Characterization of Syzygium cumini (L.) Skeels (Jamun Seed) Particulate Fillers for Their Potential Use in Polymer Composites
Abstract
:1. Introduction
2. Results and Discussions
2.1. Physicochemical Analysis
2.2. FTIR Analysis
2.3. XRD Analysis
2.4. Particulate Size Evaluation
2.5. Morphological Analysis
2.6. Thermal Analysis
2.7. Antioxidant Activity
3. Materials and Methods
3.1. Materials
3.2. Characterization Techniques
3.2.1. Physiochemical Analysis
3.2.2. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
3.2.3. X-Ray Diffraction (XRD) Analysis
3.2.4. Particle Size Evaluation
3.2.5. SEM Analysis
3.2.6. Thermogravimetric Analysis (TGA)
3.2.7. Antioxidant Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanavel, V.; Singh, R.P.; Kuppusamy, S.; Raja, T.; Kathiresan, S.; Karim, M.R.; Alnaser, I.A. Effect of incorporation natural fillers with Sterculia foetida fiber on physical, mechanical, and thermal characterization of epoxy polymer composites. Int. J. Adv. Manuf. Technol. 2024, 1–11. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Advance Nanocomposites from Biopolymers and Fillers: Sources, Characterization, and End-Use Applications. Polym. Technol. Mater. 2024, 63, 570–604. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Anik, H.R. Plant fiber-reinforced polymer composites: A review on modification, fabrication, properties, and applications. Polym. Bull. 2023, 81, 1–85. [Google Scholar] [CrossRef]
- da Silveira, P.H.P.M.; Cardoso, B.F.d.A.F.; Marchi, B.Z.; Monteiro, S.N. Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review. Eng 2024, 5, 133–179. [Google Scholar] [CrossRef]
- Singh, T.; da Silva Gehlen, G.; Singh, V.; Ferreira, N.F.; Yesukai de Barros, L.; Lasch, G.; Poletto, J.C.; Ali, S.; Neis, P.D. Selection of automotive brake friction composites reinforced by agro-waste and natural fiber: An integrated multi-criteria decision-making approach. Results Eng. 2024, 22, 102030. [Google Scholar] [CrossRef]
- Alves, C.; Ferrão, P.M.C.; Silva, A.J.; Reis, L.G.; Freitas, M.; Rodrigues, L.B.; Alves, D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010, 18, 313–327. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. (Eds.) Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos. Part B Eng. 2013, 44, 120–127. [Google Scholar] [CrossRef]
- Stewart, R. Automotive composites offer lighter solutions. Reinf. Plast. 2010, 54, 22–28. [Google Scholar] [CrossRef]
- Karuppuchamy, A.; Ramya, K.; Siva, R. Novel banana core stem fiber from agricultural biomass for lightweight textile applications. Ind. Crop. Prod. 2024, 209, 117985. [Google Scholar] [CrossRef]
- Khuntia, T.; Biswas, S. Characterization of a Novel Natural Filler from Sirisha Bark. J. Nat. Fibers 2022, 19, 3083–3092. [Google Scholar] [CrossRef]
- Ramesh Babu, S.; Rameshkannan, G. Aerial Root Fibres of Ficus amplissima as a Possible Reinforcement in Fibre-Reinforced Plastics for Lightweight Applications: Physicochemical, Thermal, Crystallographic, and Surface Morphological Behaviours. J. Nat. Fibers 2022, 19, 7909–7924. [Google Scholar] [CrossRef]
- Palanisamy, S.; Kalimuthu, M.; Palaniappan, M.; Alavudeen, A.; Rajini, N.; Santulli, C.; Mohammad, F.; Al-Lohedan, H. Characterization of Acacia caesia Bark Fibers (ACBFs). J. Nat. Fibers 2022, 19, 10241–10252. [Google Scholar] [CrossRef]
- Luyang, W.; Ke, S.; Chunxia, H. The feasibility and properties of wood used as filler in artificial turf to reduce environment pollution. Holzforschung 2024, 78, 47–55. [Google Scholar]
- Gopinath, R.; Billigraham, P.; Sathishkumar, T.P. Physicochemical and Thermal Properties of Cellulosic Fiber Extracted from the Bark of Albizia Saman. J. Nat. Fibers 2022, 19, 6659–6675. [Google Scholar] [CrossRef]
- Vijay, R.; Singaravelu, D.L.; Vinod, A.; Paul Raj, I.D.F.; Sanjay, M.R.; Siengchin, S. Characterization of Novel Natural Fiber from Saccharum Bengalense Grass (Sarkanda). J. Nat. Fibers 2020, 17, 1739–1747. [Google Scholar] [CrossRef]
- de Sousa Sabino, L.B.; da Silva Júnior, I.J.; de Brito, E.S. Jambolan—Syzygium jambolanum. In Exotic Fruits Reference Guide; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–256. [Google Scholar] [CrossRef]
- Khan, M.S.; Qais, F.A.; Ahmad, I. Indian Berries and Their Active Compounds: Therapeutic Potential in Cancer Prevention. In New Look to Phytomedicine Advancements in Herbal Products as Novel Drug Leads; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–201. [Google Scholar] [CrossRef]
- Pundarikakshudu, K.; Patel, M.G.; Shah, P.A. An overview of some Indian vegetables, fruits, and spices effective in diabetes and metabolic disorders: Current status and future scenarios. In Antidiabetic Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2024; pp. 75–139. [Google Scholar] [CrossRef]
- Ayyanar, C.B.; Mohan, S.K.P.; Bharathiraj, C.; Mavinkere Rangappa, S.; Siengchin, S. Characterization of Syzygium cumini particulates filled E-glass fiber-reinforced epoxy composites. Polym. Compos. 2021, 42, 6298–6309. [Google Scholar] [CrossRef]
- Demirbas, A. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis 2006, 76, 285–289. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Hao, J.; Wang, W. Study of Almond Shell Characteristics. Materials 2018, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Minami, E.; Kawamoto, H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. J. Wood Sci. 2020, 66, 41. [Google Scholar] [CrossRef]
- Pereira, D.G.M.; Vieira, J.M.; Vicente, A.A.; Cruz, R.M.S. Development and Characterization of Pectin Films with Salicornia ramosissima: Biodegradation in Soil and Seawater. Polymers 2021, 13, 2632. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Prithivirajan, R.; Narayanasamy, P.; Al-Dhabi, N.A.; Balasundar, P.; Shyam Kumar, R.; Ponmurugan, K.; Ramkumar, T.; Senthil, S. Characterization of Musa paradisiaca L. Cellulosic Natural Fibers from Agro-discarded Blossom Petal Waste. J. Nat. Fibers 2020, 17, 1640–1653. [Google Scholar] [CrossRef]
- Balasundar, P.; Narayanasamy, P.; Senthil, S.; Abdullah Al-Dhabi, N.; Prithivirajan, R.; Shyam Kumar, R.; Ramkumar, T.; Subrahmanya Bhat, K. Physico-chemical study of pistachio (Pistacia vera) nutshell particles as a bio-filler for eco-friendly composites. Mater. Res. Express 2019, 6, 105339. [Google Scholar] [CrossRef]
- Deepan, S.; Jeyakumar, R.; Mohankumar, V.; Manojkumar, A. Influence of rice husk fillers on mechanical properties of banana/epoxy natural fiber hybrid composites. Mater. Today Proc. 2023, 74, 575–580. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A.; Tabarsa, T. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos. Part B Eng. 2012, 43, 3276–3280. [Google Scholar] [CrossRef]
- Sareena, C.; Sreejith, M.P.; Ramesan, M.T.; Purushothaman, E. Biodegradation behaviour of natural rubber composites reinforced with natural resource fillers—Monitoring by soil burial test. J. Reinf. Plast. Compos. 2013, 33, 412–429. [Google Scholar] [CrossRef]
- Sareena, C.; Ramesan, M.T.; Purushothaman, E. Utilization of coconut shell powder as a novel filler in natural rubber. J. Reinf. Plast. Compos. 2012, 31, 533–547. [Google Scholar] [CrossRef]
- Taha, F.S.; Wagdy, S.M.; Hassanein, M.M.M.; Hamed, S.F. Evaluation of the biological activity of sunflower hull extracts. Grasas y Aceites 2012, 63, 184–192. [Google Scholar] [CrossRef]
- Riaz, M.N. Soy Beans: Processing. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 48–53. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Julianti, E.; Safitri, A.; Jaafar, M. Properties of active packaging of PLA-PCL film integrated with chitosan as an antibacterial agent and syzygium cumini seed extract as an antioxidant agent. Heliyon 2024, 10, e23952. [Google Scholar] [CrossRef]
- Atale, N.; Saxena, S.; Nirmala, J.G.; Narendhirakannan, R.; Mohanty, S.; Rani, V. Synthesis and Characterization of Sygyzium cumini Nanoparticles for Its Protective Potential in High Glucose-Induced Cardiac Stress: A Green Approach. Appl. Biochem. Biotechnol. 2017, 181, 1140–1154. [Google Scholar] [CrossRef]
- Luisa, A.; Rocha, F.; De Andrade Feitosa, B.; De Souza Carolino, A.; Zico De Aguiar Nunes, R.; Matias, C.; Macalia, A.; Araújo Da Silva, K.; Dias, C.O.; Michielon De Souza, S.; et al. Extraction and Modification of Cellulose Microfibers Derived from Biomass of the Amazon Ochroma pyramidale Fruit. Micro 2023, 3, 653–670. [Google Scholar] [CrossRef]
- Da Cruz Demosthenes, L.C.; Nascimento, L.F.C.; Monteiro, S.N.; Costa, U.O.; Da Costa Garcia Filho, F.; Da Luz, F.S.; Oliveira, M.S.; Ramos, F.J.H.T.V.; Pereira, A.C.; Braga, F.O. Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. J. Mater. Res. Technol. 2020, 9, 115–123. [Google Scholar] [CrossRef]
- Manzato, L.; Rabelo, L.C.A.; de Souza, S.M.; da Silva, C.G.; Sanches, E.A.; Rabelo, D.; Mariuba, L.A.M.; Simonsen, J. New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J. Mol. Struct. 2017, 1143, 229–234. [Google Scholar] [CrossRef]
- Leite, A.L.M.P.; Zanon, C.D.; Menegalli, F.C. Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr. Polym. 2017, 157, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Volponi, A.; Filho, S.G.D.S. Carbon dioxide sensing at near infrared using zeolitic imidazolate framework-8 (ZIF-8) absorbers. In Proceedings of the 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro), Salvador, Brazil, 31 August–4 September 2015. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, M.; Zhang, D. Pyrolysis Characteristics of Cellulose Isolated from Selected Biomass Feedstocks using a Thermogravimetric Analyser. Energy Procedia 2017, 142, 636–641. [Google Scholar] [CrossRef]
- Caputo, D.; Fusco, C.; Nacci, A.; Palazzo, G.; Murgia, S.; D’Accolti, L.; Gentile, L. A selective cellulose/hemicellulose green solvents extraction from buckwheat chaff. Carbohydr. Polym. Technol. Appl. 2021, 2, 100094. [Google Scholar] [CrossRef]
- Maia Cardoso, C.K.; Mattedi, S.; Lobato, A.K.d.C.L.; Andrade Moreira, Í.T. Remediation of petroleum contaminated saline water using value-added adsorbents derived from waste coconut fibres. Chemosphere 2021, 279, 130562. [Google Scholar] [CrossRef]
- Kian, L.K.; Jawaid, M.; Ariffin, H.; Alothman, O.Y. Isolation and characterization of microcrystalline cellulose from roselle fibers. Int. J. Biol. Macromol. 2017, 103, 931–940. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, Y.; Yu, W. Effects of extraction methods on morphology, structure and properties of bamboo cellulose. Ind. Crop. Prod. 2021, 169, 113640. [Google Scholar] [CrossRef]
- Devnani, G.L.; Sinha, S. Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos. Part B Eng. 2019, 166, 436–445. [Google Scholar] [CrossRef]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Isolation and characterization of cellulose fibers from Thespesia populnea barks: A study on physicochemical and structural properties. Int. J. Biol. Macromol. 2019, 129, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Sadek, A.A.; Abdelhamid, H.N.; Hussein, K. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res. Vet. Sci. 2021, 137, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, N.M.; Arteaga-Cardona, F.; de Anda Reyes, M.E.; Gervacio-Arciniega, J.J.; Salazar-Kuri, U. Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Mater. Chem. Phys. 2019, 238, 121921. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Saravanakumar, S.S.; Arthanarieswaran, V.P.; Sugumaran, P. Physico-chemical properties of new cellulosic fibers from the bark of Acacia planifrons. Int. J. Polym. Anal. Charact. 2016, 21, 207–213. [Google Scholar] [CrossRef]
- Sreenivasan, V.S.; Somasundaram, S.; Ravindran, D.; Manikandan, V.; Narayanasamy, R. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres—An exploratory investigation. Mater. Des. 2011, 32, 453–461. [Google Scholar] [CrossRef]
- Indran, S.; Edwin Raj, R.; Sreenivasan, V.S. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 2014, 110, 423–429. [Google Scholar] [CrossRef]
- Belouadah, Z.; Ati, A.; Rokbi, M. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr. Polym. 2015, 134, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Indran, S.; Raj, R.E. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 2015, 117, 392–399. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Moorthy, I.G. Investigation of Physico-Chemical Properties of Alkali-Treated Prosopis juliflora Fibers. Int. J. Polym. Anal. Charact. 2014, 19, 309–317. [Google Scholar] [CrossRef]
- Sarikanat, M.; Seki, Y.; Sever, K.; Durmuşkahya, C. Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Compos. Part B Eng. 2014, 57, 180–186. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Sudhakar, P.; Baskaran, R. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 2013, 92, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Yang, Y. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 2005, 46, 5494–5500. [Google Scholar] [CrossRef]
- Prithiviraj, M.; Muralikannan, R.; Senthamaraikannan, P.; Saravanakumar, S.S. Characterization of new natural cellulosic fiber from the Perotis indica plant. Int. J. Polym. Anal. Charact. 2016, 21, 669–674. [Google Scholar] [CrossRef]
- Kathiresan, M.; Pandiarajan, P.; Senthamaraikannan, P.; Saravanakumar, S.S. Physicochemical properties of new cellulosic Artisdita hystrix leaf fiber. Int. J. Polym. Anal. Charact. 2016, 21, 663–668. [Google Scholar] [CrossRef]
- Priya, S.H.; Prakasan, N.; Purushothaman, J. Antioxidant activity, phenolic-flavonoid content and high-performance liquid chromatography profiling of three different variants of Syzygium cumini seeds: A comparative study. J. Intercult. Ethnopharmacol. 2017, 6, 107–114. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Sheikh, S.A.; Bhangar, M.I.; Ahmed, E. Total phenolic compounds and antioxidant activity of jamun fruit (Eugenia jambolana) products. Pak. J. Food Sci. 2010, 20, 31–41. [Google Scholar]
- Kapoor, S.; Ranote, P.S. Antioxidant components and physico-chemical characteristics of jamun powder supplemented pear juice. J. Food Sci. Technol. 2016, 53, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Jahan, I.A.; Hossain, M.H.; Ahmed, K.S.; Rahman, M.; Zzaman, W.; Hoque, M.M. Bioactive compounds, antioxidant properties and phenolic profile of pulp and seed of Syzygium cumini. J. Food Meas. Charact. 2021, 15, 1991–1999. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Muthusamy, A.R.; Thiagamani, S.M.K.; Krishnasamy, S.; Muthukumar, C.; Rangappa, S.M.; Siengchin, S. Lignocellulosic microfibrils from Phaseolus lunatus and Vigna radiata biomass: Characterization and properties. Biomass Convers. Biorefinery 2022, 1–9. [Google Scholar] [CrossRef]
- Ramalingam, K.; Thiagamani, S.M.K.; Pulikkalparambil, H.; Muthukumar, C.; Krishnasamy, S.; Siengchin, S.; Alosaimi, A.M.; Hussein, M.A.; Rangappa, S.M. Novel Cellulosic Natural Fibers from Abelmoschus Ficulneus Weed: Extraction and Characterization for Potential Application in Polymer Composites. J. Polym. Environ. 2023, 31, 1323–1334. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Sivakumar, P.; Srinivasan, M.; Yagna, S.N.B.; Hossein, E.K.; Meena, M.; Rangappa, S.M.; Siengchin, S. Isolation and characterization of agro-waste biomass sapodilla seeds as reinforcement in potential polymer composite applications. Heliyon 2023, 9, e17760. [Google Scholar] [CrossRef] [PubMed]
- Naveenkumar, S.; Venkateshan, N.; Kaviyarasu, K.; Christyraj, J.R.S.S.; Muthukumaran, A. Optimum performance of a novel biocompatible scaffold comprising alginate-pectin-selenium nanoparticles for cardiac tissue engineering using C2C12 cells. J. Mol. Struct. 2023, 1294, 136457. [Google Scholar] [CrossRef]
Material | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Unique Properties | Ref. |
---|---|---|---|---|---|
Banana pseudo-stem | 62.24 | 15.23 | 18.51 | High crystallinity, thermal stability up to 250 °C | [10] |
Sirisha bark | 68.23 | 13.26 | 13.25 | Stability up to 429 °C, suitable for high-temp applications | [11] |
Ficus amplissima root | 52.64 | 10.64 | Not reported | Thermal stability at 200 °C, crystallinity index of 39% | [12] |
Acacia caesia bark | 37.00 | 20.00 | 18.00 | Thermal degradation at 308 °C | [13] |
Champagne cork | Not reported | Not reported | Not reported | Used to replace rubber elastomer in various applications | [14] |
Albizia Saman | 61.00 | 15.00 | Not reported | High cellulinity supports structural integrity | [15] |
Saccharum Bengalense Grass | 54.00 | 32.00 | 12.00 | Good thermal stability, max degradation temp around 340 °C | [16] |
Name of the Filler | Density (g/cc) | Cellulose (%) | Hemi Cellulose (%) | Lignin (%) | Pectin (%) | Wax (%) | Ash (%) | Moisture (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Syzygium cumini (L.) Skeels | 0.59 | 43.28 | 20.58 | 23.28 | 12.58 | 0.98 | 10.76 | 11.53 | Present work |
Pistacia vera nutshell (PVNS) filler | 1.32 | 47.08 | 26.56 | 13.74 | - | 0.92 | 4.18 | 7.52 | [27] |
Rice husk filler | 2.2 | 23–46 | 19–24 | 11–32 | - | 14–16 | - | 14 | [28] |
Walnut shell filler | 0.51 | 25.4 | 46.6 | 49.1 | - | - | 3.6 | - | [29] |
Peanut shell filler | 1.46 | 44.8 | 5.6 | 36.1 | - | - | 3.8 | - | [30] |
Coconut shell filler | 0.7 | 26.6 | - | 29.4 | - | - | 0.6 | 8 | [31] |
Sunflower seed hull filler | 0.69 | 31–51 | 13–28 | 20 | - | 3 | 2–6 | - | [32] |
Soybean hulls filler | 1.03 | 20 | 50 | 2 | 30 | - | 4.3 | 7 | [33] |
Peak Positions (Wavenumber (cm−1)) | Allocations |
---|---|
3433 | O–H stretching (moisture or hydroxyl groups in cellulose) |
2889 | C–H stretching (methyl and methylene groups in cellulose and hemicellulose) |
2360 | Possible atmospheric CO2 or triple bonds |
1730 | C=O stretching of lignin and hemicellulose fractions |
1629 | water absorption |
1465 | CH3 deformation of lignin |
1355 | C–H bending |
1232 | C–O stretching of lignin |
1157, 1024 | Multiple peaks of C–O–C pyranose ring |
920, 862 | β-glycosidic linkages between glucose units of cellulose |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiagamani, S.M.K.; Yaswanth, C.V.; Yashwanth, C.; Tran, T.M.N.; Krishnasamy, S.; Azhaguchamy, M.; Khan, A.; Hashem, M.; Fouad, H. Characterization of Syzygium cumini (L.) Skeels (Jamun Seed) Particulate Fillers for Their Potential Use in Polymer Composites. Molecules 2024, 29, 2618. https://doi.org/10.3390/molecules29112618
Thiagamani SMK, Yaswanth CV, Yashwanth C, Tran TMN, Krishnasamy S, Azhaguchamy M, Khan A, Hashem M, Fouad H. Characterization of Syzygium cumini (L.) Skeels (Jamun Seed) Particulate Fillers for Their Potential Use in Polymer Composites. Molecules. 2024; 29(11):2618. https://doi.org/10.3390/molecules29112618
Chicago/Turabian StyleThiagamani, Senthil Muthu Kumar, Chalasani Venkata Yaswanth, Chaganti Yashwanth, Thanh Mai Nguyen Tran, Senthilkumar Krishnasamy, Muthukumaran Azhaguchamy, Anish Khan, Mohamed Hashem, and Hassan Fouad. 2024. "Characterization of Syzygium cumini (L.) Skeels (Jamun Seed) Particulate Fillers for Their Potential Use in Polymer Composites" Molecules 29, no. 11: 2618. https://doi.org/10.3390/molecules29112618
APA StyleThiagamani, S. M. K., Yaswanth, C. V., Yashwanth, C., Tran, T. M. N., Krishnasamy, S., Azhaguchamy, M., Khan, A., Hashem, M., & Fouad, H. (2024). Characterization of Syzygium cumini (L.) Skeels (Jamun Seed) Particulate Fillers for Their Potential Use in Polymer Composites. Molecules, 29(11), 2618. https://doi.org/10.3390/molecules29112618