Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Conference on Climate Change and the Role of Nuclear Power; International Atomic Energy Agency (IAEA): Vienna, Austria, 7–11 October 2019; Available online: https://www.iaea.org/atoms4climate (accessed on 1 February 2024).
- Gen IV International Forum, 2024. Supercritical-Water-Cooled Reactor (SCWR). Available online: https://www.gen-4.org/gif/jcms/c_9360/scwr (accessed on 1 February 2024).
- Oka, Y.; Koshizuka, S. Conceptual design study of advanced power reactors. Prog. Nucl. Energy 1998, 32, 163–177. [Google Scholar] [CrossRef]
- A Technology Roadmap for Generation IV Nuclear Energy Systems; Report GIF-002-00; U.S. DOE Nuclear Energy Research Advisory Committee (NERAC) and the Generation IV International Forum (GIF): Washington, DC, USA, 2002.
- Schulenberg, T.; Leung, L.K.H.; Brady, D.; Oka, Y.; Yamada, K.; Bae, Y.; Willermoz, G. Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration; IAEA Publication IAEA-CN-164-5S06; International Atomic Energy Agency: Vienna, Austria, 2009. [Google Scholar]
- Duffey, R. The development and future of the supercritical water reactor. CNL Nucl. Rev. 2016, 5, 181–188. [Google Scholar] [CrossRef]
- Leung, L.K.H.; Huang, Y.-P.; Dostal, V.; Yamaji, A.; Sedov, A. An update on the development status of the supercritical water-cooled reactors. In Proceedings of the Fourth Generation IV International Forum (GIF) Symposium, Paris, France, 16–17 October 2018; pp. 43–50. [Google Scholar]
- Guzonas, D.; Novotny, R.; Penttilä, S.; Toivonen, A.; Zheng, W. Materials and Water Chemistry for Supercritical Water-Cooled Reactors; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- Pioro, I. (Ed.) Handbook of Generation IV Nuclear Reactors, 2nd ed.; Woodhead Publishing Series in Energy: Duxford, UK, 2022. [Google Scholar]
- Wu, P.; Ren, Y.; Feng, M.; Shan, J.; Huang, Y.; Yang, W. A review of existing supercritical water reactor concepts, safety analysis codes and safety characteristics. Prog. Nucl. Energy 2022, 153, 104409. [Google Scholar] [CrossRef]
- Levelt Sengers, J.M.H.; Straub, J.; Watanabe, K.; Hill, P.G. Assessment of critical parameter values for H2O and D2O. J. Phys. Chem. Ref. Data 1985, 14, 193–207. [Google Scholar] [CrossRef]
- Advances in Small Modular Reactor Technology Developments; International Atomic Energy Agency (IAEA), Nuclear Power Technology Development Section, Division of Nuclear Power, Department of Nuclear Energy: Vienna, Austria, 2020; Available online: http://aris.iaea.org/Publications/SMR_Book_2020.pdf (accessed on 1 February 2024).
- Murakami, T.; Anbumozhi, V.V. (Eds.) Small Modular Reactor (SMR) Deployment: Advantages and Opportunities for ASEAN; Research Project Report FY2022 No. 10; Economic Research Institute for ASEAN and East Asia: Jakarka, Indonesia, 2022; Available online: https://www.eria.org/research/small-modular-reactor-smr-deployment-advantages-and-opportunities-for-asean/ (accessed on 1 February 2024).
- Joint European Canadian Chinese Development of Small Modular Reactor Technology (ECC-SMART). A Transcontinental Project to Bring the Potential of Supercritical Water SMRs a Step Closer to Reality, 2020. Available online: https://ecc-smart.eu/ (accessed on 1 February 2024).
- Guzonas, D.; Stuart, C.R.; Jay-Gerin, J.-P.; Meesungnoen, J. Testing Requirements for SCWR Radiolysis; Report AECL-153-127160-REPT-001; Atomic Energy of Canada Limited: Mississauga, ON, Canada, 2010. [Google Scholar]
- Guzonas, D.; Brosseau, F.; Tremaine, P.; Meesungnoen, J.; Jay-Gerin, J.-P. Water chemistry in a supercritical water-cooled pressure tube reactor. Nucl. Technol. 2012, 179, 205–219. [Google Scholar] [CrossRef]
- Lin, M.; Katsumura, Y. Radiation chemistry of high temperature and supercritical water and alcohols. In Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces; Hatano, Y., Katsumura, Y., Mozumder, A., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 401–424. [Google Scholar]
- Katsumura, Y. Application of radiation chemistry to nuclear technology. In Charged Particle and Photon Interactions with Matter: Chemical, Physical, and Biological Consequences with Applications; Mozumder, A., Hatano, Y., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 697–727. [Google Scholar]
- Edwards, E.J.; Wilson, P.P.H.; Anderson, M.H.; Mezyk, S.P.; Pimblott, S.M.; Bartels, D.M. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: Calibration of dose in a mixed neutron/gamma radiation field. Rev. Sci. Instrum. 2007, 78, 124101. [Google Scholar] [CrossRef]
- Liu, G.; Du, T.; Toth, L.; Beninger, J.; Ghandi, K. Prediction of rate constants of important reactions in water radiation chemistry in sub- and supercritical water: Equilibrium reactions. CNL Nucl. Rev. 2016, 5, 345–361. [Google Scholar]
- Liu, G.; Landry, C.; Ghandi, K. Prediction of rate constants of important chemical reactions in water radiation chemistry in sub- and supercritical water– non-equilibrium reactions. Can. J. Chem. 2018, 96, 267–279. [Google Scholar] [CrossRef]
- Sultana, A.; Meesungnoen, J.; Jay-Gerin, J.-P. Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 °C. Phys. Chem. Chem. Phys. 2020, 22, 7430–7439. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Meesungnoen, J.; Jay-Gerin, J.-P. Characterizing the early acidic response in advanced small modular reactors cooled with high-temperature, high-pressure water. Radiation 2024, 4, 26–36. [Google Scholar] [CrossRef]
- Guzonas, D.; Cook, W.G. Cycle chemistry and its effect on materials in a supercritical water-cooled reactor: A synthesis of current understanding. Corros. Sci. 2012, 65, 48–66. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G.R.; Petrov, A. A critical review of radiolysis issues in water-cooled fission and fusion reactors: Part I, Assessment of radiolysis models. Corros. Mater. Degrad. 2022, 3, 470–535. [Google Scholar] [CrossRef]
- Ndongo Assomo, J.G.G.; Ebrahimi, S.; Muroya, Y.; Jay-Gerin, J.-P.; Soldera, A. Molecular dynamics simulation reveals a change in the structure of liquid water near 150 °C, which may explain apparent anomalies in high-temperature water radiolysis. Chem. Afr. 2023, 6, 375–381. [Google Scholar] [CrossRef]
- Green, N.J.B.; Pimblott, S.M. Radiation track structure simulation in a molecular medium. Res. Chem. Intermediat. 2001, 27, 529–538. [Google Scholar] [CrossRef]
- Metatla, N.; Jay-Gerin, J.-P.; Soldera, A. Molecular dynamics simulation of subcritical and supercritical water at different densities. In Proceedings of the 5th International Symposium on Supercritical-Water-Cooled Reactors, Vancouver, BC, Canada, 13–16 March 2011; Rouben, B., Guzonas, D., Leung, L., Eds.; Canadian Nuclear Society: Toronto, ON, Canada, 2011. ISBN 978-1-926773-02-5. [Google Scholar]
- Metatla, N.; Lafond, F.; Jay-Gerin, J.-P.; Soldera, A. Heterogeneous character of supercritical water at 400 °C and different densities unveiled by simulation. RSC Adv. 2016, 6, 30484–30487. [Google Scholar] [CrossRef]
- Tucker, S.C. Solvent density inhomogeneities in supercritical fluids. Chem. Rev. 1999, 99, 391–418. [Google Scholar] [CrossRef] [PubMed]
- Kalinichev, A.G.; Churakov, S.V. Size and topology of molecular clusters in supercritical water: A molecular dynamics simulation. Chem. Phys. Lett. 1999, 302, 411–417. [Google Scholar] [CrossRef]
- Boero, M.; Terakura, K.; Ikeshoji, T.; Liew, C.C.; Parrinello, M. Water at supercritical conditions: A first principles study. J. Chem. Phys. 2001, 115, 2219–2227. [Google Scholar] [CrossRef]
- Kalinichev, A.G. Molecular simulations of liquid and supercritical water: Thermodynamic, structure, and hydrogen bonding. In Molecular Modeling Theory: Applications in the Geosciences; Cygan, R.T., Kubicki, J.D., Eds.; Mineralogical Society of America: Washington, DC, USA, 2001; pp. 83–130. [Google Scholar]
- Bernabei, M.; Botti, A.; Bruni, F.; Ricci, M.A.; Soper, A.K. Percolation and three-dimensional structure of supercritical water. Phys. Rev. E 2008, 78, 021505. [Google Scholar] [CrossRef]
- Wernet, P.; Testemale, D.; Hazemann, J.-L.; Argoud, R.; Glatzel, P.; Pettersson, L.G.M.; Nilsson, A.; Bergmann, U. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. J. Chem. Phys. 2005, 123, 154503. [Google Scholar] [CrossRef]
- Sahle, C.J.; Sternemann, C.; Schmidt, C.; Lehtola, S.; Jahn, S.; Simonelli, L.; Huotari, S.; Kakala, M.; Pylkkänen, T.; Nyrow, A.; et al. Microscopic structure of water at elevated pressures and temperatures. Proc. Natl. Acad. Sci. USA 2013, 110, 6301–6306. [Google Scholar] [CrossRef] [PubMed]
- Tassaing, T.; Garrain, P.A.; Bégué, D.; Baraille, I. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data. J. Chem. Phys. 2010, 133, 034103. [Google Scholar] [CrossRef] [PubMed]
- Swiatla-Wojcik, D.; Szala-Bilnik, J. Transition from patchlike to clusterlike inhomogeneity arising from hydrogen bonding in water. J. Chem. Phys. 2011, 134, 054121. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, Q.; Ding, D. Hydrogen bonded networks in supercritical water. J. Phys. Chem. B 2014, 118, 11253–11258. [Google Scholar] [CrossRef] [PubMed]
- Skarmoutsos, I.; Guardia, E.; Samios, J. Local structural fluctuations, hydrogen bonding and structural transitions in supercritical water. J. Supercrit. Fluids 2017, 130, 156–164. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Ma, X. Interaction between neighboring supercritical water molecules and density fluctuation by molecular dynamics simulations. J. Therm. Sci. 2022, 31, 907–922. [Google Scholar] [CrossRef]
- Kallikragas, D.; Guzonas, D.; Svishchev, I. Properties of aqueous systems relevant to the SCWR via molecular dynamics simulations. AECL Nucl. Rev. 2015, 4, 9–22. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Reference Fluid Thermodynamics and Transport Properties—REFPROP; NIST Standard Reference Database 23, Version 9.0; National Institute of Standards and Technology: Boulder, CO, USA, 2010. Available online: http://webbook.nist.gov (accessed on 1 December 2023).
- Soldera, A.; Qi, Y.; Capehart, W.T. Phase transition and morphology of polydispersed ABA’ triblock copolymers determined by continuous and discrete simulations. J. Chem. Phys. 2009, 130, 064902. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, C. (Eds.) Near-Critical and Supercritical Water and Their Applications for Biorefineries; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Schienbein, P.; Marx, D. Supercritical water is not hydrogen bonded. Angew. Chem. Int. Ed. 2020, 59, 18578–18585. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; D. Reidel: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Wasserman, E.; Wood, B.; Brodholt, J. Molecular dynamic study of the dielectric constant of water under high pressure and temperature conditions. Ber. Bunsenges. Phys. Chem. 1994, 98, 906–911. [Google Scholar] [CrossRef]
- Kallikragas, D.T.; Plugatyr, A.Y.; Svishchev, I.M. High temperature diffusion coefficients for O2, H2, and OH in water, and for pure water. J. Chem. Eng. Data 2014, 59, 1964–1969. [Google Scholar] [CrossRef]
- Guissani, Y.; Guillot, B. A computer simulation study of the liquid-vapor coexistence curve of water. J. Chem. Phys. 1993, 98, 8221–8235. [Google Scholar] [CrossRef]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- van Gunsteren, W.F.; Berendsen, H.J.C. Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 1990, 29, 992–1023. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- BIOVIA Materials Studio 2017, Dassault Systèmes Corporate, Waltham, MA. Available online: https://www.gga.asia/upload/pdf/474/amorphous-cell_20170927140352.pdf (accessed on 15 December 2022).
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assomo, J.G.G.N.; Ebrahimi, S.; Jay-Gerin, J.-P.; Soldera, A. Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules 2024, 29, 2947. https://doi.org/10.3390/molecules29122947
Assomo JGGN, Ebrahimi S, Jay-Gerin J-P, Soldera A. Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules. 2024; 29(12):2947. https://doi.org/10.3390/molecules29122947
Chicago/Turabian StyleAssomo, Joseph Guy Gérard Ndongo, Sadollah Ebrahimi, Jean-Paul Jay-Gerin, and Armand Soldera. 2024. "Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures" Molecules 29, no. 12: 2947. https://doi.org/10.3390/molecules29122947
APA StyleAssomo, J. G. G. N., Ebrahimi, S., Jay-Gerin, J. -P., & Soldera, A. (2024). Supercritical Water: A Simulation Study to Unravel the Heterogeneity of Its Molecular Structures. Molecules, 29(12), 2947. https://doi.org/10.3390/molecules29122947