Non-Substituted Imidazolium-Based Electrolytes as Potential Alternatives to the Conventional Acidic Electrolytes of Polyaniline-Based Electrode Materials for Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
- Part I: Synthesis and characterization of the protic ionic liquids
- Part II: Electrochemical performances of PANI
- At high frequency region (500 kHz), the intercept of impedance plot with the real axis gives the equivalent series resistance (R1), which represents the sum of the electrolyte solution resistance, the intrinsic resistance of active material, and the contact resistance at the electrode–electrolyte interface [55]. The R1 of PANI/PIL was close to 4.61, 6.86, 10.8, and 29.20 Ω in H2SO4, [Imi][HSO4]aq, [Pyrr][HSO4]aq, and [Pyrr][PTS]aq, which have ionic conductivity values of 237 (this value has been adapted from reference [59]), 195, 186, and 43 mS/cm, respectively. The value of R1 decreased along with the increasing ionic conductivity of the electrolyte. The dependence of R1 on the transport properties of the electrolyte is coherent with what has been reported in the literature [24,60].
- The semi-circle is due to a parallel RC element: an interfacial charge–transfer resistance R2 and double-layer capacitance [61]. R2 can be estimated from the diameter of the semi-circle. Since the semi-circle obtained for [Pyrr][PTS]aq was much wider that those resulting from in the other investigated electrolytes, the R2 of PANI/PIL in [Pyrr][PTS]aq was thus significantly higher relative to the others, indicating bad interface properties between the electrode and [Pyrr][PTS]aq. This observation is in accord with the CV curves of Figure 4a, where it is shown that [Pyrr][PTS]aq was a poor electrolyte for PANI. As for the two other PIL-based electrolytes ([Pyrr][HSO4]aq or [Imi][HSO4]aq), the diameter of semi-circle was relatively smaller (associated with lower R2) than that obtained with H2SO4 (see the inset of Figure 6), revealing a good contact between electrode and electrolyte.
- Warburg behavior (i.e., the frequency dependence of the ion diffusion/transport in the electrolyte [62]) was less pronounced in [Imi][HSO4]aq than the other investigated electrolytes, indicating the capacitive behavior of PANI/PIL in [Imi][HSO4]aq.
- In the low frequency region, PANI/PIL displayed a more vertical line with [Pyrr][HSO4]aq than H2SO4, while the line obtained with [Imi][HSO4]aq was almost parallel to the imaginary axis. It is known that a line parallel to the imaginary axis reveals a short ion diffusion path and a more ideal capacitor, which means efficient electrolyte accessibility to the electrode surface [63,64].
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Investigated Ionic Liquids
3.3. Synthesis of the PANI
3.4. Measurements
3.5. Electrode Preparation and Electrochemical Measurements
3.6. Computational Methods
4. Conclusions
- Reversibility of the redox couple of PANI is greatly dependent on the structure of the ionic liquids used as electrolyte. For [Pyrr][PTS]aq, no cathodic peak was observed on the CV curve of PANI even at very low scan rates, revealing that the anion of [Pyrr][PTS] was hardly released from the polymer during the reduction process. In [Pyrr][HSO4]aq and [Imi][HSO4]aq, both the anodic and cathodic peaks of PANI were well defined. However, the redox couple of PANI was more reversible in [Imi][HSO4]aq relative to [Pyrr][HSO4]aq (i.e., ΔEO,R of PANI was about 730 mV at 15 mV/s in [Imi][HSO4]aq, lower than that in [Pyrr][HSO4]aq (with ΔEO,R of about 840 mV at 15 mV/s).
- Approach III (presented in the introduction) led to more electrochemically performant PANI electrode materials than approach I. For example, the capacitance retention of the investigated PANI was about 89.1 and 96.1% in H2SO4 and [Imi][HSO4]aq, respectively, when the scan rate increased from 5 to 15 mV/s. However, this preliminary conclusion needs to be proven since at this stage it is not possible to deduce whether the enhanced electrochemical performances of PANI in [Imi][HSO4]aq were due to its better physicochemical properties compared with the other investigated ionic liquids or to the approach followed.
- Non-substituted imidazolium-based ionic liquids or non-substituted pyrrolidinium-based ionic liquids could be good alternatives to the mono- or disubstituted imidazolium salts widely investigated in the literature as electrolytes for storage devices.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Krishnamoorthy, K.; Radhakrishnan, S.; Kim, N.-J.; Kim, S.J. In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications. J. Ind. Eng. Chem. 2016, 36, 163–168. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Guo, W.; Chen, J.; He, W.; Peng, F. Synthesis of spherical PANI particles via chemical polymerization in ionic liquid for high-performance supercapacitors. Electrochim. Acta 2014, 135, 550–557. [Google Scholar] [CrossRef]
- Chellachamy Anbalagan, A.; Sawant, S.N. Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer 2016, 87, 129–137. [Google Scholar] [CrossRef]
- Bhandari, S.; Khastgir, D. Template-free solid state synthesis of ultra-long hairy polyaniline nanowire supercapacitor. Mater. Lett. 2014, 135, 202–205. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Heydari, H.; Abdolmaleki, A.; Hosseini, H. Nanostructured CuO/PANI composite as supercapacitor electrode material. Mater. Sci. Semicond. Process. 2015, 30, 157–161. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.; Deng, J.; Duan, X.; Guo, J.; Liu, P. Improving cyclic stability of polyaniline by thermal crosslinking as electrode material for supercapacitors. RSC Adv. 2015, 5, 78545–78552. [Google Scholar] [CrossRef]
- Khdary, N.H.; Abdesalam, M.E.; El Enany, G. Mesoporous Polyaniline Films for High Performance Supercapacitors. J. Electrochem. Soc. 2014, 161, G63–G68. [Google Scholar] [CrossRef]
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Al-Zohbi, F. Research Progress on Polyanilie-ionic liquids for Long Cycle-Stable Supercapacitors with High Capacitance. Appl. Funct. Mater. 2022, 2, 51–66. [Google Scholar]
- Al-Zohbi, F.; Jacquemin, J.; Ghamouss, F.; Schmaltz, B.; Abarbri, M.; Cherry, K.; Tabcheh, M.F.; Tran-Van, F. Impact of the aqueous pyrrolidinium hydrogen sulfate electrolyte formulation on transport properties and electrochemical performances for polyaniline-based supercapacitor. J. Power Sources 2019, 431, 162–169. [Google Scholar] [CrossRef]
- Chaudhari, S.; Sharma, Y.; Archana, P.S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. Electrospun polyaniline nanofibers web electrodes for supercapacitors. J. Appl. Polym. Sci. 2013, 129, 1660–1668. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Shishlyanikova, E.N.; Moiseeva, T.A.; Brzhezinskaya, M. Preparation and electrochemical characterization of PANI/PVA and PANI/Zr/PVA composites for supercapacitor application. Adv. Mater. Lett. 2016, 7, 441–444. [Google Scholar] [CrossRef]
- Zhu, H.; Peng, S.; Jiang, W. Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes. Sci. World J. 2013, 2013, 940153–940162. [Google Scholar] [CrossRef]
- Ko, J.M.; Nam, J.H.; Won, J.H.; Kim, K.M. Supercapacitive properties of electrodeposited polyaniline electrode in acrylic gel polymer electrolytes. Synth. Met. 2014, 189, 152–156. [Google Scholar] [CrossRef]
- Ray, A.; Saruhan, B. Application of Ionic Liquids for Batteries and Supercapacitors. Materials 2021, 14, 2942. [Google Scholar] [CrossRef]
- Al-Zohbi, F. A Review of Tailoring Polyaniline Ionic Liquids for Long Cycle-stable supercapacitors with High Capacitance. J. Chem. Rev. 2023, 5, 143–158. [Google Scholar]
- Al-Zohbi, F.; Ghamouss, F.; Schmaltz, B.; Abarbri, M.; Cherry, K.; Tabcheh, M.F.; Tran-Van, F. Nanostructuration of Polyaniline using Non-substituted Imidazolium-based ionic liquid as a polymerization medium enabling faster supercapacitors operation. Appl. Funct. Mater. 2022, 3, 1–11. [Google Scholar]
- Al-Zohbi, F.; Ghamouss, F.; Schmaltz, B.; Abarbri, M.; Zaghrioui, M.; Tran-Van, F. Enhanced Storage Performance of PANI and PANI/Graphene Composites Synthesized in Protic Ionic Liquids. Materials 2021, 14, 4275. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, F.; Shahrokhian, S.; Mirzaei, Y. Effect of Long-Chain Ionic Liquids on the Capacitive Performance of Carbon NAnotube-Sulfonated Polyaniline Hydrogels for Energy Storage Applications. J. Phys. Chem. C 2020, 124, 9810–9821. [Google Scholar] [CrossRef]
- Li, S.; Yang, C.; Sarwar, S.; Nautiyal, A.; Zhang, P.; Du, H.; Liu, N.; Yin, J.; Deng, K.; Zhang, X. Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Adv. Compos. Hybrid Mater. 2019, 2, 279–288. [Google Scholar] [CrossRef]
- Honghong, S.; Jing, Z.; Pengfei, S.; Yubing, X. Maize-like ionic liquid@polyaniline nanocomposites for high performance supercapacitor. e-Polymers 2019, 19, 313–322. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Wei, Z. Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. J. Phys. Chem. C 2010, 114, 8062–8067. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Zhang, X.-G.; Xiao, F.; Hu, F.-P. Effect of polar solvent acetonitrile on the electrochemical behavior of polyaniline in ionic liquid electrolytes. J. Colloid Interface Sci. 2005, 287, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Innis, P.C.; Mazurkiewicz, J.; Nguyen, T.; Wallace, G.G.; MacFarlane, D. Enhanced electrochemical stability of polyaniline in ionic liquids. Curr. Appl. Phys. 2004, 4, 389–393. [Google Scholar] [CrossRef]
- Zhang, L.; Tsay, K.; Bock, C.; Zhang, J. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C—80 °C. J. Power Sources 2016, 324, 615–624. [Google Scholar] [CrossRef]
- Anouti, M.; Jacquemin, J.; Porion, P. Transport Properties Investigation of Aqueous Protic Ionic Liquid Solutions through Conductivity, Viscosity, and NMR Self-Diffusion Measurements. J. Phys. Chem. B 2012, 116, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Snook, G.A.; Greaves, T.L.; Best, A.S. A comparative study of the electrodeposition of polyaniline from a protic ionic liquid, an aprotic ionic liquid and neutral aqueous solution using anilinium nitrate. J. Mater. Chem. 2011, 21, 7622–7629. [Google Scholar] [CrossRef]
- Seddon Kenneth, R.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275. [Google Scholar] [CrossRef]
- D’Angelo, P.; Zitolo, A.; Aquilanti, G.; Migliorati, V. Using a Combined Theoretical and Experimental Approach to Understand the Structure and Dynamics of Imidazolium-Based Ionic Liquids/Water Mixtures. 2. EXAFS Spectroscopy. J. Phys. Chem. B 2013, 117, 12516–12524. [Google Scholar] [CrossRef]
- Maiti, A.; Kumar, A.; Rogers, R.D. Water-clustering in hygroscopic ionic liquids-an implicit solvent analysis. Phys. Chem. Chem. Phys. 2012, 14, 5139–5146. [Google Scholar] [CrossRef] [PubMed]
- Zaitsau, D.H.; Yermalayeu, A.V.; Emel’yanenko, V.N.; Butler, S.; Schubert, T.; Verevkin, S.P. Thermodynamics of Imidazolium-Based Ionic Liquids Containing PF6 Anions. J. Phys. Chem. B 2016, 120, 7949–7957. [Google Scholar] [CrossRef]
- Anouti, M.; Couadou, E.; Timperman, L.; Galiano, H. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim. Acta 2012, 64, 110–117. [Google Scholar] [CrossRef]
- Rilo, E.; Vila, J.; García-Garabal, S.; Varela, L.M.; Cabeza, O. Electrical Conductivity of Seven Binary Systems Containing 1-Ethyl-3-methyl Imidazolium Alkyl Sulfate Ionic Liquids with Water or Ethanol at Four Temperatures. J. Phys. Chem. B 2013, 117, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cooper, E.I.; Angell, C.A. Ionic Liquids: Ion Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003, 107, 6170–6178. [Google Scholar] [CrossRef]
- Fan, F.; Wang, W.; Holt, A.P.; Feng, H.; Uhrig, D.; Lu, X.; Hong, T.; Wang, Y.; Kang, N.-G.; Mays, J.; et al. Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids. Macromolecules 2016, 49, 4557–4570. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Xu, W.; Angell, C.A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of DeltapKa from aqueous solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419. [Google Scholar] [CrossRef] [PubMed]
- Austen Angell, C.; Ansari, Y.; Zhao, Z. Ionic Liquids: Past, present and future. Faraday Discuss. 2012, 154, 9–27. [Google Scholar] [CrossRef]
- Sanchez, P.B.; Garcia, J.; Salgado, J.; Gonzalez-Romero, E. Studies of Volumetric and Transport Properties of Ionic Liquid-Water Mixtures and Its Viability To Be Used in Absorption Systems. ACS Sustain. Chem. Eng. 2016, 4, 5068–5077. [Google Scholar] [CrossRef]
- Watanabe, M.; Kodama, D.; Makino, T.; Kanakubo, M. Density, Viscosity, and Electrical Conductivity of Protic Amidium Bis(trifluoromethanesulfonyl)amide Ionic Liquids. J. Chem. Eng. Data 2016, 61, 4215–4221. [Google Scholar] [CrossRef]
- Angell, C.A.; Byrne, N.; Belieres, J.-P. Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications. Acc. Chem. Res. 2007, 40, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H.J. Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot. J. Chem. Eng. Data 2010, 55, 1784–1788. [Google Scholar] [CrossRef]
- Thawarkar, S.; Khupse, N.D.; Kumar, A. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy. ChemPhysChem 2016, 17, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Brauer, U.G.; De La Hoz, A.T.; Miller, K.M. The effect of counteranion on the physicochemical and thermal properties of 4-methyl-1-propyl-1,2,4-triazolium ionic liquids. J. Mol. Liq. 2015, 210, 286–292. [Google Scholar] [CrossRef]
- Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. Synthesis and Characterization of New Pyrrolidinium Based Protic Ionic Liquids. Good and Superionic Liquids. J. Phys. Chem. B 2008, 112, 13335–13343. [Google Scholar] [CrossRef]
- Pauliukaite, R.; Brett, C.M.A.; Monkman, A.P. Polyaniline fibres as electrodes.: Electrochemical characterisation in acid solutions. Electrochim. Acta 2004, 50, 159–167. [Google Scholar] [CrossRef]
- Aoki, A.; Umehara, R.; Banba, K. Conductive polyaniline/surfactant ion complex Langmuir-Blodgett films. Langmuir 2009, 25, 1169–1174. [Google Scholar] [CrossRef]
- Huang, W.S.; Humphrey, B.D.; MacDiarmid, A.G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1986, 82, 2385–2400. [Google Scholar] [CrossRef]
- Heeger, A.J. Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Rev. Mod. Phys. 2001, 73, 681–700. [Google Scholar] [CrossRef]
- Du, F.-P.; Wang, J.-J.; Tang, C.-Y.; Tsui, C.-P.; Xie, X.-L.; Yung, K.-F. Enhanced electrochemical capacitance of polyaniline/graphene hybrid nanosheets with graphene as templates. Compos. Part B 2013, 53, 376–381. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Zeng, W.; Guo, H.; Li, Y.; Geng, Q. Investigation into the crystal structure of bis(pyridine)-bis(trichloroacetato) copper(II) and its electrophotochemical properties. Res. Chem. Intermed. 2012, 39, 1727. [Google Scholar] [CrossRef]
- Patil, D.S.; Pawar, S.A.; Patil, S.K.; Salavi, P.P.; Kolekar, S.S.; Devan, R.S.; Ma, Y.R.; Kim, J.H.; Shin, J.C.; Patil, P.S. Electrochemical performance of potentiodynamically deposited polyaniline electrodes in ionic liquid. J. Alloys Compd. 2015, 646, 1089–1095. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493. [Google Scholar] [CrossRef]
- Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191. [Google Scholar] [CrossRef]
- Ke, F.; Liu, Y.; Xu, H.; Ma, Y.; Guang, S.; Zhang, F.; Lin, N.; Ye, M.; Lin, Y.; Liu, X. Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Comp. Sci. Technol. 2017, 142, 286–293. [Google Scholar] [CrossRef]
- Sen, P.; De, A. Electrochemical performances of poly(3,4-ethylenedioxythiophene)-NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochimica Acta 2010, 55, 4677–4684. [Google Scholar] [CrossRef]
- Ferloni, P.; Mastragostino, M.; Meneghello, L. Impedance analysis of electronically conducting polymers. Electrochim. Acta 1996, 41, 27–33. [Google Scholar] [CrossRef]
- Available online: http://myweb.wit.edu/sandinic/Research/conductivity%20v%20concentration.pdf (accessed on 22 May 2024).
- Jänes, A.; Lust, E. Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J. Electroanal. Chem. 2006, 588, 285–295. [Google Scholar] [CrossRef]
- Komura, T.; Usui, T.; Takahasi, K. Charge Transport at Polypyrrole Film Electrodes: Effect of the Electrolyte Concentration. Bull. Chem. Soc. Jpn. 1995, 68, 3391–3396. [Google Scholar] [CrossRef]
- Hassan, M.; Reddy, K.R.; Haque, E.; Faisal, S.N.; Ghasemi, S.; Minett, A.I.; Gomes, V.G. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos. Sci. Technol. 2014, 98, 1–8. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, W.; Wang, J.; Yan, H.; Yao, Y.; Ma, J.; Wang, B.; Zhang, M.; Liu, L. Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim. Acta 2013, 91, 185–194. [Google Scholar] [CrossRef]
- Li, Z.-F.; Zhang, H.; Liu, Q.; Liu, Y.; Stanciu, L.; Xie, J. Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 2014, 71, 257–267. [Google Scholar] [CrossRef]
- Chen, W.-C.; Wen, T.-C.; Teng, H. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim. Acta 2003, 48, 641–649. [Google Scholar] [CrossRef]
- Ghosh, D.; Giri, S.; Mandal, A.; Das, C.K. H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: Superior electrode material for supercapacitor application. Appl. Surf. Sci. 2013, 276, 120–128. [Google Scholar] [CrossRef]
- Anouti, M.; Porion, P.; Brigouleix, C.; Galiano, H.; Lemordant, D. Transport properties in two pyrrolidinium-based protic ionic liquids as determined by conductivity, viscosity and NMR self-diffusion measurements. Fluid Phase Equilib. 2010, 299, 229–237. [Google Scholar] [CrossRef]
- Weigend, F.; Häser, M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997, 97, 331–340. [Google Scholar] [CrossRef]
- Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998, 294, 143–152. [Google Scholar] [CrossRef]
- Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
Structure of the selected PILs | [Imi][HSO4] | [Pyrr][HSO4] | [Pyrr][PTS] |
δ(N-H) ppm | 5.5 (broad singlet, 1H, H1) | 8.53 (broad singlet, 2H, H1), | 8.55 (broad singlet, 2H, H1) |
δ(C-H) ppm | 8.9 (s, 1H, H2) 7.6 (d, 2H, J = 1.2, H5, H4) | 3.09–3.07 (m, 4H, H2, H5) 1.81–1.77 (m, 4H, H3, H4) | 7.54–7.44 (m, 2H, H7 and H11) 7.13 (d, J = 8.0 Hz, 2H, H8, H10) 2.98–3.18 (m, 4H, H2, H5) 2.29 (s, 3H, H12) 1.87–1.76 (m, 4H, H3, H4) |
COSMO volume (Å3) | Surface (Å2) | Sigma profiles | |
Hydrogen sulfate (HSO4−) | 81 | 98 | |
p-toluene sulfonate (PTS−) | 187 | 187 | |
Pyrrolidinium (Pyrr+) | 106 | 117 | |
Imidazolium (Imi+) | 88 | 103 |
Electrolyte | Capacitance (F/g) at Varying Scan Rate (mV/s) | Capacitance Retention (%) | ||
---|---|---|---|---|
5 | 10 | 15 | 100 × (C15/C5) | |
H2SO4 | 280 | 272 | 250 | 89.1 |
[Imi][HSO4]aq | 279 | 276 | 268 | 96.1 |
[Pyrr][HSO4]aq | 290 | 285 | 265 | 91.4 |
Electrolytes | R1 (Ω) | R2 (Ω) | CPE2 (F·sa−1) | α2 (Ω) | R3 (Ω) | σ3 (Ω·s−1/2) | CPE4 (F·sa−1) | α4 |
---|---|---|---|---|---|---|---|---|
[Imi][HSO4]aq | 6.86 | 0.42 | 1.01 × 10−3 | 0.79 | 0.78 | 0.89 | 0.44 | 0.99 |
H2SO4 | 4.61 | 0.58 | 2.88 × 10−3 | 0.67 | 1.71 | 1.92 | 0.3 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zohbi, F.; Ghamouss, F.; Jacquemin, J.; Schmaltz, B.; Tabcheh, M.F.; Abarbri, M.; Cherry, K.; Tran-Van, F. Non-Substituted Imidazolium-Based Electrolytes as Potential Alternatives to the Conventional Acidic Electrolytes of Polyaniline-Based Electrode Materials for Supercapacitors. Molecules 2024, 29, 2569. https://doi.org/10.3390/molecules29112569
Al-Zohbi F, Ghamouss F, Jacquemin J, Schmaltz B, Tabcheh MF, Abarbri M, Cherry K, Tran-Van F. Non-Substituted Imidazolium-Based Electrolytes as Potential Alternatives to the Conventional Acidic Electrolytes of Polyaniline-Based Electrode Materials for Supercapacitors. Molecules. 2024; 29(11):2569. https://doi.org/10.3390/molecules29112569
Chicago/Turabian StyleAl-Zohbi, Fatima, Fouad Ghamouss, Johan Jacquemin, Bruno Schmaltz, Mohamad Fadel Tabcheh, Mohamed Abarbri, Khalil Cherry, and François Tran-Van. 2024. "Non-Substituted Imidazolium-Based Electrolytes as Potential Alternatives to the Conventional Acidic Electrolytes of Polyaniline-Based Electrode Materials for Supercapacitors" Molecules 29, no. 11: 2569. https://doi.org/10.3390/molecules29112569
APA StyleAl-Zohbi, F., Ghamouss, F., Jacquemin, J., Schmaltz, B., Tabcheh, M. F., Abarbri, M., Cherry, K., & Tran-Van, F. (2024). Non-Substituted Imidazolium-Based Electrolytes as Potential Alternatives to the Conventional Acidic Electrolytes of Polyaniline-Based Electrode Materials for Supercapacitors. Molecules, 29(11), 2569. https://doi.org/10.3390/molecules29112569