Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of the ILs
2.2. Effect of Operating Parameters on the Extraction of [Au(S2O3)2]3−
2.3. Extraction Mechanism
2.4. Thermodynamic Analysis
2.5. Comparison of [C4(Bim)2](ClO4)2 with the Reported Extraction Solvents
2.6. Selective Recovery of Gold from Real Samples
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis of Dicationic Imidazolium-Based ILs
3.3. Measurements of the Solubility, Viscosity, and Conductivity
3.4. Measurements of Hydrogen Bond Donating Ability and Hydrogen Bond Accepting Ability
3.5. Calculation of the Electrophilicity of ILs
3.6. Extraction Procedure
3.7. Ion Chromatographic (IC) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vashist, U.; Sadri, F.; Choi, Y.; Ghahreman, A. Systematic study of critical parameters on magnesium saturated thiosulfate gold leaching process; part A: Effect of ammonia and lime for pH adjustments and concentration of magnesium and copper(II). Hydrometallurgy 2022, 213, 105943. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Zi, F.; Chen, Y.; Chen, S.; Li, Y.; Zhao, L.; Li, Y. Synergistical thiourea and thiosulfate leaching gold from a gold concentrate calcine with copper-ammonia catalysis. Sep. Purif. Technol. 2023, 327, 124928. [Google Scholar] [CrossRef]
- Tang, J.; Yang, Z.; Zi, F.; Zhang, Y.; Hu, X. New insights into the mechanism of pyrite oxidation in copper(II)–ammonia–thiosulfate gold leaching system: An electrochemical, AFM, Raman spectroscopy and XPS investigation. Appl. Surf. Sci. 2024, 655, 159665. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, T.; Xu, B.; Zhang, B.; Liu, G.; Li, Q.; Yang, Y. A systematic and comparative study of copper, nickel and cobalt-ammonia catalyzed thiosulfate processes for eco-friendly and efficient gold extraction from an oxide gold concentrate. Sep. Purif. Technol. 2021, 272, 118929. [Google Scholar] [CrossRef]
- Nicol, M.J.; O’Malley, G. Recovering gold from thiosulfate leach pulps via ion exchange. JOM 2002, 54, 44–46. [Google Scholar] [CrossRef]
- Azizitorghabeh, A.; Mahandra, H.; Ramsay, J.; Ghahreman, A. Selective gold recovery from pregnant thiocyanate leach solution using ion exchange resins. Hydrometallurgy 2023, 218, 106055. [Google Scholar] [CrossRef]
- Xie, F.; Chen, J.N.; Zhang, X.Z.; Xu, B.; Wang, W. Adsorption mechanism of copper and gold thiosulfates onto activated carbon. Trans. Nonferrous Met. Soc. China 2023, 33, 3210–3221. [Google Scholar] [CrossRef]
- Chen, S.; Zi, F.; Hu, X.; Chen, Y.; Yang, P.; Wang, Q.; Qin, X.; Cheng, H.; Liu, Y.; He, Y.; et al. Interfacial properties of mercaptopropyl-functionalised silica gel and its adsorption performance in the recovery of gold(I) thiosulfate complex. Chem. Eng. J. 2020, 393, 124547. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Chen, S.; Lin, Y.; Hu, X.; Zi, F. Highly efficient and selective extraction of Au(I) from thiosulfategold-leaching solution using diphenylphosphine. J. Environ. Chem. Eng. 2024, 12, 111750. [Google Scholar] [CrossRef]
- Mahandra, H.; Faraji, F.; Ghahreman, A. Novel extraction process for gold recovery from thiosulfate solution using phosphonium ionic liquids. ACS Sustain. Chem. Eng. 2021, 9, 8179–8185. [Google Scholar] [CrossRef]
- Mahandra, H.; Faraji, F.; Azizitorghabeh, A.; Ghahreman, A. Selective extraction and recovery of gold from complex thiosulfate pregnant leach liquor using Cyphos IL 101. Ind. Eng. Chem. Res. 2022, 61, 5612–5619. [Google Scholar] [CrossRef]
- Masilela, M.; Ndlovu, S. Extraction of Ag and Au from chloride electronic waste leach solutions using ionic liquids. J. Environ. Chem. Eng. 2019, 7, 102810. [Google Scholar] [CrossRef]
- Jin, C.; Chen, M.; Fan, M.; Luo, G.; Shao, M.; Huang, Z.; Xie, X. Hydrophobic phosphonium-based ionic liquids as novel extractants for palladium(II) recovery from alkaline cyanide solutions. J. Mol. Liq. 2021, 336, 116358. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Riaño, S.; Binnemans, K. Separation of precious metals by split-anion extraction using water-saturated ionic liquids. Green Chem. 2020, 22, 8375–8388. [Google Scholar] [CrossRef]
- Kashyap, N.; Paul, S.; Bora, D.B.; Kalita, S.; Borah, R. Dual functional behaviour of dicationic ionic liquid as extractant and hydrophobic biphasic solvent for extraction of Pb(II) in water. J. Mol. Liq. 2023, 392, 123521. [Google Scholar] [CrossRef]
- Lu, T.; Li, D.; Feng, J.; Zhang, W.; Kang, Y. Efficient extraction performance and mechanisms of Cd2+ and Pb2+ in water by novel dicationic ionic liquids. J. Environ. Manag. 2024, 351, 119767. [Google Scholar] [CrossRef] [PubMed]
- Wongsawa, T.; Traiwongsa, N.; Pancharoen, U.; Nootong, K. A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes. Hydrometallurgy 2020, 198, 105488. [Google Scholar] [CrossRef]
- Lee, J.C.; Kurniawan, K.; Kim, S.; Nguyen, V.T.; Pandey, B.D. Ionic liquids-assisted solvent extraction of precious metals from chloride solutions. Sep. Purif. Rev. 2023, 52, 242–261. [Google Scholar] [CrossRef]
- Inman, G.; Nlebedim, I.C.; Prodius, D. Application of ionic liquids for the recycling and recovery of technologically critical and valuable metals. Energies 2022, 15, 628. [Google Scholar] [CrossRef]
- Chaumont, A.; Wipff, G. Strontium nitrate extraction to ionic liquids by a crown ether: A molecular dynamics study of aqueous interfaces with C4mim+- vs. C8mim+-based ionic liquids. J. Phys. Chem. B 2010, 114, 13773–13785. [Google Scholar] [CrossRef]
- Yoon, T.J.; Patel, L.A.; Vigil, M.J.; Maerzke, K.A.; Findikoglu, A.T.; Currier, R.P. Electrical conductivity, ion pairing, and ion self-diffusion in aqueous NaCl solutions at elevated temperatures and pressures. J. Chem. Phys. 2019, 151, 224504. [Google Scholar] [CrossRef] [PubMed]
- Asrami, M.R.; Tran, N.N.; Nigam, K.D.P.; Hessel, V. Solvent extraction of metals: Role of ionic liquids and microfluidics. Sep. Purif. Technol. 2021, 262, 118289. [Google Scholar] [CrossRef]
- Goodwin, A.R.H.; Marsh, K.N. An absolute viscometer for liquids: Measurement of the viscosity of water at T = 298.15 K and p = 0.1 MPa. J. Chem. Eng. Data 2011, 56, 167–170. [Google Scholar] [CrossRef]
- Lungwitz, R.; Strehmel, V.; Spange, S. The dipolarity/polarisability of 1-alkyl-3-methylimidazolium ionic liquids as function of anion structure and the alkyl chain length. New J. Chem. 2010, 34, 1135. [Google Scholar] [CrossRef]
- Sheridan, Q.R.; Schneider, W.F.; Maginn, E.J. Anion dependent dynamics and water solubility explained by hydrogen bonding interactions in mixtures of water and aprotic heterocyclic anion ionic liquids. J. Phys. Chem. B 2016, 120, 12679–12686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.G.; Wang, N.N.; Wang, S.L.; Yu, Z.W. Hydrogen bonding behaviors of binary systems containing the ionic liquid 1-butyl-3-methylimidazolium trifluoroacetate and water/methanol. J. Phys. Chem. B 2011, 115, 11127–11136. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, G. Analysis of reaction kinetics, speciation and mechanism of gold leaching and thiosulfate oxidation by ammoniacal copper(II) solutions. Hydrometallurgy 2004, 75, 55–75. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Li, Y.; Rao, Z. Preparation and characterization of sodium thiosulfate pentahydrate/silica microencapsulated phase change material for thermal energy storage. RSC Adv. 2017, 7, 7238–7249. [Google Scholar] [CrossRef]
- Fu, W.W.; Zou, T.; Liang, X.H.; Wang, S.F.; Gao, X.; Zhang, Z.G.; Fang, Y.T. Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cell. 2019, 193, 149–156. [Google Scholar] [CrossRef]
- Khanramaki, F.; Shirani, A.S.; Safdari, J.; Torkaman, R. Investigation of liquid extraction and thermodynamic studies on uranium from sulfate solution by Alamine 336 as an extractant. Int. J. Environ. Sci. Technol. 2018, 15, 1467–1476. [Google Scholar] [CrossRef]
- Liao, Y.; Fan, F.; Zhu, A.; Zhao, J.; Peng, Y. Kinetics characteristics and thermodynamics analysis of soybean podssterols extraction process. Environ. Chall. 2021, 5, 100357. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.; Song, L.; Li, J.; Zhang, L. Effective extraction of quinine and gramine from water by hydrophobic ionic liquids: The role of anion. Chem. Eng. Res. Des. 2017, 119, 58–65. [Google Scholar] [CrossRef]
- Nie, Y.; Yang, L.; Sun, W.; Gao, Z.; Wang, Q. Research on leaching of carbonaceous gold ore with copper-ammonia-thiosulfate solutions. Hydrometallurgy 2020, 197, 105473. [Google Scholar] [CrossRef]
- Zhao, H.F.; Yang, H.Y.; Tong, L.L.; Zhang, Q.; Kong, Y. Biooxidation-thiosulfate leaching of refractory gold concentrate. Int. J. Miner. Metall. Mater. 2020, 27, 1075–1082. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, P.; Saran, S.; Khatri, O.P. Halogen-free bis(imidazolium)/bis(ammonium)-di[bis(salicylato)borate] ionic liquids as energy-efficient and environmentally friendly lubricant additives. ACS Appl. Mater. Interfaces 2014, 6, 15318–15328. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.S.H.; Chen, J.P.; Chang, J.M.; Chou, C.H. Phase equilibria of water and ionic liquids [emim][PF6]and [bmim][PF6]. Fluid Phase Equilibr. 2002, 194–197, 1089–1095. [Google Scholar] [CrossRef]
- Kolobova, E.; Kartsova, L.; Kravchenko, A.; Bessonova, E. Imidazolium ionic liquids as dynamic and covalent modifiers of electrophoretic systems for determination of catecholamines. Talanta 2018, 188, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hauru, L.K.J.; Hummel, M.; King, A.; Kilpeläinen, I.; Sixta, H. Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 2012, 13, 2896. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
T (K) | ΔG (kJ mol−1) | ΔH (kJ mol−1) | ΔS (J mol−1 K−1) |
---|---|---|---|
288 | −6.4 | 72.7 | 278 |
298 | −11.7 | ||
308 | −13.4 | ||
318 | −14.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Fan, Y.; Zhang, S. Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids. Molecules 2024, 29, 2659. https://doi.org/10.3390/molecules29112659
Zhou Q, Fan Y, Zhang S. Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids. Molecules. 2024; 29(11):2659. https://doi.org/10.3390/molecules29112659
Chicago/Turabian StyleZhou, Qiang, Yunchang Fan, and Sheli Zhang. 2024. "Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids" Molecules 29, no. 11: 2659. https://doi.org/10.3390/molecules29112659
APA StyleZhou, Q., Fan, Y., & Zhang, S. (2024). Highly Efficient and Selective Extraction of Gold from Thiosulfate Leaching Solution Using Functionalized Dicationic Ionic Liquids. Molecules, 29(11), 2659. https://doi.org/10.3390/molecules29112659