Chemical Composition and Lipid Bioactive Components of Centaurea thracica Dwelling in Bulgaria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Centaurea thracica Inflorescences
2.2. Lipid Composition of Oil Isolated from Inflorescences and Seeds of Centaurea thracica
2.2.1. Fatty Acid Composition
2.2.2. Content of Tocopherols
2.2.3. Phospholipid Content and Individual Phospholipid Composition
3. Materials and Methods
3.1. Materials
3.2. Chemical Composition
3.3. Lipid Composition
3.3.1. Fatty Acids
3.3.2. Tocopherols
3.3.3. Phospholipids
3.3.4. Iodine Value
3.3.5. Index of Atherogenicity and Thrombogenicity
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ertas, A.; Gören, A.C.; Boga, M.; Demirci, S.; Kolak, U. Chemical composition of the essential oils of three Centaurea species growing wild in Anatolia and their anticholinesterase activities. J. Essent. Oil Bear. Plants 2014, 17, 922–926. [Google Scholar] [CrossRef]
- Wagenitz, G. Floristic connection between the Balkan peninsula and the Near East as exemplified by the genus Centaurea L. In Problems of the Balkan Flora and Vegetation; Jordanov, D., Ed.; Publishing House Bulgarian Acad. Sci.: Sofia, Bulgaria, 1975; pp. 223–228. [Google Scholar]
- Wagenitz, G.; Hellwig, F.H. Evolution of characters and phylogeny of Centaureinae. In Compositae. Systematics. Proceedings of the International Compositae Conference; Hind, D.J.N., Beentje, H.J., Eds.; Royal Botanic Gardens: Kew, UK, 1996; Volume 1, pp. 491–510. [Google Scholar]
- Greuter, W. Med-Checklist. A Critical Inventory of Vascular Plants of the Circum-Mediterranean Countries. Dicotyledones (Compositae); Greuter, W., von Raab-Straube, E., Eds.; OPTIMA Secretariat: Palermo, Italy; Med-Checklist Trust of OPTIMA: Geneve, Switzerland; Euro+Med Plantbase Secretariat: Berlin, Germany, 2008; Volume 2, p. 798. [Google Scholar]
- Velchev, V. (Ed.) Atlas of the Endemic Plants in Bulgaria; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1992. [Google Scholar]
- Pieroni, A.; Janiak, V.; Dürr, C.M.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phytother. Res. 2002, 16, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Della, A.; Paraskeva-Hadjichambi, D.; Hadjichambis, A.C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2006, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Kubacey, T.; Haggag, E.; El-Toumy, S.; Ahmed, A.; El-Ashmawy, I.; Youns, M. Biological activity and flavonoids from Centaurea alexanderina leaf extract. J. Pharm. Res. 2012, 5, 3352–3361. [Google Scholar]
- Csupor, D.; Widowitz, U.; Blazsó, G.; Laczkó-Zöld, E.; Tatsimo, J.S.N.; Balogh, Á.; Boros, K.; Dankó, B.; Bauer, R.; Hohmann, J. Anti-inflammatory activities of eleven Centaurea species occurring in the Carpathian basin. Phyther. Res. 2013, 27, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Tekeli, Y.; Zengin, G.; Aktumsek, A.; Mehmet, S.; Torlak, E. Antibacterial activities of extracts from twelve Centaurea species from Turkey. Arch. Biol. Sci. 2011, 63, 685–690. [Google Scholar] [CrossRef]
- Zengin, G.; Locatelli, M.; Carradori, S.; Mocan, A.M.; Aktumsek, A. Total phenolics, flavonoids, condensed tannins content of eight Centaurea species and their broad inhibitory activities against cholinesterase, tyrosinase, α-amylase and α-glucosidase. Not. Bot. Horti Agrobo. Cluj-Napoca 2016, 44, 195–200. [Google Scholar] [CrossRef]
- Ceyhan Güvensen, N.; Keskin, D.; Güneş, H.; Kesik Oktay, M.; Yıldırım, H. Antimicrobial property and antiproliferative activity of Centaurea babylonica (L.) L. on human carcinomas and cervical cancer cell lines. Ann. Agric. Environ. Med. 2019, 26, 290–297. [Google Scholar] [CrossRef]
- Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present), 2nd ed.; Nobel Tıp Basımevi, Publication of the Istanbul University: Istanbul, Turkey, 1999; pp. 348–349. [Google Scholar]
- Sezik, E.; Yeşilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey X. Folk medicine in central Anatolia. J. Ethnopharmacol. 2001, 75, 95–115. [Google Scholar] [CrossRef]
- Kargıoglu, M.; Cenkci, S.; Serteser, A.; Evliyaoglu, N.; Konuk, M.; Kok, M.S.; Bagcı, Y. An ethnobotanical survey of inner-West Anatolia, Turkey. Hum. Ecol. 2008, 36, 763–777. [Google Scholar] [CrossRef]
- Uysal, A.; Zengin, G.; Mollica, A.; Gunes, E.; Locatelli, M.; Yilmaz, T.; Aktumsek, A. Chemical and biological insights on Cotoneaster integerrimus: A new (-) -epicatechin source for food and medicinal applications. Phytomedicine 2016, 23, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Korga, A.; Jozefczyk, A.; Zgorka, G.; Homa, M.; Ostrowska, M.; Burdan, F.; Dudka, J. Evaluation of the phytochemical composition and protective activities of methanolic extracts of Centaurea borysthenica and Centaurea daghestanica (Lipsky) Wagenitz on cardiomyocytes treated with doxorubicin. Food Nutr. Res. 2017, 61, 1344077. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Nedialkov, P.; Mocan, A.; Ćirić, A.; Glamočlija, J.; Soković, M.; Aktumsek, A.; Mahomoodally, M.F. Identification of phenolic components via LC–MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. J. Pharm. Biomed. Anal. 2018, 149, 436–441. [Google Scholar] [CrossRef]
- Labed, F.; Masullo, M.; Mirra, V.; Nazzaro, F.; Benayache, F.; Benayache, S.; Piacente, S. Amino acid-sesquiterpene lactone conjugates from the aerial parts of Centaurea pungens and evaluation of their antimicrobial activity. Fitoterapia 2019, 133, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Khanavi, M.; Taheri, M.; Rajabi, A.; Fallah-Bonekohal, S.; Baeeri, M.; Mohammadirad, A.; Amin, G.; Abdollahi, M. Stimulation of hepatic glycogenolysis and inhibition of gluconeogenesis are the mechanisms of antidiabetic effect of Centaurea bruguierana ssp. belangerana. Asian J. Anim. Vet. Adv. 2012, 7, 1166–1174. [Google Scholar] [CrossRef]
- Esmaeili, A.; Mousavi, Z.; Shokrollahi, M.; Shafaghat, A. Antioxidant activity and isolation of luteoline from Centaurea behen L. grown in Iran. J. Chem. 2013, 2013, 620305. [Google Scholar] [CrossRef]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem. Toxicol. 2013, 55, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Mężyńska, M.; Brzóska, M.M. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J. Appl. Toxicol. 2019, 39, 117–145. [Google Scholar] [CrossRef]
- Sokovic, M.; Ciric, A.; Glamoclija, J.; Skaltsa, H. Biological activities of sesquiterpene lactones isolated from the genus Centaurea L. (Asteraceae). Curr. Pharm. Des. 2017, 23, 2767–2786. [Google Scholar] [CrossRef]
- Tešević, V.; Aljančić, I.; Milosavljević, S.; Vajs, V.; Đorđević, I.; Jadranin, M.; Menković, N.; Matevski, V. Secondary metabolites of three endemic Centaurea L. species. J. Serb. Chem. Soc. 2014, 79, 1355–1362. [Google Scholar] [CrossRef]
- Das, U.N. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: But, why and how? Prostaglandins Leukot. Essent. Fatty Acids 2000, 63, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. What is the desirable ratio of saturated, polyunsaturated, and monounsaturated fatty acids in the diet? Am. J. Clin. Nutr. 1997, 66, 988S–990S. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Kumlin, M.; Ingelman-Sundberg, M.; Wolk, A. Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr. 2004, 79, 935–945. [Google Scholar] [CrossRef]
- Slattery, M.L.; Potter, J.D.; Duncan, D.M.; Berry, T.D. Dietary fats and colon cancer: Assessment of risk associated with specific fatty acids. Int. J. Cancer 1997, 73, 670–677. [Google Scholar] [CrossRef]
- Von Schacky, C.; Angerer, P.; Kothny, W.; Theisen, K.; Mudra, H. The effect of dietary ω-3 fatty acids on coronary atherosclerosis: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1999, 130, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B.; Mozaffarian, D.; Sotoodehnia, N.; Rea, T.D.; Kuller, L.H.; Tracy, R.P.; Siscovick, D.S. Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults. The cardiovascular health study. Circulation 2006, 114, 209–215. [Google Scholar] [CrossRef]
- Furua, T.; Yoshikawa, T.; Kimura, T.; Kaneko, H. Production of tocopherols by cell culture of safflower. Phytochemistry 1987, 26, 2741–2747. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Andersson, R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 1997, 74, 375–380. [Google Scholar] [CrossRef]
- Tekeli, Y.; Sezgin, M.; Aktumsek, A.; Ozmen Guler, G.; Aydin Sanda, M. Fatty acid composition of six Centaurea species growing in Konya, Turkey. Nat. Prod. Res. 2010, 24, 1883–1889. [Google Scholar] [CrossRef]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem. 2013, 141, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Sunar, S.; Agar, G.; Bozari, S.; Aksakal, O. Biochemical and molecular characterization of some Centaurea species growing in the Eastern Anatolia region of Turkey. Biochem. Genet. 2009, 47, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Sekeroglu, N.; Ozkutlu, F.; Deveci, M.; Dede, O.; Yilmaz, N. Evaluation of some Wild Plants Aspect of Their Nutritional Values Used as Vegetable in Eastern Black Sea Region of Turkey. Asian J. Plant Sci. 2006, 5, 185–189. [Google Scholar] [CrossRef]
- Tuncturk, M.; Celen, E.; Tuncturk, R. Nutrient content of three edible wild plants from Polygonaceae family. Oxid. Commun. 2017, 40, 327–334. [Google Scholar]
- Vishwakarma, K.L.; Dubey, V. Nutritional analysis of indigenous wild edible herbs used in eastern Chhattisgarh, India. Emir. J. Food. Agric. 2011, 23, 554–560. Available online: https://ejfa.me/index.php/journal/article/view/1289 (accessed on 8 November 2023).
- Tunçtürk, R.; Tunçtürk, M.; Nohutcu, L. Study on chemical composition of Centaurea karduchorum Boiss. species from endemic plants of Eastern Anatolia/Turkey. Curr. Pers. MAPs 2019, 2, 47–52. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Balance Sheets, A Handbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; Food Composition Tables, Annex I; pp. 60–65. [Google Scholar]
- CXS 210-1999; Codex Alimentarius, International Food Standards. Standard for named Vegetable Oils. Food and Agriculture Organization of the United Nations and World Health Organization; Codex Alimentarius Commission: Rome, Italy, 1999; Adopted in 1999, Revised in 2001, 2003, 2009, 2017, 2019. Amended in 2005, 2011, 2013, 2015, 2019, 2021, 2022, 2023.
- Peker, S.; Baştürk, A. Volatile compounds, fatty acid composition and antioxidant activity of Centaurea albonitens and Centaurea balsamita seeds growing in Van, Turkey. Eur. J. Nutr. Food Saf. 2020, 11, 187–199. [Google Scholar] [CrossRef]
- Zengin, G.; Cakmak, Y.S.; Guler, G.O.; Aktumsek, A. In vitro antioxidant capacities and fatty acid compositions of three Centaurea species collected from Central Anatolia region of Turkey. Food Chem. Toxicol. 2010, 48, 2638–2641. [Google Scholar] [CrossRef]
- Kang, M.J.; Shin, M.S.; Park, J.N.; Lee, S.S. The effects of polyunsaturated: Saturated fatty acids ratios and peroxidizability index values of dietary fats on serum lipid profiles and hepatic enzyme activities in rats. Br. J. Nutr. 2005, 94, 526–532. [Google Scholar] [CrossRef]
- Cottin, S.C.; Sander, T.A.; Hall, W.L. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 2011, 70, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Thompson, R.; Harrison, R.; Summerbell, C.; Ness, A.; Moore, H.; Worthington, H.; Durrington, P.; Higgins, J.; Capps, N.; et al. Risks and benefits of omega-3 fats for mortality, cardiovascular disease, and cancer: Systematic review. Br. Med. J. 2006, 332, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef]
- Sahari, M.A.; Amooi, M. Tea seed oil: Extraction, compositions, applications, functional and antioxidant properties. Acad. J. Med. Plants 2013, 1, 68–79. [Google Scholar] [CrossRef]
- Gunstone, F.D.; Harwood, J.L.; Dijkstra, A.J. The Lipid Handbook with CD-ROM; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Popov, A.; Ilinov, P. Chemistry of Lipids; Science and Art: Sofia, Bulgaria, 1986; p. 290. [Google Scholar]
- ISO 659:2014; Oilseeds Determination of Oil Content (Reference Method). ISO: Geneva, Switzerland, 2014.
- AOAC. Association of Official Analytical Chemist (AOAC) 2016, Official Methods of Analysis, 20th ed.; AOAC International: Arlington, VA, USA,, 2016. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food Energy—Methods of Analysis and Conversion Factors; FAO Food and Nutrition Paper 77, Report of a Technical Workshop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- ISO 12966-1:2014; Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2014.
- ISO 12966-2:2017; Animal and Vegetable Fat and Oils. Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- ISO 9936:2016; Animal and Vegetable Fats and Oils. Determination of Tocopherol and Tocotrienol Contents by High-Performance, Liquid Chromatography. ISO: Geneva, Switzerland, 2016.
- Schneiter, R.; Daum, G. Analysis of yeast lipids. In Methods in Molecular Biology, 2nd ed.; Xiao, W., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2006; pp. 75–84. [Google Scholar]
- ISO 10540-1:2014; Animal and Vegetable Fats and Oils. Determination of Phosphorus Content. Part 1: Colorimetric Method. ISO: Geneva, Switzerland, 2014.
- AOCS. American Oil Chemists Society (AOCS), Official Methods and Recommended Practices of the American Oil Chemists Society, 7th ed.; Calculated Iodine Value; AOCS Press: Champaign, IL, USA, 2022. [Google Scholar]
Indicators | June | September |
---|---|---|
Proteins, % | 8.7 ± 0.1 * | 7.4 ± 0.2 |
Oil, % | 2.0 ± 0.1 | 1.7 ± 0.1 |
Carbohydrates, % | 72.3 ±0.6 | 77.2 ± 0.7 |
Crude fibers, % | 28.7 ± 0.4 | 35.8 ± 0.3 |
Ash, % | 4.5 ± 0.1 | 4.2 ± 0.1 |
Moisture, % | 12.5 ± 0.1 | 9.5 ± 0.1 |
Energy value **, kJ/100 g (kcal/100 g) | 1453 (342) | 1503 (354) |
Fatty Acids % | Inflorescences | Seeds | ||
---|---|---|---|---|
June | September | |||
C 4:0 | butyric | 3.4 ± 0.2 * | - ** | - |
C 6:0 | caproic | 3.1 ± 0.1 | 0.7 ± 0.2 | - |
C 8:0 | caprylic | - | 0.1 ± 0.0 | 0.2 ± 0.02 |
C 10:0 | capric | - | 0.2 ± 0.05 | 0.1 ± 0.0 |
C 12:0 | lauric | 2.9 ± 0.2 | 1.1 ± 0.1 | 0.1 ± 0.0 |
C 14:0 | myristic | 2.5 ± 0.1 | 2.5 ± 0.15 | 0.2 ± 0.05 |
C 14:1 | myristoleic | 0.5 ± 0.1 | 0.8 ± 0.2 | 0.1 ± 0.0 |
C 15:0 | pentadecanoic | 1.0 ± 0.2 | 0.4 ± 0.1 | 0.2 ± 0.05 |
C 15:1 | pentadecenoic | 0.5 ± 0.1 | 0.1 ± 0.0 | - |
C 16:0 | palmitic | 32.6 ± 0.5 | 21.6 ± 0.6 | 36.2 ± 0.2 |
C 16:1 | palmitoleic | 3.8 ± 0.1 | 11.7 ± 0.2 | - |
C 17:0 | heptadecanoic | 0.9 ± 0.1 | 0.5 ± 0.06 | 0.3 ± 0.05 |
C 17:1 | heptadecenoic | 0.8 ± 0.1 | 0.5 ± 0.1 | 0.3 ± 0.0 |
C 18:0 | stearic | 4.9 ± 0.3 | 4.5 ± 0.2 | 3.7 ± 0.4 |
C 18:1 | oleic | 13.7 ± 0.5 | 30.9 ± 0.7 | 53.0 ± 0.5 |
C 18:2 (n-6) | linoleic | 13.8 ± 0.4 | 20.3 ± 0.3 | 1.4 ± 0.2 |
C 18:3 (n-3) | linolenic | 3.6 ± 0.3 | 0.7 ± 0.1 | 1.1 ± 0.1 |
C 20:0 | arachidic | 3.5 ± 0.5 | 0.2 ± 0.05 | - |
C 20:1 | gadoleic | 0.4 ± 0.1 | 0.1 ± 0.0 | - |
C 20:2 (n-6) | eicosadienoic | 0.5 ± 0.2 | 0.2 ± 0.05 | 0.4 ± 0.1 |
C 22:0 | behenic | 2.9 ± 0.3 | 1.5 ± 0.1 | 0.5 ± 0.1 |
C 22:1 | erucic | 0.3 ± 0.1 | - | - |
C 22:2 (n-6) | docosadienoic | - | - | 0.7 ± 0.1 |
C 20:5 (n-3) | eicosapentaenoic | - | - | 0.1 ± 0.0 |
C 23:0 | tricosanoic | 1.0 ± 0.2 | 0.4 ± 0.1 | - |
C 24:0 | lignoceric | 2.8 ± 0.4 | 1.0 ± 0.2 | 0.2 ± 0.1 |
C 24:1 | nervonic | - | - | 0.2 ± 0.05 |
C 22:6 (n-3) | docosahexaenoic | 0.6 ± 0.1 | 0.1 ± 0.0 | 1.0 ± 0.2 |
Σ n-6 | 14.3 | 20.5 | 2.5 | |
Σ n-3 | 4.2 | 0.8 | 2.2 | |
Ratio of n-6/n-3 | 3.4 | 26.6 | 1.14 | |
Iodine value, g I2/100 g | 47.2 | 66.5 | 53.2 |
Oils From: | PUFA/SFA | Atherogenic Index | Thrombogenic Index |
---|---|---|---|
Inflorescences in June | 0.30 ± 0.05 * | 1.20 ± 0.2 | 1.33 ± 0.05 |
Inflorescences in September | 0.62 ± 0.02 | 0.50 ± 0.1 | 0.82 ± 0.02 |
Seeds | 0.11 ± 0.01 | 0.64 ± 0.1 | 1.13 ± 0.03 |
Content | Inflorescences | Seeds | |
---|---|---|---|
June | September | ||
Tocopherols, mg/kg | 58 ± 5 * | 110 ± 5 | 260 ± 10 |
Individual tocopherol composition | |||
α-Tocopherol, % of total tocopherol content | 100 ± 0 | 100 ± 0 | 100 ± 0 |
Phospholipids % (from Total Phospholipids) | Inflorescences | Seeds | |
---|---|---|---|
June | September | ||
Phosphatidylcholine | 6.6 ± 0.2 * | 23.9 ± 0.5 | 9.1 ± 0.5 |
Phosphatidylinositol | 14.6 ± 0.3 | 10.4 ± 0.4 | 25.0 ± 1.5 |
Phosphatidylethanolamine | 6.9 ± 0.5 | 13.9 ± 0.4 | 31.8 ± 1.1 |
Sphingomyelin | 7.3 ± 0.1 | 7.6 ± 0.5 | 11.3 ± 1.1 |
Phosphatidylserine | 12.5 ± 0.4 | 4.7 ± 0.1 | 7.0 ± 1.0 |
Lysophosphatidylcholine | 6.1 ± 0.1 | 9.4 ± 0.4 | 2.8 ± 0.4 |
Lysophosphatidylethanolamine | 2.5 ± 0.3 | 2.0 ± 0.2 | 2.5 ± 0.6 |
Monophosphatidylglycerol | - ** | 1.0 ± 0.1 | 5.6 ± 0.5 |
Diphosphatidylglycerol | 21.4 ± 0.4 | 7.3 ± 0.3 | 4.9 ± 0.2 |
Phosphatidic acids | 22.1 ± 0.1 | 19.8 ± 0.4 | - |
Total phospholipid content in the oil % | 0.70 ± 0.10 | 0.35 ± 0.05 | 0.30 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teneva, O.; Petkova, Z.; Antova, G.; Angelova-Romova, M.; Stoyanov, P.; Todorov, K.; Mladenova, T.; Radoukova, T.; Mladenov, R.; Petkov, V.; et al. Chemical Composition and Lipid Bioactive Components of Centaurea thracica Dwelling in Bulgaria. Molecules 2024, 29, 3282. https://doi.org/10.3390/molecules29143282
Teneva O, Petkova Z, Antova G, Angelova-Romova M, Stoyanov P, Todorov K, Mladenova T, Radoukova T, Mladenov R, Petkov V, et al. Chemical Composition and Lipid Bioactive Components of Centaurea thracica Dwelling in Bulgaria. Molecules. 2024; 29(14):3282. https://doi.org/10.3390/molecules29143282
Chicago/Turabian StyleTeneva, Olga, Zhana Petkova, Ginka Antova, Maria Angelova-Romova, Plamen Stoyanov, Krasimir Todorov, Tsvetelina Mladenova, Tzenka Radoukova, Rumen Mladenov, Venelin Petkov, and et al. 2024. "Chemical Composition and Lipid Bioactive Components of Centaurea thracica Dwelling in Bulgaria" Molecules 29, no. 14: 3282. https://doi.org/10.3390/molecules29143282
APA StyleTeneva, O., Petkova, Z., Antova, G., Angelova-Romova, M., Stoyanov, P., Todorov, K., Mladenova, T., Radoukova, T., Mladenov, R., Petkov, V., Bivolarska, A., & Gyuzeleva, D. (2024). Chemical Composition and Lipid Bioactive Components of Centaurea thracica Dwelling in Bulgaria. Molecules, 29(14), 3282. https://doi.org/10.3390/molecules29143282