Aliquat 336 in Solvent Extraction Chemistry of Metallic ReO4− Anions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solvent Extraction Study of ReO4− Anions Applying Aliquat 336: Effect of pH, Ligand Concentration and Organic Diluent
2.2. Solvent Extraction and Selectivity across the Chemical Elements in the Periodic Table Applying Aliquat 336
- (1)
- Very difficult to separate, SF < 5: Zn, Ag, Cd, Hg and Bi;
- (2)
- Difficult to separate, SF < 100: Pb;
- (3)
- Overall selectivity ≈ 103: Li, Al, Fe, Co, Ni, Cu, Ba, La and Tl;
- (4)
- Overall selectivity ≈ 104−105: Na, K, Ca, Cr, Mn, Sr, Ce, Eu, Gd and Lu.
3. Materials and Methods
3.1. Reagents
3.2. Solvent Extraction Studies
3.3. NMR, UV-Vis and HRMS Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Z.; Tesfaye, F.; Li, X.; Lindberg, D.; Taskinen, P. Review of rhenium extraction and recycling technologies from primary and secondary resources. Miner. Eng. 2021, 161, 106719. [Google Scholar] [CrossRef]
- Lou, Z.; Xing, S.; Xiao, X.; Shan, W.; Xiong, Y.; Fan, Y. Selective adsorption of Re(VII) by chitosan modified with imidazolium-based ionic liquid. Hydrometallurgy 2018, 179, 141–148. [Google Scholar] [CrossRef]
- Qi, W.; He, J.; Li, M.; Zhai, M.; Zhao, L. Efficient extraction of rhenium through demulsification of imidazolium ionic liquid based microemulsions from aqueous solution. Sep. Purif. Tehcnol. 2022, 297, 121574. [Google Scholar] [CrossRef]
- Maruchi, L.; Schaeffer, N.; Passos, H.; Mendonça, C.; Coutinho, J.; Jimenez, Y. Sustainable extraction and separation of rhenium and molybdenum from model copper mining effluents using a polymeric aqueous two-phase system. ACS Sustain. Chem. Eng. 2019, 7, 1778–1785. [Google Scholar] [CrossRef]
- Ogata, T.; Takeshita, K.; Tsuda, K.; Mori, A. Solvent extraction of perrhenate ions with podand-type nitrogen donor ligands. Sep. Purif. Technol. 2009, 68, 288–290. [Google Scholar] [CrossRef]
- Xiong, C.; Yao, C.; Wu, X. Adsorption of rhenium(VII) on 4-amino-1,2,4-triazole resin. Hydrometallurgy 2008, 90, 221–226. [Google Scholar] [CrossRef]
- Chen, X.-R.; Zhang, C.-R.; Jiang, W.; Liu, X.; Luo, Q.-X.; Zhang, L.; Liang, R.-P.; Qin, J.-D. 3D Viologen-based covalent organic framework for selective and efficient adsorption of ReO4−/TcO4−. Sep. Purif. Technol. 2023, 312, 123409. [Google Scholar] [CrossRef]
- Shimojo, K.; Suzuki, H.; Yokoyama, K.; Yaita, T.; Ikeda-Ohno, A. Solvent extraction of technetium (VII) and rhenium (VII) using a hexaoctylnitrilotriacetamide extractant. Anal. Sci. 2020, 36, 1435–1437. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, R.; Kang, J.; Fan, Y.; Huang, C.; Jin, Y.; Xia, C. Study on extraction behavior of Re(VII) with bis-triamide extractants. Solvent Extr. Ion Exch. 2022, 40, 571–589. [Google Scholar] [CrossRef]
- Pan, X.; Zu, J.; Han, G.; Lin, S.; Diao, J.; Xue, Y. Efficient and rapid elimination of 99TcO4−/ReO4− from medium-low level acid-wastewater using anion exchange adsorbent. Sep. Purif. Technol. 2023, 322, 124123. [Google Scholar] [CrossRef]
- Xiong, Y.; Song, Y.; Zhang, P.; Wang, Y.; Lou, Z.; Zhang, F.; Shan, W. Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII). Sep. Purif. Technol. 2017, 177, 142–151. [Google Scholar] [CrossRef]
- Hori, H.; Otsu, T.; Yasukawa, T.; Morita, R.; Ishii, S.; Asai, T. Recovery of rhenium from aqueous mixed metal solutions by selective precipitation: A photochemical approach. Hydrometallurgy 2019, 183, 151–158. [Google Scholar] [CrossRef]
- Laatikainen, M.; Virolainen, S.; Paatero, E.; Sainio, T. Recovery of ReO4− by weakly basic anion exchangers: Modeling of sorption equilibrium and rate. Sep. Purif. Technol. 2015, 153, 19–28. [Google Scholar] [CrossRef]
- Atanassova, M. Ordered mesoporous silicas containing imidazolium substructures for solid-liquid extraction of metallic anions ReO4−. Russ. J. Inorg. Chem. 2021, 66, 696–706. [Google Scholar] [CrossRef]
- Travkin, V.; Antonov, A.; Kubasov, V.; Ishchenko, A.; Glubokov, Y. Extraction of rhenium(VII) and molybdenum(VI) with hexabutyltriamide of phosphoric acid from acid media. Russ. J. Appl. Chem. 2006, 79, 909–913. [Google Scholar] [CrossRef]
- Batueva, T.; Radushev, A.; Tuktareva, T.; Degtev, M.; Nasrtdinova, T.; Karmanov, V. Rhenium(VII) extraction with 2-ethylhexanoic acid N,N-dialkylhydrazides from acidic solutions. Russ. J. Inorg. Chem. 2010, 55, 804–807. [Google Scholar] [CrossRef]
- Gerhardt, N.; Palant, A.; Petrova, V.; Tagirov, R. Solvent extraction of molybdenum (VI), tungsten (VI) and rhenium(VII) by diisododecylamine from leach liquors. Hydrometallurgy 2001, 60, 1–5. [Google Scholar] [CrossRef]
- Dukov, I.; Atanassova, M. High molecular weight amines and quaternary ammonium salts as synergistic agents in the solvent extraction of metal ions with chelating extractants. In Handbook of Inorganic Chemistry Research; Morrison, D.A., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; Chapter 7; ISBN 978-1-61668-010-7. [Google Scholar]
- Mikkola, J.-P.; Virtanen, P.; Sjöholm, R. Aliquat 336—A versatile and affordable cation source for an entirely new family of hydrophobic ionic liquid. Green Chem. 2006, 8, 250–255. [Google Scholar] [CrossRef]
- Atanassova, M. Solvent extraction chemistry in ionic liquids: An overview of f-ions. J. Mol. Liq. 2021, 343, 117530. [Google Scholar] [CrossRef]
- Genov, L.; Dukov, I.; Kassabov, G. Extraction von europium durch gemische von thenoyltrifluoroaceton and Aliquat 336. Acta Chim. Acad. Sci. Hung. 1977, 95, 361–365. [Google Scholar]
- Dukov, I.; Genov, L. On the mechanism of the synergistic extraction of lanthanides with thenoyltrifluoroacetone and Aliquat-336S. Acta Chim. Acad. Sci. Hung. 1980, 104, 329–335. [Google Scholar]
- Atanassova, M.; Jordanov, V.; Dukov, I. Effect of the quaternary ammonium salt Aliquat 336 on the solvent extraction of lanthanoid (III) ions with thenoyltrifluoroacetone. Hydrometallurgy 2002, 63, 41–47. [Google Scholar] [CrossRef]
- Dukov, I.; Atanassova, M. Effect of the diluents on the synergistic solvent extraction of some lanthanides with thenoyltrifluoroacetone and quaternary ammonium salt. Hydrometallurgy 2003, 68, 89–96. [Google Scholar] [CrossRef]
- Dukov, I.; Genov, L. Temperature effect on the synergistic solvent extaction of lanthanoides. Solvent Extr. Ion Exch. 1987, 5, 977–987. [Google Scholar] [CrossRef]
- Jordanov, V.; Atanassova, M.; Dukov, I. Solvent extraction of lanthanides with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone. Sep. Sci. Technol. 2002, 37, 3349–3356. [Google Scholar] [CrossRef]
- Atanassova, M. Synergistic solvent extraction and separation of lanthanide(III) ions with 4-benzoyl-3-phenyl-5-isoxazolone and the quaternary ammonium salt. Solvent Extr. Ion Exch. 2009, 27, 159–171. [Google Scholar] [CrossRef]
- Ivanov, N.; Gindin, L.; Tchichagova, G. Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya Khimicheskikh Nauk 1967, 3, 100–104. (In Russian) [Google Scholar]
- Goto, T. Extraction of lanthanoids by quaternary ammonium salts. J. Inorg. Nucl. Chem. 1969, 31, 1111–1119. [Google Scholar] [CrossRef]
- Knight, A.; Chiarizia, R.; Soderholm, L. Extraction selectivity of a quaternary alkylammonium salt for trivalent actinides over trivalent lanthanides: Does extractant aggregation play a role? Solvent Extr. Ion Exch. 2017, 35, 266–279. [Google Scholar] [CrossRef]
- Hoogerstraete, T.V.; Souza, E.R.; Onghena, B.; Banerjee, D.; Binnemans, K. Mechanism for solvent extraction of lanthanides from chloride media by basic extractants. J. Solut. Chem. 2018, 47, 1351–1372. [Google Scholar] [CrossRef]
- Paatero, J. Studies on the System Aliquat 336 in Xylene-Nickel(II) in Aqueous Chloride Solutions; Part 1. Determination of the composition and average molecular weight of Aliquat 33. Vol. 34, n.1. abo Akademi, Acta Academie Aboensis, ser. B; Abo Academi: Abo, Finland, 1974. [Google Scholar]
- Lerum, H.; Andersen, N.; Eriksen, D.; Hansen, E.; Petersen, D.; Wibetoe, G.; Omtvedt, J. Study of cadmium extraction with Aliquat 336 from highly saline solutions. J. Solut. Chem. 2018, 47, 1395–1417. [Google Scholar] [CrossRef]
- Kasilkov, A.; Petrova, A. Recovery of rhenium(VII) with triisoactylamine from sulfuric acid solutions. Russ. J. Applied Chem. 2006, 6, 914–919. [Google Scholar] [CrossRef]
- Stojanovic, A.; Morgenbesser, C.; Kogelnig, D.; Krochler, K.; Keppler, B. Quaternary ammonium amd phosphonium ionic liquids in chemical and environmental engineering. In Ionic Liquids: Theory, Properties, New Approaches; Kokorin, A., Ed.; IntechOpen: London, UK, 2011; Chapter 26; pp. 657–680. [Google Scholar]
- Stojanovic, A.; Lämmerhofer, M.; Kogelnig, D.; Schiesel, S.; Sturm, M.; Galanski, M.; Krachler, R.; Keppler, B.; Lindner, W. Analysis of quaternary ammonium and phosphonium ionic liquids by reversed-phase high-performance liquid chromatography with charged aerosol detection and unified calibration. J. Chromatogr. A 2008, 1209, 179–187. [Google Scholar] [CrossRef]
- Casas, J.M.; Sepúlveda, E.; Bravo, L.; Cifuentes, L. Crystallization of sodium perrhenate from NaReO4−H2O−C2H5OH solutions at 298 K. Hydrometallurgy 2012, 113−114, 192–194. [Google Scholar] [CrossRef]
- Vosough, M.; Shahtahmasebi, N.; Behdani, M. Recovery Rhenium from roasted dust through super Para-magnetic Nanoparticles. Int. J. Refract. Hard Met. Hard Mater. 2016, 60, 125–130. [Google Scholar] [CrossRef]
- Nebeker, N.; Hiskey, J.B. Recovery of rhenium from copper leach solution by ion exchange. Hydrometallurgy 2012, 125–126, 64–68. [Google Scholar] [CrossRef]
- Lessard, J.; Gribbin, D.; Shekhter, L. Recovery of rhenium from molybdenum and copper concentrates during the looping sulfide oxidation process. Int. J. Refract. Hard Met. Hard Mater. 2014, 44, 1–6. [Google Scholar] [CrossRef]
- Amer, A. The hydrometallurgical extraction of rhenium from copper industrial wastes. JOM 2008, 60, 52–54. [Google Scholar] [CrossRef]
- Jumeja, J.; Singa, S.; Bose, D. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate. Hydrometallurgy 1996, 41, 201–209. [Google Scholar] [CrossRef]
- Safarbali, R.; Reza Yaftian, M.; Zamani, A. Solvent extraction-separation of La(III), Eu(III) and Er(III) ions from aqueous chloride medium using carbamoyl-carboxylic acid extractants. J. Rare Earths 2016, 34, 91–98. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Raiguel, S.; Binnemans, K. Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336. Sep. Purif. Technol. 2018, 201, 318–326. [Google Scholar] [CrossRef]
- Atanassova, M.; Kukeva, R.; Kurteva, V. New sustainable solvent extraction pathways for rare earth metals via oximes molecules. Molecules 2023, 28, 7467. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra Reddy, B.; Kumar, J.; Varade Reddy, A. 3-Phenyl-4-acyl-isoxazolones as reagents for liquid-liquid extraction of tetravalent zirconium and hafnium from acidic chloride solutions. J. Braz. Chem. Soc. 2006, 17, 780–784. [Google Scholar] [CrossRef]
- Kang, J.; Kim, Y.-U.; Joo, S.-H.; Yoon, H.-S.; Kumar, J.; Park, K.-H.; Parhi, P.; Shin, S. Behaviour of extraction, stripping and separation possibilities of rhenium and molybdenum from molybdenite roasting dust leaching solution using amine based extractant tri-octyl-amine. Mater. Trans. 2013, 54, 1209–1212. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kitatsuji, Y.; Kimura, T. Highly selective extraction of TcO4−, ReO4− and MoO4− by the new ligand 2,2’-(methylimino)bis(N,N-dioctylacetamide). Chem. Lett. 2007, 36, 1394–1395. [Google Scholar] [CrossRef]
- Sasaki, Y.; Morita, K.; Shimazaki, S.; Tsubata, Y.; Ozawa, M. Masking effects for Mo, Re, Pd and Ru by S and N- donor reagents through MIDOA and NTaamide extraction. Solvent Extr. Res. Dev. Jpn. 2016, 23, 161–174. [Google Scholar] [CrossRef]
Compound | CH3-N+ | CH3-N+ | CH2-N+ | CH2-N+ | 15N |
---|---|---|---|---|---|
[A336+][Cl−] | 3.211 | 61.65 | 3.342 | 62.97 | 60.2 |
[A336+][ReO4−] | 3.304 | 61.42 | 3.421 | 62.83 | 60.4 |
SF | Li | Na | Al | K | Ca | Cr | Mn | Fe | Co | Ni | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Re | 9 × 103 | 1 × 104 | 3 × 103 | 4 × 104 | 1 × 105 | 2 × 104 | 1 × 105 | 8 × 103 | 5 × 103 | 4 × 103 | 1 × 103 | 6.7 | |
SF | Sr | Ag | Cd | Ba | La | Ce | Eu | Gd | Lu | Hg | Tl | Pb | Bi |
Re | 5 × 105 | 1.09 | 0.86 | 5 × 103 | 3 × 103 | 1 × 104 | 7 × 105 | 2 × 104 | 8 × 105 | 2.4 | 2 × 103 | 106 | 4.5 |
SF | Si | Ti | Ge | Sb | Te | Zr | Nb | Mo | Sn | Hf | Ta | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Re | 7.3 × 104 | 4 × 103 | 3.3 × 104 | 464 | 4.2 × 104 | 3.8 × 104 | 332 | 70 | 77.4 | 9.2 × 103 | 4.6 | 475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassova, M.; Petkova, Z.; Kurteva, V. Aliquat 336 in Solvent Extraction Chemistry of Metallic ReO4− Anions. Molecules 2024, 29, 2257. https://doi.org/10.3390/molecules29102257
Atanassova M, Petkova Z, Kurteva V. Aliquat 336 in Solvent Extraction Chemistry of Metallic ReO4− Anions. Molecules. 2024; 29(10):2257. https://doi.org/10.3390/molecules29102257
Chicago/Turabian StyleAtanassova, Maria, Zhanina Petkova, and Vanya Kurteva. 2024. "Aliquat 336 in Solvent Extraction Chemistry of Metallic ReO4− Anions" Molecules 29, no. 10: 2257. https://doi.org/10.3390/molecules29102257
APA StyleAtanassova, M., Petkova, Z., & Kurteva, V. (2024). Aliquat 336 in Solvent Extraction Chemistry of Metallic ReO4− Anions. Molecules, 29(10), 2257. https://doi.org/10.3390/molecules29102257