Facile One-Pot Synthesis and Anti-Microbial Activity of Novel 1,4-Dihydropyridine Derivatives in Aqueous Micellar Solution under Microwave Irradiation
Abstract
:1. Introduction
2. Result and Discussion
2.1. Characterization of Aluminum Dodecyl Sulfate, Al(DS)3
2.1.1. SEM Characterization
2.1.2. XRD Characterization
2.2. Preparation of [1,4-DHPs] 10-Amino-3,3,6,6-Tetramethyl-9-Aryl-3,4,6,7,9,10-Hexa-Hydroacridine-1,8(2H,5H)-Dione Derivatives (5a–n) Using Al(DS)3
2.3. Characterization of Diethyl 6-Amino-5-Cyano-4-Phenyl-1,4-Dihydropyridine-2,3-Dicarboxylate (5a) Using Al(DS)3
2.4. Anti-Microbial Activity
3. Experimental Section
3.1. Materials and Methods
3.1.1. Chemicals
3.1.2. Analytical Instruments
3.2. Synthesis of Aluminum Dodecyl Sulfate
3.3. Synthesis of 1,4-DHPs Derivatives (5a–n)
3.4. Plausible Mechanism
3.5. Anti-Microbial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sirisha, K.; Achaiah, G.; Reddy, V.M. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines. Arch. Pharm. 2010, 343, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.; Dodiya, D.; Dholariya, B.; Kataria, V.; Bhuva, V.; Shah, V. Synthesis and biological evaluation of some novel 1,4-dihydropyridines as potential antitubercular agents. Chem. Biol. Drug Des. 2011, 78, 881–886. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, R.A.; Sharma, S.; Kumar, M.; Bhatia, G. Synthesis and biological evaluation of N-aryl-1,4-dihydropyridines as novel antidyslipidemic and antioxidant agents. Eur. J. Med. Chem. 2010, 45, 501–509. [Google Scholar] [CrossRef]
- De Luca, M.; Ioele, G.; Ragno, G. 1,4-dihydropyridine antihypertensive drugs: Recent advances in photostabilization strategies. Pharmaceutics 2019, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.F.; Darweesh, A.F.; Elwahy, A.H.M.; Abdelhamid, I.A. Synthesis, characterization and antitumor activity of novel tetrapodal 1,4-dihydropyridines: P53 induction, cell cycle arrest and low damage effect on normal cells induced by genotoxic factor H2O2. RSC Adv. 2016, 6, 40900–40910. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Alinezhad, H.; Norouzi, M.; Baghery, S.; Akbari, M. Protic pyridinium ionic liquid as a green and highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via Hantzsch condensation in water. J. Mol. Liq. 2013, 177, 44–48. [Google Scholar] [CrossRef]
- Mathur, R.; Negi, K.S.; Shrivastava, R.; Nair, R. Recent developments in the nanomaterial-catalyzed green synthesis of structurally diverse 1,4-dihydropyridines. RSC Adv. 2021, 11, 1376–1393. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; A Johnson, B.; Ait-Daoud, N.; Wells, L.T. Effects of isradipine, a dihydropyridine-class calcium channel antagonist, on D-methamphetamine-induced cognitive and physiological changes in humans. Neuropsychopharmacology 2000, 22, 504–512. [Google Scholar] [CrossRef]
- Huai, Y.; Wang, H.; Zhao, L.; Zhao, L.; Pei, J. Lacidipine inhibits endoplasmic reticulum stress and myocardial remodeling induced by pressure overload in rat heart. Eur. J. Pharmacol. 2013, 718, 441–447. [Google Scholar] [CrossRef]
- Amenta, F.; Tomassoni, D.; Traini, E.; Mignini, F.; Veglio, F. Nicardipine: A hypotensive dihydropyridine-type calcium antagonist with a peculiar cerebrovascular profile. Clin. Exp. Hypertens. 2008, 30, 808–826. [Google Scholar] [CrossRef]
- Wu, J.Y.; Zhang, L.; Cai, L.L.; Zhang, Y. Catalyzing synthesis of chiral nitrendipine. Adv. Mater. Res. 2012, 518–523, 3943–3946. [Google Scholar] [CrossRef]
- Affeldt, R.F.; Benvenutti, E.V.; Russowsky, D. A new In-SiO2 composite catalyst in the solvent-free multicomponent synthesis of Ca2+ channel blockers nifedipine and nemadipine B. New J. Chem. 2012, 36, 1502–1511. [Google Scholar] [CrossRef]
- Hantzsch, A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebigs Ann. Chem. 1882, 215, 1–82. [Google Scholar] [CrossRef]
- Jassem, A.M.; Almashal, F.A.K.; Mohammed, M.Q.; Jabir, H.A.S. A catalytic and green method for one-pot synthesis of new Hantzsch 1,4-dihydropyridines. SN Appl. Sci. 2020, 2, 359. [Google Scholar] [CrossRef]
- Machado, I.V.; dos Santos, J.R.; Januario, M.A.; Corrêa, A.G. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason. Sonochem. 2021, 78, 105704. [Google Scholar] [CrossRef] [PubMed]
- Davarpanah, J.; Ghahremani, M.; Najafi, O. Synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via Hantzsch reaction using nicotinic acid as a green and reusable catalyst. J. Mol. Struct. 2019, 1177, 525–535. [Google Scholar] [CrossRef]
- Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M.A.; Shirmardi-Shaghasemi, B.; Khavasi, H.R. Hantzsch reaction on free nano-Fe2O3 catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. 2011, 47, 9230–9232. [Google Scholar] [CrossRef]
- Shaibuna, M.; Sreekumar, K. Dual solvent-catalyst role of deep eutectic solvents in Hantzsch dihydropyridine synthesis. Synth. Commun. 2021, 51, 1742–1753. [Google Scholar] [CrossRef]
- Elumalai, D.; Gnanasekaran, R.; Leelakrishnan, S.; Nachimuthu, G.; Kannan, T.; Paramasivam, T.P.; Jayabal, K. InCl3-Assisted Eco-Friendly Approach for N-Fused 1,4-Dihydropyridine Scaffolds via Ring Opening Michael Addition of Cyclic Nitroketene and Iminocoumarin: Synthesis and DFT Studies. ChemistrySelect 2018, 3, 2070–2079. [Google Scholar] [CrossRef]
- Sharma, V.K.; Singh, S.K. Synthesis, utility and medicinal importance of 1,2- & 1,4-dihydropyridines. RSC Adv. 2017, 7, 2682–2732. [Google Scholar] [CrossRef]
- Sutarni, Y.D.S.Y.D.; Purwono, B.; Kunarti, E.S.K.E.S.; Mardjan, M.I.D. Fe/ZSM-5-Catalyzed-Synthesis of 1,4-Dihydropyridines under Ultrasound Irradiation and Their Antioxidant Activities. Sains Malays. 2023, 52, 1189–1202. [Google Scholar] [CrossRef]
- Rostamnia, S.; Morsali, A. Basic isoreticular nanoporous metal-organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Adv. 2014, 4, 10514–10518. [Google Scholar] [CrossRef]
- Parthiban, A.; Makam, P. 1,4-Dihydropyridine: Synthetic advances, medicinal and insecticidal properties. RSC Adv. 2022, 12, 29253–29290. [Google Scholar] [CrossRef]
- Zonouz, A.M.; Hosseini, S.B. Montmorillonite K10 clay: An efficient catalyst for Hantzsch synthesis of 1,4-dihydropyridine derivatives. Synth. Commun. 2008, 38, 290–296. [Google Scholar] [CrossRef]
- Sadeghi, B.; Namakkoubi, A.; Hassanabadi, A. BF3.SiO2 nanoparticles: A solid phase acidic catalyst for efficient one-pot Hantzsch synthesis of 1,4-dihydropyridines. J. Chem. Res. 2013, 37, 11–13. [Google Scholar] [CrossRef]
- Lee, J.H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’ yeast. Tetrahedron Lett. 2005, 46, 7329–7330. [Google Scholar] [CrossRef]
- Sivamurugan, V.; Kumar, R.S.; Palanichamy, M.; Murugesan, V. Synthesis of Hantzsch 1,4-dihydropyridines under solvent-free condition using Zn[(L)proline]2 as Lewis acid catalyst. J. Heterocycl. Chem. 2005, 42, 969–974. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Narsaiah, A.V. Three-component coupling reactions in ionic liquids: An improved protocol for the synthesis of 1,4-dihydropyridines. Green Chem. 2003, 5, 60–63. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S. A grinding-induced catalyst- and solvent-free synthesis of highly functionalized 1,4-dihydropyridines via a domino multicomponent reaction. Green Chem. 2011, 13, 2017–2020. [Google Scholar] [CrossRef]
- Hesari, Z.; Hadavand, B.S. Deep Eutectic Solvent Based on Choline Chloride/Urea as an Efficient Catalytic System for the One-Pot Synthesis of Highly Functionalized 1,4-Dihydropyridines and Polysubstituted 4H- Chromenes. J. Appl. Chem. Res. 2019, 13, 97–106. [Google Scholar]
- Jeffrey, K.; Elizabeth, R.; Samuel, B.; Shannon, S.; Beata, D.; Bojarski, A.J.; Strekowski, L. Synthesis of 4-Substituted 2-(4-Methylpiperazino)pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. J. Heterocycl. Chem. 2009, 46, 1259–1265. [Google Scholar] [CrossRef]
- Ramesh, R.; Lalitha, A. Facile and Green Chemistry Access to 5-aryl-1,2,4-Triazolidine-3-thiones in Aqueous Medium. ChemistrySelect 2016, 1, 2085–2089. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.H.S.; Maddila, S.N.; Jonnalagadda, S.B. Green synthesis and characterization of novel 1,2,4,5-tetrasubstituted imidazole derivatives with eco-friendly red brick clay as efficacious catalyst. Mol. Divers. 2020, 24, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Maddila, S.; Nagaraju, K.; Chinnam, S.; Jonnalagadda, S.B. Microwave-Assisted Multicomponent Reaction: A Green and Catalyst-Free Method for the Synthesis of Poly-Functionalized 1,4-Dihydropyridines. ChemistrySelect 2019, 4, 9451–9454. [Google Scholar] [CrossRef]
Solvent | Time (min) | Yield a (%) |
---|---|---|
Ethanol | 10 | 87% |
Glycerol | 8 | 91% |
p-TSA + Ethanol | 8 | 89% |
PEG | 9 | 90% |
Water | 15 | 42% |
Al(DS)3 + Water | 5 | 97% |
SDS + Water | 6 | 92% |
CH3CN | 6 | 95% |
Ethylene glycol | 8 | 94% |
Watt | Time (min) | Yield a (%) |
---|---|---|
65 | 8 | 93% |
70 | 7 | 93% |
75 | 6 | 95% |
80 | 5 | 97% |
85 | 4 | 91% |
90 | 3 | 88% |
95 | 2 | 85% |
Compound | Rf | Yield (%) | Melting Point (°C) | Literature Melting Point (°C) | ||
---|---|---|---|---|---|---|
R1 | R2 | |||||
5a | H | H | 0.65 | 97 | 227–228 | - |
5b | 4-NO2 | H | 0.77 | 96 | 240 | - |
5c | 3-NO2 | H | 0.73 | 94 | 242 | - |
5d | 4-Cl | H | 0.70 | 94 | 237–239 | - |
5e | 4-Br | H | 0.57 | 95 | 267–268 | - |
5f | 4-Me | H | 0.61 | 93 | 230–231 | - |
5g | 4-OMe | H | 0.63 | 94 | 238–240 | - |
5h | H | Ph | 0.66 | 96 | 173–174 | 170–172 [29] |
5i | 4-NO2 | Ph | 0.69 | 94 | 171–173 | 172–174 [30] |
5j | 3-NO2 | Ph | 0.71 | 95 | 270–272 | - |
5k | 4-Cl | Ph | 0.67 | 96 | 186–187 | 188–189 [31] |
5l | 4-Br | Ph | 0.60 | 96 | 151–153 | 152–154 [32] |
5m | 4-Me | Ph | 0.61 | 93 | 286–287 | - |
5n | 4-OMe | Ph | 0.65 | 92 | 253–255 | - |
Compound | Gram (+ve) Bacteria | Gram (−ve) Bacteria | Fungi | |||||
---|---|---|---|---|---|---|---|---|
B. subtilis | S. pyogenes | E. coli | K. pneumonia | S. aureus | A. janus | A. niger | A. sclerotiorum | |
5a | 16 | 8 | 8 | 8 | 16 | 8 | 16 | 8 |
5b | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 8 |
5c | 4 | 8 | 4 | 4 | 8 | 8 | 8 | 32 |
5d | 16 | 8 | 16 | 32 | 32 | 16 | 32 | 32 |
5e | 16 | 32 | - | 64 | 64 | 32 | 16 | 16 |
5f | 32 | 8 | 16 | 8 | 16 | 16 | 16 | 8 |
5g | 16 | 16 | 8 | 8 | 16 | 8 | 16 | – |
5h | 64 | 16 | 32 | 16 | 32 | 32 | 32 | 16 |
5i | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
5j | 4 | 8 | 8 | 4 | 4 | 8 | 4 | 4 |
5k | 8 | 16 | 16 | - | – | 16 | 16 | 32 |
5l | 32 | 64 | 128 | 16 | 32 | 16 | 32 | 16 |
5m | 8 | 16 | 64 | 32 | 64 | 16 | 16 | 32 |
5n | 16 | 8 | 8 | 16 | 8 | 16 | 32 | 16 |
Amoxicillin | 4 | 4 | 4 | 4 | 4 | – | – | – |
Fluconazole | – | – | – | – | – | 2 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, A.; Kaur, N.; Kaur, M.; Singh, K.; Sohal, H.S.; Han, H.; Bhowmik, P.K. Facile One-Pot Synthesis and Anti-Microbial Activity of Novel 1,4-Dihydropyridine Derivatives in Aqueous Micellar Solution under Microwave Irradiation. Molecules 2024, 29, 1115. https://doi.org/10.3390/molecules29051115
Goswami A, Kaur N, Kaur M, Singh K, Sohal HS, Han H, Bhowmik PK. Facile One-Pot Synthesis and Anti-Microbial Activity of Novel 1,4-Dihydropyridine Derivatives in Aqueous Micellar Solution under Microwave Irradiation. Molecules. 2024; 29(5):1115. https://doi.org/10.3390/molecules29051115
Chicago/Turabian StyleGoswami, Asmita, Navneet Kaur, Manvinder Kaur, Kishanpal Singh, Harvinder Singh Sohal, Haesook Han, and Pradip K. Bhowmik. 2024. "Facile One-Pot Synthesis and Anti-Microbial Activity of Novel 1,4-Dihydropyridine Derivatives in Aqueous Micellar Solution under Microwave Irradiation" Molecules 29, no. 5: 1115. https://doi.org/10.3390/molecules29051115
APA StyleGoswami, A., Kaur, N., Kaur, M., Singh, K., Sohal, H. S., Han, H., & Bhowmik, P. K. (2024). Facile One-Pot Synthesis and Anti-Microbial Activity of Novel 1,4-Dihydropyridine Derivatives in Aqueous Micellar Solution under Microwave Irradiation. Molecules, 29(5), 1115. https://doi.org/10.3390/molecules29051115