Comparative Analysis of Structural and Functional Properties of Dietary Fiber from Four Grape Varieties
Abstract
:1. Introduction
2. Results
2.1. Proximate Composition Analysis
2.2. Structural Properties
2.2.1. Monosaccharide Composition
2.2.2. SEM Analysis
2.2.3. X-ray Diffraction
2.2.4. Functional Groups of IDF and SDF
2.3. Functional Properties
2.3.1. Water Holding, Water Swelling, and Oil Holding Capacities
2.3.2. Cholesterol and Heavy Metal Adsorption Capacity
2.3.3. Antioxidant Capacity
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Proximate Analysis
- (1)
- Fundamental constituent analysis.
- (2)
- Separation of DF into pectin, hemicellulose, lignin, and cellulose.
- (3)
- Fraction of DF based on their solubility.
4.3. Determination of Pectin, Hemicellulose, Lignin, and Cellulose
4.4. Separation of Dietary Fibers (DFs) Based on Their Solubility
4.5. Physiochemical Properties of IDF and SDF
4.5.1. Monosaccharide Composition
4.5.2. Scanning Electron Microscopy (SEM)
4.5.3. X-ray Diffraction (XRD)
4.5.4. Fourier Transform Infrared (FTIR)
4.6. Functional Properties of IDF and SDF
4.6.1. Water Holding Capacity (WHC)
4.6.2. Water Swelling Capacity (WSC)
4.6.3. Oil Holding Capacity (OHC)
4.6.4. Cholesterol Adsorption Capacity (CAC)
4.6.5. Heavy Metal Adsorption Capacity (HMAC)
4.6.6. Antioxidant Properties
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wei, Z.; Huang, Y.; Guo, W.; Zhang, Y.; Yin, L.; Qu, J.; Lu, J. Comparison of non-anthocyanin polyphenol accumulation in the berry skins of muscadine and European grapes during ripening in China. J. Food Biochem. 2019, 43, e12696. [Google Scholar] [CrossRef] [PubMed]
- Hickey, C.C.; Smith, E.D.; Cao, S.; Conner, P. Muscadine (Vitis rotundifolia Michx., syn. Muscandinia rotundifolia (Michx.) Small): The resilient, native grape of the southeastern U.S. Agriculture 2019, 9, 131. [Google Scholar] [CrossRef]
- Stewart, J.A.; Pajerowska-Mukhtar, K.M.; Bulger, A.; Kambiranda, D.; Nyochembeng, L.; Mentreddy, S.R. Muscadine, Resveratrol (RSV) synthesis, and the nutritional benefits to humans and plants. ACS Food Sci. Technol. 2023, 3, 3–14. [Google Scholar] [CrossRef]
- Banini, A.E.; Boyd, L.C.; Allen, J.C.; Allen, H.G.; Sauls, D.L. Muscadine grape products intake, diet and blood constituents of nondiabetic and type 2 diabetic subjects. Nutrition 2006, 22, 1137–1145. [Google Scholar] [CrossRef]
- You, Q.; Chen, F.; Sharp, J.L.; Wang, X.; You, Y.; Zhang, C. High-performance liquid chromatography-mass spectrometry and evaporative light-scattering detector to compare phenolic profiles of muscadine grapes. J. Chromatogr. A 2012, 1240, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape pomace as a promising antimicrobial alternative in feed: A critical review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wei, Z.; Zhang, S.; Peng, X.; Huang, Y.; Zhang, Y.; Lu, J. Phenolic fractions from Muscadine Grape “Noble” pomace can inhibit breast cancer cell MDA-MB-231 better than those from european grape “Cabernet Sauvignon” and induce S-Phase arrest and apoptosis. J. Food Sci. 2017, 82, 1254–1263. [Google Scholar] [CrossRef]
- Weiguang, Y.; Fischer, J.; Akoh, C.C. Study of anticancer activities of muscadine grape phenolics in vitro. J. Agric. Food Chem. 2005, 53, 8804–8812. [Google Scholar]
- Noratto, G.D.; Angel-Morales, G.; Talcott, S.T.; Mertens-Talcott, S.U. Polyphenolics from açaí (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J. Agric. Food Chem. 2011, 59, 7999–8012. [Google Scholar] [CrossRef]
- Xu, C.; Yagiz, Y.; Hsu, W.-Y.; Simonne, A.; Lu, J.; Marshall, M.R. Antioxidant, Antibacterial, and antibiofilm properties of polyphenols from Muscadine Grape (Vitis rotundifolia Michx.) Pomace against selected foodborne pathogens. J. Agric. Food Chem. 2014, 62, 6640–6649. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble Dietary Fiber, One of the most important nutrients for the gut microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.E.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bixiang, W.; Liankui, W.; Fengzhong, W.; Hansong, Y.; Dongxia, C.; Xin, S.; Chi, Z. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar]
- Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 110, 106162. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef]
- Llobera, A.; Canellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Brown, K.; Sims, C.; Odabasi, A.; Bartoshuk, L.; Conner, P.; Gray, D. Consumer acceptability of fresh-market Muscadine Grapes. J. Food Sci. 2016, 81, 2808–2816. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Li, Q.; Shi, Z.; Ye, J. Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Res. Int. 2017, 100, 858–863. [Google Scholar] [CrossRef]
- Gonzalez-Centeno, M.R.; Rossello, C.; Simal, S.; Garau, M.C.; Lopez, F.; Femenia, A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: Grape pomaces and stems. LWT—Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.E.; Fry, S.C. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 2000, 211, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll. 2019, 87, 237–244. [Google Scholar] [CrossRef]
- Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 2020, 13, 673. [Google Scholar] [CrossRef]
- Hao, L.; Lu, X.L.; Sun, M.; Li, K.; Shen, L.M.; Wu, T. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Food Nutr. Res. 2015, 59, 28886. [Google Scholar] [CrossRef]
- Tamura, M.; Kurusu, Y.; Hori, S. Effect of Dietary L-arabinose on the Intestinal Microbiota and Metabolism of Dietary Daidzein in Adult Mice. Biosci. Microbiota Food Health 2012, 31, 59–65. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Yuan, F.; Pan, Q.; Fan, R.; Gao, Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015, 4, 250–258. [Google Scholar] [CrossRef]
- Liu, C.-M.; Liang, R.-H.; Dai, T.-T.; Ye, J.-P.; Zeng, Z.-C.; Luo, S.-J.; Chen, J. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocoll. 2016, 57, 55–61. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, M.; Bai, T.; Chen, D.; Zhang, Q.; Lin, D.; Liu, Y.; Liu, A.; Huang, Z.; Qin, W. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat. LWT—Food Sci. Technol. 2021, 149, 111816. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Wu, J.; Xu, Y.; Xiao, G.; Li, L.; Liu, H. Comparison the structural, physicochemical, and prebiotic properties of litchi pomace dietary fibers before and after modification. Foods 2022, 11, 248. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Functional Properties and Characterization of Dietary Fiber from Mangifera pajang Kort. Fruit Pulp. J. Agric. Food Chem. 2011, 59, 3980–3985. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef]
- Lopez, G.; Ros, G.; Rincon, F.; Periago, M.J.; Martinez, M.C.; Ortuno, J. Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. J. Agric. Food Chem. 1996, 44, 2773–2778. [Google Scholar] [CrossRef]
- Chau, C.-F.; Wang, Y.-T.; Wen, Y.-L. Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem. 2007, 100, 1402–1408. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, R.; Yin, L.; Zhang, N. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. J. Food Eng. 2014, 120, 1–8. [Google Scholar] [CrossRef]
- Mei, Z. Study on Enzymatic Modification and Related Properties of Dietary Fiber of Jujube Residue. Master’s Thesis, Jiangnan University, Wuxi, China, 2014. [Google Scholar]
- Chen, J.; Huang, H.; Chen, Y.; Xie, J.; Song, Y.; Chang, X.; Liu, S.; Wang, Z.; Hu, X.; Yu, Q. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT—Food Sci. Technol. 2020, 131, 109818. [Google Scholar] [CrossRef]
- Chau, C.-F.; Wen, Y.-L.; Wang, Y.-T. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. J. Agric. Food Chem. 2006, 86, 2380–2386. [Google Scholar] [CrossRef]
- Gomez-Ordonez, E.; Jimenez-Escrig, A.; Ruperez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Xie, J.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Isita, N.; Avery, S.; Mahua, G. Effects of dietary fibres extracted from defatted sesame husk, rice bran & flaxseed on hypercholesteromic rats. Bioact. Carbohydr. Diet. Fibre 2019, 17, 100176. [Google Scholar]
- Mirmiran, P.; Bahadoran, Z.; Moghadam, S.K.; Vakili, A.Z.; Azizi, F. A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran lipid and glucose study. Nutrients 2016, 8, 686. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Ni, C.; Yin, Y. Effects of different processing methods on the structure and function of water-SDF in soybean dregs. Food Ind. Sci. Technol. 2016, 37, 62–66. [Google Scholar]
- Sun, Y. Studies on Extraction Procedure of Soluble Dietary Fiber from Grape Waste. Master’s Thesis, Northwest A&F University, Yangling, China, 2010. [Google Scholar]
- Fan, L. Extraction Techniques of Water Soluble Dietary Fiber from Grape Pomace and Its Application in Yogurt Products. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2016. [Google Scholar]
- Wang, Z.; Li, Y.; Liu, G. Monosaccharide and uronic acid composition analysis on Lycium barbarum polysaccharides in Fructus Lycii by high performance anion-exchange chromatography with pulsed amperometric detection. China J. Tradit. Chin. Med. Pharm. 2021, 36, 6082–6085. [Google Scholar]
DF | Rhamnose | Arabinose | Galactose | Glucose | Mannose | Xylose | Galacturonic Acid | Glucuronic Acid | |
---|---|---|---|---|---|---|---|---|---|
IDF | Shine Muscat | 0.31 ± 0.02 b | 4.93 ± 0.21 c | 1.95 ± 0.02 d | 79.89 ± 0.31 a | 2.14 ± 0.09 b | 7.56 ± 0.24 d | 2.81 ± 0.15 d | 0.41 ± 0.03 c |
Kyoho | 0.63 ± 0.1 a | 6.38 ± 0.08 ab | 9.48 ± 0.32 a | 49.84 ± 0.63 c | 0.98 ± 0.06 c | 25.5 ± 0.25 b | 6.18 ± 0.35 b | 1.02 ± 0.08 b | |
Granny Val (GV) | 0.26 ± 0.04 b | 5.5 ± 0.24 bc | 3.29 ± 0.24 c | 62.92 ± 0.33 b | 2.64 ± 0.17 b | 19.29 ± 0.19 c | 5.18 ± 0.12 c | 0.93 ± 0.12 b | |
Alachua | 0.09 ± 0.01 b | 7.23 ± 0.22 a | 6.39 ± 0.28 b | 38.89 ± 1 d | 8.68 ± 0.29 a | 28.26 ± 0.73 a | 8.31 ± 0.05 a | 2.15 ± 0.13 a | |
SDF | Shine Muscat | 3.59 ± 0.09 a | 18.93 ± 0.3 a | 16.54 ± 0.56 ab | 20.74 ± 0.34 b | 0 | 1.59 ± 0.05 b | 35.4 ± 0.66 a | 3.21 ± 0.12 c |
Kyoho | 1.87 ± 0.08 c | 10.23 ± 0.26 c | 13.22 ± 0.67 b | 48.41 ± 0.93 a | 1.52 ± 0.07 c | 1.36 ± 0.04 b | 20.31 ± 0.06 d | 3.09 ± 0.02 c | |
Granny Val (GV) | 2.62 ± 0.12 b | 11.52 ± 0.37 bc | 19.95 ± 0.31 a | 20.1 ± 0.26 b | 6.8 ± 0.03 b | 1.1 ± 0.04 c | 32.02 ± 0.42 b | 5.89 ± 0.14 b | |
Alachua | 1.87 ± 0.16 c | 12.26 ± 0.56 b | 13.93 ± 1.6 b | 21.7 ± 0.1 b | 14.64 ± 0.35 a | 3 ± 0.08 a | 24.59 ± 0.37 c | 8.02 ± 0.27 a |
Varieties | Region | |
---|---|---|
Vitis vinifera | Shine Muscat | Jinshan, Shanghai, China |
Kyoho | Jinshan, Shanghai, China | |
Vitis rotundifolia | Granny Val (GV) | Minhang, Shanghai, China |
Alachua | Minhang, Shanghai, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; An, R.; Sun, S.; Hou, M.; Han, F.; Song, S. Comparative Analysis of Structural and Functional Properties of Dietary Fiber from Four Grape Varieties. Molecules 2024, 29, 2619. https://doi.org/10.3390/molecules29112619
Chang Y, An R, Sun S, Hou M, Han F, Song S. Comparative Analysis of Structural and Functional Properties of Dietary Fiber from Four Grape Varieties. Molecules. 2024; 29(11):2619. https://doi.org/10.3390/molecules29112619
Chicago/Turabian StyleChang, Yingying, Ran An, Sijie Sun, Min Hou, Fuliang Han, and Shiren Song. 2024. "Comparative Analysis of Structural and Functional Properties of Dietary Fiber from Four Grape Varieties" Molecules 29, no. 11: 2619. https://doi.org/10.3390/molecules29112619
APA StyleChang, Y., An, R., Sun, S., Hou, M., Han, F., & Song, S. (2024). Comparative Analysis of Structural and Functional Properties of Dietary Fiber from Four Grape Varieties. Molecules, 29(11), 2619. https://doi.org/10.3390/molecules29112619