal Carbonyls in Density Functional Theory. J. Phys. Chem. A 2010, 114, 2920–2929. [Google Scholar] [CrossRef]
- Saßmannshausen, J. Quo Vadis, agostic bonding? Dalton Trans. 2012, 41, 1919–1923. [Google Scholar] [CrossRef]
- Saßmannshausen, J. Agostic or not? Detailed Density Functional Theory studies of the compounds [LRh(CO)Cl], [LRh(COD)Cl] and [LRhCl] (L = cyclic (alkyl)(amino)carbene, COD = cyclooctadiene). Dalton Trans. 2011, 40, 136–141. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Couty, M.; Hall, M.B. Basis sets for transition metals: Optimized outer p functions. J. Comput. Chem. 1996, 17, 1359–1370. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. Influence of Polarization Functions on Molecular-Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, Æ. The 6-31G(d’) basis set has the exponent of d polarization functions for C, N, O, and F taken from the 6-311G(d) basis sets, instead of the original arbitrarily assigned exponent of 0.8 used in the 6-31G(d) basis sets. For H, the 6-31G(d’) keyword utilizes the 6-31G(d) basis sets. In Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S. Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements. J. Phys. Chem. A 2001, 105, 8111–8116. [Google Scholar] [CrossRef]
- Wadt, W.R.; Hay, P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Foster, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural localized molecular orbitals. J. Chem. Phys. 1985, 83, 1736–1740. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Wiberg, K.B. Application of the Pople-Snatry-Segal complete neglect of differential overlap method to some hydrocarbons and their cations. J. Am. Chem. Soc. 1968, 90, 59–63. [Google Scholar] [CrossRef]
- Wiberg, K.B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968, 24, 1083–1096. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Marković, Z.; Tošović, J.; Milenković, D.; Marković, S. Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput. Theor. Chem. 2016, 1077, 11–17. [Google Scholar] [CrossRef]
- Fifen, J.J.; Nsangou, M.; Dhaouadi, Z.; Motapon, O.; Jaidane, N. Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid: DFT and TD-DFT studies. Comput. Theor. Chem. 2011, 966, 232–243. [Google Scholar] [CrossRef]
- Moser, A.; Range, K.; York, D.M. Accurate Proton Affinity and Gas-Phase Basicity Values for Molecules Important in Biocatalysis. J. Phys. Chem. B 2010, 114, 13911–13921. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Dunlap, B.I. Fitting the Coulomb potential variationally in Xα molecular calculations. J. Chem. Phys. 1983, 78, 3140–3142. [Google Scholar] [CrossRef]
- Dunlap, B.I. Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry. J. Mol. Struct. THEOCHEM 2000, 529, 37–40. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Ditchfield, R. Self-consistent perturbation theory of diamagnetism. 1. Gauge-invariant LCAO method for N.M.R. chemical shifts. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Wolinski, K.; Hilton, J.F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104, 5497–5509. [Google Scholar] [CrossRef]
- Roy, L.E.; Hay, P.J.; Martin, R.L. Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput. 2008, 4, 1029–1031. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-Consistent Molecular-Orbital Methods.25. Supplementary Functions for Gaussian-Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Casals-Sainz, J.L.; Fernández-Alarcón, A.; Francisco, E.; Costales, A.; Martín Pendás, Á. Bond Order Densities in Real Space. J. Phys. Chem. A 2020, 124, 339–352. [Google Scholar] [CrossRef]
- Multiwfn, Version 3.8. 2021. Available online: http://sobereva.com/multiwfn/ (accessed on 15 December 2022).
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Molec. Graphics 1996, 14, 33–38. [Google Scholar] [CrossRef]
- VMD, Version 1.9.3. 2016. Available online: http://www.ks.uiuc.edu/Research/vmd/ (accessed on 15 December 2022).
Complex | Mn-H (Å) | C-H (Å) | Mn-H-C (°) | JC-H (Hz) | σ(H) (ppm) | Wiberg Bond Index | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Agostic | Non# | Agostic | Non# | Agostic | Non# | Mn-H | Agostic | Non# | |||
3 | 1.823 | 1.185 | 1.102 | 98.4 | 65.9 | 135.6 | −7.4 | 2.5 | 0.16 | 0.65 | 0.85 |
4 | 1.826 | 1.184 | 1.103 | 98.4 | 67.4 | 133.2 | −8.1 | 2.9 | 0.15 | 0.66 | 0.85 |
4* | 1.813 | 1.189 | 1.103 | 99.0 | 63.5 | 130.5 | −7.7 | 3.3 | 0.16 | 0.66 | 0.85 |
5 | 1.977 | 1.165 | 1.108 | 93.7 | 73.5 | 127.8 | −2.5 | 4.4 | 0.11 | 0.72 | 0.83 |
6 | 1.897 | 1.173 | 1.104 | 99.3 | 69.3 | 128.0 | −5.3 | 3.2 | 0.14 | 0.70 | 0.85 |
7 | 1.998 | 1.141 | 1.105 | 107.7 | 79.9 | 124.2 | −4.5 | 2.9 | 0.09 | 0.79 | 0.86 |
8 | 1.946 | 1.152 | 1.106 | 110.2 | 74.7 | 122.9 | 0.6 | 3.7 | 0.10 | 0.75 | 0.86 |
8* | 1.947 | 1.145 | 1.104 | 111.5 | 77.6 | 120.9 | −2.5 | 2.8 | 0.10 | 0.77 | 0.88 |
9 | 1.862 | 1.164 | 1.107 | 110.5 | 69.1 | 121.7 | −1.5 | 3.5 | 0.12 | 0.72 | 0.86 |
9* | 2.085 | 1.133 | 1.102 | 111.7 | 84.7 | 120.4 | 0.5 | 3.1 | 0.07 | 0.81 | 0.88 |
10 | 1.949 | 1.159 | 1.106 | 119.8 | 71.9 | 122.1 | −1.8 | 3.6 | 0.10 | 0.76 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, G.; Zhang, M. Unveiling the Unusual Mn(CO)3 Migration in a Manganese Cyclohexenyl Complex by DFT Computations. Molecules 2024, 29, 2945. https://doi.org/10.3390/molecules29122945
Liang G, Zhang M. Unveiling the Unusual Mn(CO)3 Migration in a Manganese Cyclohexenyl Complex by DFT Computations. Molecules. 2024; 29(12):2945. https://doi.org/10.3390/molecules29122945
Chicago/Turabian StyleLiang, Guangchao, and Min Zhang. 2024. "Unveiling the Unusual Mn(CO)3 Migration in a Manganese Cyclohexenyl Complex by DFT Computations" Molecules 29, no. 12: 2945. https://doi.org/10.3390/molecules29122945
APA StyleLiang, G., & Zhang, M. (2024). Unveiling the Unusual Mn(CO)3 Migration in a Manganese Cyclohexenyl Complex by DFT Computations. Molecules, 29(12), 2945. https://doi.org/10.3390/molecules29122945