The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang?
Abstract
:1. Introduction
2. Drug Discovery and Development
2.1. History and Market
2.1.1. Brief History from Ancient Time Process to Modern DD
2.1.2. Market: Economic Environment of DD
2.2. Modern DD
2.3. Arrival of AI and Opportunities
3. Artificial Intelligence
3.1. History of AI
3.1.1. From 1943 to 2010
3.1.2. From 2010 to Today
3.2. Use of AI and Emergence
3.3. AI Development and Models’ Description
3.3.1. Brief Overview of an AI Development
3.3.2. “Recurrent Neural Network” (RNN)
3.3.3. “Graph Neural Network” (GNN)
3.3.4. “Convolutional Neural Network”
4. AI and DD
4.1. Scientific Challenges of AI
4.2. AI and Medicine
4.3. Databases
4.4. Versatility of AI in DD
4.5. Ethical Limitations and Transparency
5. Case Studies (Wet-Lab Validation and from Drug Candidates to Clinical Phase)
5.1. Generative DL: Receptor-Interacting Kinase 1 (RIPK1) Inhibitor
5.2. Small-Molecule TRAF2- and NCK-Interacting Kinase (TNIK) Inhibitor
5.3. Explainable DL: New Structure Class of Antibiotics
Article | 5.1: Li, Y. et al., 2022 [10] | 5.2: Ren F. et al., 2024 [191] | 5.3: Wong F. et al., 2024 [197] |
---|---|---|---|
Context | Receptor- interacting protein kinase 1 (RIPK1) a serine/threonine-protein kinase that plays a part in cell survival especially in apoptosis and necroptosis. RIPK1 was selected as a promising target for necroptosis-related disease. | Idiopathic pulmonary fibrosis (IPF): disease that leads to a high mortality rate with limited FDA-approved treatments. | In the context of the antibiotic resistance crisis, we need to discover novel structures classes of antibiotic against S. aureus, a Gram-positive pathogen, for the difficult treatment of nosocomial and bloodstream infections. |
Goal(s) | Generate a small-molecule inhibitor against RIPK1 with novel scaffold thanks to AI. | ⇾ Identify an anti-fibrotic target. (1) ⇾ Generate an inhibitor of this target. (2) | ⇾ Identify novel structure classes of antibiotics. |
Data representation | SMILES | Multiomics data containing different types (survival, age…) | Morgan fingerprints |
Database(s) | ⇾ ZINC12 database (ca. 16 million molecules) SOURCE DATA. ⇾ RIPK1 known inhibitors library (1030 molecules) TARGET DATA, transfer learning. | ⇾ 15 IPF multiomics datasets from GEO database. (1) ⇾ Hierarchical Active Molecule (HAM) included in the structure-based platform. | ⇾ Set of known antibiotics, natural products, and other molecules. ⇾ Mcule purchasable database. (a) ⇾ Broad institute database. (b) |
Model(s) | Creation of a generative DL model based on: ⇾ Conditional RNN. ⇾ Transfer learning. ⇾ Regularization enhancement. | ⇾ Predictive approach: a commercially available AI-based platform based on pretrained transformers. (1) ⇾ Generative approach: a commercially available structure-based drug-design AI platform + available crystal structures of the target kinase domain. (2) | ⇾ Explainable DL using Chemprop, GNN platform + graph-based search algorithm for explainability. ⇾ Orthogonal model to predict cytotoxicity. |
Selection methods | Once the inhibitors library had been created (ca. 79,000 molecules) it was subjected to different selection methods: ⇾ Delete same Murcko scaffolds + virtual screening: drug-like screening using pharmacophore map (ca. 23,000 molecules). ⇾ Docking + top-rank selection + interesting features selection (8 remaining molecules). | ⇾ Selection of TRAF2- and NCK-interacting kinase (TNIK) through “protein and receptor kinase” approach + confirmation of TNIK potential. (1) ⇾ Selections including pharmacophore points + in vitro + lead optimization. (2) | Creation of four ensembles predicting antibiotic activity after preliminary training and applied to (a) + (b) (ca. 12 million molecules). ⇾ Apply ensembles (ca. 10,000 molecules). ⇾ Cytotoxicity score < 0.2 (ca. 3000 molecules). ⇾ Rationale analysis (380 molecules). ⇾ Exhibition activity against target + other inhibitory experiments (2 hits). |
Results | Selection of final promising inhibitor: RI-962 ⇾ in vitro: inhibition of RIPK1 kinase activity (inhibition of RIPK1 phosporylation and dowstream signal) ⇾ in vivo: survival rate increased by 90% in RI-962-treated mice, RIPK1 phosphorylation rate decreased. | After selection of final inhibitor: INS018_055: ⇾ in vitro: selecting at inhibiting TNIK. ⇾ in vivo: strong anti-fibrotic phenotype for mice treated with mix therapy including INS018_055. ⇾ preclinical: dose of 100 μg well tolerated by humans. ⇾ phase I: good toleration of oral bioavailability in healthy volunteers. | ⇾ in vitro: favourable selectivity of both compounds, not genotoxic. ⇾ ex vivo: non-toxic when applied topically; decrease of mean bacterial load. |
Time needed | Unknown | 18 months (from discovery to preclinical phase included) | Unknown |
Article |
6. Discussions
7. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms and Abbreviations
AMR | antimicrobial resistance |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
CPPs | cell-penetrating peptides |
CPU | Central Processing Unit |
CADD | computer-aided drug discovery |
cRNN | conditional RNN |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DARPA | Defense Advanced Research Project Agency |
DC | drug candidate |
DD | drug discovery |
DTIs | drug–target interactions |
GRU | Gated Recurrent Units |
GAN | Generative Adversarial Net |
GenAI | generative AI |
GPU | Graphics Processing Unit |
GCN | graph convolutional network |
GNN | Graph Neural Network |
HTS | high-throughput screening |
hERG | human-ether-a-go-go-gene |
IPF | idiopathic pulmonary fibrosis |
LPU | Language Processing Unit |
LLM | Large Language Models |
LBDD | Ligand-Based DD |
LSTM | Long Short-Term Memory |
ML | Machine Learning |
MPNN | Message Passing Neural Network |
MRSA | methicillin-resistant Staphylococcus aureus |
MD | molecular docking |
NB | Naïve Bayes |
NLP | Natural Language Processing |
TNIK | NCK-interacting kinase |
NMEs | New Molecule Entities |
PM | pharmacophore modelling |
POI | protein of interest |
PPI | protein–protein interaction |
PROTACs | PROteolysis TArgeting Chimeras |
PMF | proton motive force |
QSAR | Quantitative Structure-Based Relationship |
RF | Random Forest |
ROC | Receiver Operating Characteristic |
RNN | Recurrent Neural Network |
RL | Reinforcement Learning |
SBDD | Structure-Based Drug Discovery |
SBVS | Structure-Based Virtual Screening |
SVM | Support Vector Machine |
SD | synthetic data |
VAE | Variational Autoencoder |
VS | virtual screening |
References
- Krantz, A. Protein-site targeting: Diversification of the drug discovery process. Nat. Biotechnol. 1998, 16, 1294. [Google Scholar] [CrossRef] [PubMed]
- Google Trend on Keyword “Artificial Intelligence”. Available online: https://trends.google.fr/trends/explore?date=today%205-y&q=%2Fm%2F0mkz&hl=fr (accessed on 22 May 2024).
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Holzinger, A.; Keiblinger, K.; Holub, P.; Zatloukal, K.; Müller, H. AI for life: Trends in artificial intelligence for biotechnology. New Biotechnol. 2023, 74, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Sreelakshmi, K.; Vishwakarma, P.K.; Rao, S.G.; Maqbool, A.; Samal, D.; Saini, R.; Thakur, G. Biotechnology and Genetic Engineering using AI: A Review. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 350–364. Available online: https://ijisae.org/index.php/IJISAE/article/view/4456 (accessed on 24 May 2024).
- Almustafa, E.; Assaf, A.; Allahham, M. Implementation of artificial intelligence for financial process innovation of commercial banks. Revista Gestão Social Ambiental 2023, 17, e04119. [Google Scholar] [CrossRef]
- Polishchuk, P.; Madzhidov, T.; Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 2013, 27, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Koutroumpa, N.M.; Papavasileiou, K.D.; Papadiamantis, A.G.; Melagraki, G.; Afantitis, A. A systematic review of deep learning methodologies used in the drug discovery process with emphasis on in vivo validation. Int. J. Mol. Sci. 2023, 24, 6573. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, S.; Min, D.; Kim, W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int. J. Mol. Sci. 2021, 22, 9983. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wang, Y.; Zou, J.; Yang, R.; Luo, X.; Wu, C.; Yang, W.; Tian, C.; Xu, H.; et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat. Commun. 2022, 13, 6891. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [CrossRef]
- El-Assal, G.S. Ancient Egyptian medicine. Lancet 1972, 2, 272–274. [Google Scholar] [CrossRef]
- Levron, P. Médecine et alchimie au Moyen Âge. Microscoop: Un regard sur les laboratoires en Centre Limousin Poitou-Charentes (CNRS), 2019. Hors-Série-Fête De La Sci. 2019, 19, 18–19. [Google Scholar]
- Joly, B. Quand l’alchimie était une science. Actual. Chim. 2014, 386, 32–38. [Google Scholar]
- Abbott, A. Paracelsus. Nature. 1993, 366, 98. [Google Scholar] [CrossRef] [PubMed]
- Evans, B. Paracelsus—Father of toxicology, brother of general practice. Aust. J. Gen. Pract. 2023, 52, 333. [Google Scholar] [CrossRef] [PubMed]
- Pina, A.S.; Hussain, A.; Roque, A.C.A. An Historical Overview of Drug Discovery. In Ligand-Macromolecular Interactions in Drug Discovery, Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 572. [Google Scholar] [CrossRef]
- Drews, J. Drug Discovery: A Historical Perspective. Science 2000, 287, 1960–1964. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A Compressive Review about Taxol®: History and Future Challenges. Molecules 2020, 25, 5986. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Saleem, S.; Chaudhuri, A.; Ali, J.; Baboota, S. Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J. Drug Deliv. Sci. Technol. 2020, 60, 101959. [Google Scholar] [CrossRef]
- Da Silva, G.H.; Fernandes, M.A.; Trevizan, L.N.F.; de Lima, F.T.; Eloy, J.O.; Chorilli, M. A Critical Review of Properties and Analytical Methods for the Determination of Docetaxel in Biological and Pharmaceutical Matrices. Crit. Rev. Anal. Chem. 2018, 48, 517–527. [Google Scholar] [CrossRef]
- Ban, T.A. The role of serendipity in drug discovery. Dialogues Clin. Neurosci. 2006, 8, 335–344. [Google Scholar] [CrossRef]
- Bentley, R. Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence beta-lactams). J. Ind. Microbiol. Biotechnol. 2009, 36, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Falcetta, P.; Aragona, M.; Bertolotto, A.; Bianchi, C.; Campi, F.; Garofolo, M.; Del Prato, S. Insulin discovery: A pivotal point in medical history. Metabolism 2022, 127, 154941. [Google Scholar] [CrossRef]
- Gershell, L.J.; Atkins, J.H. A brief history of novel drug discovery technologies. Nat. Rev. Drug Discov. 2003, 2, 321–327. [Google Scholar] [CrossRef]
- Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Simoens, S.; Huys, I. R&D Costs of New Medicines: A Landscape Analysis. Front. Med. 2021, 8, 760762. [Google Scholar] [CrossRef]
- Schlander, M.; Hernandez-Villafuerte, K.; Cheng, C.Y.; Mestre-Ferrandiz, J.; Baumann, M. How Much Does It Cost to Research and Develop a New Drug? A Systematic Review and Assessment. Pharmacoeconomics 2021, 39, 1243–1269. [Google Scholar] [CrossRef]
- KPMG. Available online: https://kpmg.com/de/en/home/insights/2023/10/cost-of-capital-study-2023.html (accessed on 8 March 2024).
- Schuhmacher, A.; Wilisch, L.; Kuss, M.; Kandelbauer, A.; Hinder, M.; Gassmann, O. R&D efficiency of leading pharmaceutical companies—A 20-year analysis. Drug Discov. Today 2021, 26, 1784–1789. [Google Scholar] [CrossRef] [PubMed]
- Ringel, M.S.; Scannell, J.W.; Baedeker, M.; Schulze, U. Breaking Eroom’s Law. Nat. Rev. Drug Discov. 2020, 19, 833–834. [Google Scholar] [CrossRef]
- Frye, L.; Bhat, S.; Akinsanya, K.; Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug Discov. Today Technol. 2021, 39, 111–117. [Google Scholar] [CrossRef]
- Ramesh, M.; Muthuraman, A. Computer-Aided Drug Discovery (CADD) Approaches for the Management of Neuropathic Pain. Curr. Top. Med. Chem. 2021, 21, 2856–2868. [Google Scholar] [CrossRef]
- Razia, I.T.; Kanwal, A.; Riaz, H.F.; Malik, A.; Ahsan, M.; Khan, M.S.; Raza, A.; Sabir, S.; Sajid, Z.; Khan, M.F.; et al. Recent Trends in Computer-aided Drug Design for Anti-cancer Drug Discovery. Curr. Top. Med. Chem. 2023, 23, 2844–2862. [Google Scholar] [CrossRef] [PubMed]
- Vemula, D.; Jayasurya, P.; Sushmitha, V.; Kumar, Y.N.; Bhandari, V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci. 2023, 181, 106324. [Google Scholar] [CrossRef]
- Gore, M.; Jagtap, U.B. Computational Drug Discovery and Design; Springer Protocols, Humana Press: Totowa, NJ, USA, 2018. [Google Scholar]
- Davis, R.L. Mechanism of Action and Target Identification: A Matter of Timing in Drug Discovery. iScience 2020, 23, 101487. [Google Scholar] [CrossRef]
- New Drug Application (NDA). Available online: https://www.fda.gov/drugs/types-applications/new-drug-application-nda#:~:text=The%20NDA%20application%20is%20the,become%20part%20of%20the%20NDA (accessed on 22 May 2024).
- Waring, M.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discovery 2015, 14, 475–486. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Aldewachi, H.; Al-Zidan, R.N.; Conner, M.T.; Salman, M.M. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering 2021, 8, 30. [Google Scholar] [CrossRef]
- Dreiman, G.H.S.; Bictash, M.; Fish, P.V.; Griffin, L.; Svensson, F. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding. SLAS Discov. 2021, 26, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Statista. Available online: https://www.statista.com/statistics/1365145/artificial-intelligence-market-size/ (accessed on 10 March 2024).
- López-Muñoz, F.; Boya, J.; Alamo, C. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res. Bull. 2006, 70, 391–405. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1990, 52, 99–115. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed]
- Copeland, B.J. The Turing Test. Minds Mach. 2000, 10, 519–539. [Google Scholar] [CrossRef]
- Moor, J. The Dartmouth College artificial intelligence conference: The next fifty years. AI Mag. 2006, 27, 87–91. [Google Scholar] [CrossRef]
- Buchanan, B.G.; Feigenbaum, E.A. DENDRAL and Meta-DENDRAL: Their applications dimension. Artif. Intell. 1978, 11, 5–24. [Google Scholar] [CrossRef]
- Shin, Y. The Spring of Artificial Intelligence in Its Global Winter. IEEE Ann. Hist. Comput. 2019, 41, 71–82. [Google Scholar] [CrossRef]
- Hendler, J. Avoiding another AI winter. IEEE Intell. Syst. 2008, 23, 2–4. [Google Scholar] [CrossRef]
- Shalf, J. The future of computing beyond Moore’s Law. Philos. Trans. R. Soc. A 2020, 378, 20190061. [Google Scholar] [CrossRef]
- Kamberaj, H. Viewpoint: The Physics in the New Era of Computing. Eur. Sci. J. 2023, 19, 5. [Google Scholar] [CrossRef]
- Apple M1 Ultra Unveiling. Available online: https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/ (accessed on 20 May 2024).
- McClanahan, C. History and Evolution of GPU Architecture. A Paper Survey. Available online: https://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf (accessed on 30 May 2024).
- Campbell, M.; Hoane, A.J., Jr.; Hsu, F.H. Deep Blue. Artif. Intell. 2002, 134, 57–83. [Google Scholar] [CrossRef]
- Spielberg, S. AI: Artificial Intelligence. Available online: https://en.wikipedia.org/wiki/A.I._Artificial_Intelligence (accessed on 30 May 2024).
- Palumbo, D. Alex Proyas’s “I, Robot”: Much More Faithful to Asimov Than You Think. J. Fantast. Arts 2011, 22, 60–74. [Google Scholar]
- Sakagami, Y.; Watanabe, R.; Aoyama, C.; Matsunaga, S.; Higaki, N.; Fujimura, K. The intelligent ASIMO: System overview and integration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; IEEE: New York, NY, USA, 2002; Volume 3, pp. 2478–2483. [Google Scholar] [CrossRef]
- Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Mahoney, P. Stanley: The robot that won the DARPA grand challenge. In The 2005 DARPA Grand Challenge; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–43. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kernighan, B.W.; Ritchie, D.M. The C Programming Language, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; ISBN 0-13-110370-9. [Google Scholar]
- Severance, C. Guido van Rossum: The Early Years of Python. Computer 2015, 48, 7–9. [Google Scholar] [CrossRef]
- Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Von Neumann, J.; Burks, A.W. Theory of Self-Reproducing Automata; University of Illinois Press: Urbana, IL, USA, 1966; Volume 5, pp. 3–14. [Google Scholar]
- Haug, C.J.; Drazen, J.M. Artificial intelligence and machine learning in clinical medicine, 2023. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A comprehensive survey of ai-generated content (AIGC): A history of generative ai from GAN to ChatGPT. arXiv 2023, arXiv:2303.04226. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Hölldobler, S.; Möhle, S.; Tigunova, A. Lessons Learned from AlphaGo. In Proceedings of the Second Young Scientist’s International Workshop on Trends in Information Processing (YSIP2 2017), Dombai, Russia, 16–20 May 2017; CEUR-WS. pp. 92–101. Available online: https://www.researchgate.net/publication/318825598_Lessons_Learned_from_AlphaGo (accessed on 30 May 2024).
- Silver, D.; Huang, A.; Maddison, C. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, H.; Iida, H.; Grimbergen, R. Natural Developments in Game Research: From CHESS to SHOGI to Go. ICCA J. 1996, 19, 103–112. [Google Scholar] [CrossRef]
- Nabiyeva, F.S.; Umarova, S.S.; Umirkulova, S.I. Artificial intelligence in medicine. J. New Cent. Innov. 2023, 30, 153–155. Available online: https://newjournal.org/index.php/new/article/view/7481 (accessed on 30 May 2024).
- Jumper, J.; Evans, R.; Pritzel, A. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- AlphaFold Protein Structure Database. Available online: https://alphafold.ebi.ac.uk (accessed on 15 March 2024).
- Mistral AI Funding. Available online: https://www.nytimes.com/2023/12/10/technology/mistral-ai-funding.html (accessed on 19 May 2024).
- Gao, H.; Ye, Z.; Dong, J.; Gao, H.; Yu, H.; Li, H.; Ouyang, D. Predicting drug/phospholipid complexation by the lightGBM method. Chem. Phys. Lett. 2020, 747, 137354. [Google Scholar] [CrossRef]
- Pitt, C.; Paschen, J.; Kietzmann, J.; Pitt, L.F.; Pala, E. Artificial Intelligence, Marketing, and the History of Technology: Kranzberg’s Laws as a Conceptual Lens. Australas. Mark. J. 2023, 31, 81–89. Available online: https://api.semanticscholar.org/CorpusID:240552879 (accessed on 30 May 2024). [CrossRef]
- Homolak, J. Opportunities and risks of ChatGPT in medicine, science, and academic publishing: A modern Promethean dilemma. Croat. Med. J. 2023, 64, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Kordon, A. Applying Data Science; Springer Nature: Gewerbesraße, Switzerland, 2020; p. 19. [Google Scholar]
- Bloomberg. Available online: https://www.bloomberg.com/company/press/generative-ai-to-become-a-1-3-trillion-market-by-2032-research-finds/ (accessed on 12 March 2024).
- Dall-e-2. Available online: https://openai.com/dall-e-2/ (accessed on 22 May 2024).
- Sora. Available online: https://openai.com/sora/ (accessed on 21 May 2024).
- Wang, J.; Shi, E.; Yu, S.; Wu, Z.; Ma, C.; Dai, H.; Zhang, S. Prompt engineering for healthcare: Methodologies and applications. arXiv 2023, arXiv:2304.14670. [Google Scholar] [CrossRef]
- Heston, T.F.; Khun, C. Prompt Engineering in Medical Education. Int. Med. Educ. 2023, 2, 198–205. [Google Scholar] [CrossRef]
- IBM. IBM Global AI Adoption Index 2022. Available online: https://www.ibm.com/downloads/cas/GVAGA3JP (accessed on 12 March 2024).
- IBM. IBM Global AI Adoption Index 2023. Available online: https://newsroom.ibm.com/2024-01-10-Data-Suggests-Growth-in-Enterprise-Adoption-of-AI-is-Due-to-Widespread-Deployment-by-Early-Adopters (accessed on 12 March 2024).
- Kang, C.; Zhang, H.; Liu, Z.; Huang, S.; Yin, Y. LR-GNN: A graph neural network based on link representation for predicting molecular associations. Brief. Bioinform. 2022, 23, bbab513. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wulamu, A.; Zou, Q.; Zheng, H.; Wen, L.; Guo, X.; Chen, H.; Zhang, T.; Zhang, Y. MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery. J. Mol. Graph. Model. 2023, 123, 108506. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Feng, J.; Ji, Y.; Li, Y. SLI-GNN: A Self-Learning-Input Graph Neural Network for Predicting Crystal and Molecular Properties. J. Phys. Chem. A 2023, 127, 5921–5929. [Google Scholar] [CrossRef]
- Li, X.S.; Liu, X.; Lu, L.; Hua, X.S.; Chi, Y.; Xia, K. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design. Brief. Bioinform. 2022, 23, bbac231. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Rish, I. An Empirical Study of the Naive Bayes Classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence; IJCAI: Seattle, WA, USA, 2001; Volume 3, pp. 41–46. [Google Scholar]
- Hu, P.; Zou, J.; Yu, J.; Shi, S. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and rein-forcement learning. J. Mol. Model. 2023, 29, 121. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Xie, X.Q. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries. Cells 2022, 11, 915. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S.; Kv, P.; Balaji, S. Training recurrent neural networks as generative neural networks for molecular structures: How does it impact drug discovery? Expert Opin. Drug Discov. 2022, 17, 1071–1079. [Google Scholar]
- Zou, J.; Zhao, L.; Shi, S. Generation of focused drug molecule library using recurrent neural network. J. Mol. Model. 2023, 29, 361. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Puentes, P.; Valderrama, N.; González, C.; Daza, L.; Muñoz-Camargo, C.; Cruz, J.C.; Arbeláez, P. PharmaNet: Pharma-ceutical discovery with deep recurrent neural networks. PLoS ONE 2021, 16, e0241728. [Google Scholar] [CrossRef] [PubMed]
- Suresh, N.; Chinnakonda Ashok Kumar, N.; Subramanian, S.; Srinivasa, G. Memory augmented recurrent neural networks for de-novo drug design. PLoS ONE 2022, 17, e0269461. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Ding, M.; Yang, H.; Yue, C.; Zhong, Y.; Du, Z.; Liu, D.; Liu, J.; Deng, Y. Predicting Drug-Target Affinity Based on Re-current Neural Networks and Graph Convolutional Neural Networks. Comb. Chem. High Throughput Screen. 2022, 25, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Zargar, S. Introduction to Sequence Learning Models: RNN, LSTM, GRU. Available online: https://www.researchgate.net/publication/350950396_Introduction_to_Sequence_Learning_Models_RNN_LSTM_GRU (accessed on 30 May 2024). [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, M.; Li, J.; Du, S.S.; Kawarabayashi, K.I.; Jegelka, S. How neural networks extrapolate: From feed-forward to graph neural networks. arXiv 2020, arXiv:2009.11848. [Google Scholar] [CrossRef]
- Nikolentzos, G.; Vazirgiannis, M. Random walk graph neural networks. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020; pp. 16211–16222. [Google Scholar]
- Zhou, Y.; Huo, H.; Hou, Z.; Bu, F. A deep graph convolutional neural network architecture for graph classification. PLoS ONE 2023, 18, e0279604. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Wang, X.; Zou, X.; Liu, C.; Cen, S. MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion. Neural Netw. 2022, 154, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lei, X.; Pan, Y.; Wu, F.X. Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks. Front. Pharmacol. 2022, 13, 872785. [Google Scholar] [CrossRef]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar] [CrossRef]
- Tan, R.K.; Liu, Y.; Xie, L. Reinforcement learning for systems pharmacology-oriented and personalized drug design. Expert Opin. Drug Discov. 2022, 17, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, X.M.; Li, L. Co-VAE: Drug-Target Binding Affinity Prediction by Co-Regularized Variational Autoencoders. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8861–8873. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Santos, B.P.; Pereira, T.C.; Sofia, R.; Monteiro, N.R.C.; Simões, C.J.V.; Brito, R.M.M.; Ribeiro, B.; Oliveira, J.L.; Arrais, J.P. Designing optimized drug candidates with Generative Adversarial Network. J. Cheminform 2022, 14, 40. [Google Scholar] [CrossRef]
- Blanco-González, A.; Cabezón, A.; Seco-González, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Piñeiro, Á.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals 2023, 16, 891. [Google Scholar] [CrossRef]
- Bernardi, F.A.; Alves, D.; Crepaldi, N.; Yamada, D.B.; Lima, V.C.; Rijo, R. Data Quality in Health Research: Integrative Literature Review. J. Med. Internet. Res. 2023, 25, e41446. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Tan, Y.; Wang, Z.; Li, C.; Zhang, Z.; Sang, X.; Chen, H.; Yang, Y. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat. Mach. Intell. 2022, 4, 739–748. [Google Scholar] [CrossRef]
- Hernandez, M.; Epelde, G.; Alberdi, A.; Cilla, R.; Rankin, D. Synthetic data generation for tabular health records: A systematic review. Neurocomputing 2022, 493, 28–45. [Google Scholar] [CrossRef]
- Yale, A.; Dash, S.; Dutta, R.; Guyon, I.; Pavao, A.; Bennett, K.P. Assessing privacy and quality of synthetic health data. In Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse, Pittsburgh, PA, USA, 13–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Yale, A.; Dash, S.; Dutta, R.; Guyon, I.; Pavao, A.; Bennett, K.P. Generation and evaluation of privacy preserving synthetic health data. Neurocomputing 2020, 416, 244–255. [Google Scholar] [CrossRef]
- Jiménez-Luna, J.; Grisoni, F.; Weskamp, N.; Schneider, G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin. Drug Discov. 2021, 16, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.H.; Patton, R.M. Optimizing deep learning hyper-parameters through an evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, Austin, TX, USA, 15 November 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Loquercio, A.; Segu, M.; Scaramuzza, D. A general framework for uncertainty estimation in deep learning. IEEE Robot. Autom. Lett. 2020, 5, 3153–3160. [Google Scholar] [CrossRef]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A.K. Artificial Intelligence in Colorectal Cancer Scree-ning, Diagnosis and Treatment. New Era. Curr. Oncol. 2021, 28, 1581–1607. [Google Scholar] [CrossRef]
- Li, Z.; Kitajima, K.; Hirata, K.; Togo, R.; Takenaka, J.; Miyoshi, Y.; Kudo, K.; Ogawa, T.; Haseyama, M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021, 11, 10. [Google Scholar] [CrossRef]
- Kim, K.; Macruz, F.; Wu, D.; Bridge, C.; McKinney, S.; Al Saud, A.A.; Sharaf, E.; Sesic, I.; Pely, A.; Danset, P.; et al. Point-of-care AI-assisted stepwise ultrasound pneumothorax diagnosis. Phys. Med. Biol. 2023, 68, 20. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.H.; Lane, H.Y. Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 2761. [Google Scholar] [CrossRef] [PubMed]
- Jucker, M.; Walker, L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023, 186, 4260–4270. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, T.; Pandhi, T.; Gupta, B. Cough Audio Analysis for COVID-19 Diagnosis. SN Comput. Sci. 2023, 4, 125. [Google Scholar] [CrossRef] [PubMed]
- Kitane, D.L.; Loukman, S.; Marchoudi, N.; Fernandez-Galiana, A.; El Ansari, F.Z.; Jouali, F.; Badir, J.; Gala, J.-L.; Bertsimas, D.; Azami, N.; et al. A simple and fast spectroscopy-based technique for COVID-19 diagnosis. Sci. Rep. 2021, 11, 16740. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Zhang, H.; Wang, Z.; Aydar, M.; Kitai, T. Artificial Intelligence in Precision Cardiovascular Medicine. J. Am. Coll. Cardiol. 2017, 69, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Lin, L.; Wu, C.F.; Li, C.F.; Xu, R.H.; Sun, Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021, 41, 1100–1115. [Google Scholar] [CrossRef] [PubMed]
- Engineered Arts. Available online: https://www.engineeredarts.co.uk/robot/ameca/ (accessed on 15 March 2024).
- Moglia, A.; Georgiou, K.; Georgiou, E.; Satava, R.M.; Cuschieri, A. A systematic review on artificial intelligence in ro-bot-assisted surgery. Int. J. Surg. 2021, 95, 106151. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Xiang, P.; Fang, Q.; Nie, X.; Ma, H.; Hu, J.; Xiong, R.; Wang, Y.; Lu, H. AI co-pilot bronchoscope robot. Nat. Commun. 2024, 15, 241. [Google Scholar] [CrossRef]
- Unger, M.; Berger, J.; Melzer, A. Robot-Assisted Image-Guided Interventions. Front. Robot. AI 2021, 8, 664622. [Google Scholar] [CrossRef] [PubMed]
- Bodenstedt, S.; Wagner, M.; Müller-Stich, B.P.; Weitz, J.; Speidel, S. Artificial Intelligence-Assisted Surgery: Potential and Challenges. Visc. Med. 2020, 36, 450–455. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Y.; Luo, Z.; He, W.; Hong, J.; Huang, Y. Deep learning-based EEG emotion recognition: Current trends and future perspectives. Front. Psychol. 2023, 14, 1126994. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Nguyen, T.H.; Scherer, R.; Le, V.H. Deep Learning for Human Activity Recognition on 3D Human Skeleton: Survey and Comparative Study. Sensors 2023, 23, 5121. [Google Scholar] [CrossRef]
- Jiang, H.; Diao, Z.; Shi, T.; Zhou, Y.; Wang, F.; Hu, W.; Zhu, X.; Luo, S.; Tong, G.; Yao, Y.D. A review of deep learning-based multiple-lesion recognition from medical images: Classification, detection and segmentation. Comput. Biol. Med. 2023, 157, 106726. [Google Scholar] [CrossRef] [PubMed]
- Mulugeta, A.K.; Sharma, D.P.; Mesfin, A.H. Deep learning for medicinal plant species classification and recognition: A sys-tematic review. Front. Plant Sci. 2024, 14, 1286088. [Google Scholar] [CrossRef]
- Marattukalam, F.J.; Abdulla, W.; Cole, D.; Gulati, P. Deep Learning-Based Wrist Vascular Biometric Recognition. Sensors 2023, 23, 3132. [Google Scholar] [CrossRef]
- Chen, I.D.S.; Yang, C.M.; Chen, M.J.; Chen, M.C.; Weng, R.M.; Yeh, C.H. Deep Learning-Based Recognition of Periodontitis and Dental Caries in Dental X-ray Images. Bioengineering 2023, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Syed, R.; Eden, R.; Makasi, T.; Chukwudi, I.; Mamudu, A.; Kamalpour, M.; Myers, T. Digital health data quality issues: Sys-tematic review. J. Med. Internet Res. 2023, 25, e42615. [Google Scholar] [CrossRef]
- Lin, X.; Dai, L.; Zhou, Y.; Yu, Z.G.; Zhang, W.; Shi, J.Y.; Zeng, X. Comprehensive evaluation of deep and graph learning on drug–drug interactions prediction. Brief. Bioinf. 2023, 24, bbad235. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, W.; Lv, Q.; Chen, C.Y.C. Learning size-adaptive molecular substructures for explainable drug–drug interac-tion prediction by substructure-aware graph neural network. Chem. Sci. 2022, 13, 8693–8703. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Zhang, X.; Ding, M.; Rodriguez-Paton, A.; Wang, S.; Wang, G. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions. Methods 2022, 204, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Mullowney, M.W.; Duncan, K.R.; Elsayed, S.S.; Garg, N.; van der Hooft, J.J.; Martin, N.I.; Medema, M.H. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 2023, 22, 895–916. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent advances in the development of protein–protein interactions modulators: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2020, 5, 213. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, F.; Paquet, E.; Viktor, H.; Michalowski, W.; Spinello, D. Protein-protein interaction prediction with deep learning: A comprehensive review. Comput. Struct. Biotechnol. J. 2022, 20, 5316–5341. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, X.; Wang, K.; Gao, Y.; Li, G.; Baptista-Hon, D.T.; Yang, X.H.; Xue, K.; Tai, W.H.; Jiang, Z.; et al. Deep-learning-enabled protein–protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nat. Med. 2023, 29, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Trepte, P.; Secker, C.; Olivet, J.; Blavier, J.; Kostova, S.; Maseko, S.B.; Minia, I.; Silva Ramos, E.; Cassonnet, P.; Golusik, S.; et al. AI-guided pipeline for protein–protein interaction drug discovery identifies a SARS-CoV-2 inhibitor. Mol. Syst. Biol. 2024, 20, 428–457. [Google Scholar] [CrossRef]
- Li, F.; Hu, Q.; Zhang, X.; Sun, R.; Liu, Z.; Wu, S.; Tian, S.; Ma, X.; Dai, Z.; Yang, X.; et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat. Commun. 2022, 13, 7133. [Google Scholar] [CrossRef]
- Jia, W.; Li, W.; Li, Z.; Li, P. An all-in-one targeted protein degradation platform guided by degradation condensates-bridging bi-specific nanobodies. Cell Res. 2024, 34, 389–392. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, G.B.; Yu, T.; Lee, S.Y. Deep learning for metabolic pathway design. Metab. Eng. 2023, 80, 130–141. [Google Scholar] [CrossRef]
- Petrick, L.M.; Shomron, N. AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Rep. Phys. Sci. 2022, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Costello, Z.; Martin, H.G. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl. 2018, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.D.; Kim, G.B.; Kim, Y.; Lee, S.Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr. Opin. Biotechnol. 2022, 73, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 2024, 15, 1657. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Jiang, Y.; Wei, L.; Ma, Q.; Ren, Z.; Yuan, Q.; Wei, D.Q. DeepProSite: Structure-aware protein binding site prediction using ESMFold and pretrained language model. Bioinformatics 2023, 39, btad718. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Yaacoub, J.C.; Gleave, J.; Fernandez, M.; Ton, A.-T.; Ban, F.; Stern, A.; Cherkasov, A. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat. Protoc. 2022, 17, 672–697. [Google Scholar] [CrossRef] [PubMed]
- Tropsha, A.; Isayev, O.; Varnek, A.; Schneider, G.; Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 2024, 23, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Asmare, M.M.; Nitin, N.; Yun, S.I.; Mahapatra, R.K. QSAR and deep learning model for virtual screening of potential inhibitors against Inosine 5’Monophosphate dehydrogenase (IMPDH) of Cryptosporidium parvum. J. Mol. Graph. Model. 2022, 111, 108108. [Google Scholar] [CrossRef] [PubMed]
- Tran-Nguyen, V.K.; Junaid, M.; Simeon, S.; Ballester, P.J. A practical guide to machine-learning scoring for structure-based virtual screening. Nat. Protoc. 2023, 18, 3460–3511. [Google Scholar] [CrossRef]
- Buterez, D.; Janet, J.P.; Kiddle, S.J.; Liò, P. MF-PCBA: Multifidelity High-Throughput Screening Benchmarks for Drug Discovery and Machine Learning. J. Chem. Inf. Model. 2023, 63, 2667–2678. [Google Scholar] [CrossRef]
- Dai, M.; Xiao, G.; Shao, M.; Zhang, Y.S. The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review. Biosensors 2023, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Chenthamarakshan, V.; Dhurandhar, A.; Pereira, S.; Hendler, J.A.; Dordick, J.S.; Das, P. Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Sci. Rep. 2023, 13, 4908. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Romano, J.D.; Moore, J.H. Knowledge-guided deep learning models of drug toxicity improve interpretation. Patterns 2022, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.V.; Surya Wibowo, A.; Tayara, H.; Chong, K.T. Artificial intelligence in drug toxicity prediction: Recent advances, challenges, and future perspectives. J. Chem. Inf. Model. 2023, 63, 2628–2643. [Google Scholar] [CrossRef] [PubMed]
- Empel, C.; Koenigs, R.M. Artificial-Intelligence-Driven Organic Synthesis-En Route towards Autonomous Synthesis? Angew. Chem. 2019, 58, 17114–17116. [Google Scholar] [CrossRef]
- Ali, R.S.A.E.; Meng, J.; Khan, M.E.I.; Jiang, X. Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry. Artif. Intell. Chem. 2024, 2, 100049. [Google Scholar] [CrossRef]
- Segler, M.H.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Peslherbe, G.H.; Selvaraj, G.; Wang, Y. Advances in Drug Design and Development for Human Therapeutics Using Artificial Intelligence-II. Biomolecules 2023, 13, 1735. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019, 151, 169–190. [Google Scholar] [CrossRef]
- He, S.; Leanse, L.G.; Feng, Y. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Adv. Drug Deliv. Rev. 2021, 178, 113922. [Google Scholar] [CrossRef]
- Chyr, J.; Gong, H.; Zhou, X. DOTA: Deep learning optimal transport approach to advance drug repositioning for Alzheimer’s disease. Biomolecules 2022, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Park, J.; Han, E.T.; Park, W.S.; Han, J.H.; Kwon, Y.S.; Lee, H.J.; Chun, W. Vismodegib Identified as a Novel COX-2 Inhibitor via Deep-Learning-Based Drug Repositioning and Molecular Docking Analysis. ACS Omega 2023, 8, 34160–34170. [Google Scholar] [CrossRef] [PubMed]
- Toronto Life. Available online: https://torontolife.com/deep-dives/geoffrey-hinton-sounding-alarm-artificial-intelligence/ (accessed on 19 March 2024).
- Déclaration de Montréal. Available online: https://declarationmontreal-iaresponsable.com (accessed on 19 March 2024).
- AI Act Council. Available online: https://www.consilium.europa.eu/fr/press/press-releases/2024/05/21/artificial-intelligence-ai-act-council-gives-final-green-light-to-the-first-worldwide-rules-on-ai/#:~:text=The%20AI%20act%20is%20a%20key%20element%20of%20the%20EU's,AI%20act%20in%20April%202021 (accessed on 19 May 2024).
- AISI. Available online: https://www.nist.gov/aisi (accessed on 19 May 2024).
- Cath, C. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philos. Trans. R. Soc. A 2018, 376, 20180080. [Google Scholar] [CrossRef] [PubMed]
- Zinc12. Available online: https://zinc12.docking.org (accessed on 19 May 2024).
- Irwin, J.J.; Shoichet, B.K. ZINC − a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Aliper, A.; Chen, J. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat. Biotechnol. 2024. [Google Scholar] [CrossRef] [PubMed]
- PandaOmics. Available online: https://insilico.com/pandaomics (accessed on 20 May 2024).
- Kamya, P.; Ozerov, I.V.; Pun, F.W.; Tretina, K.; Fokina, T.; Chen, S.; Zhavoronkov, A. PandaOmics: An AI-Driven Platform for Therapeutic Target and Biomarker Discovery. J. Chem. Inf. Model. 2024, 64, 3961–3969. [Google Scholar] [CrossRef] [PubMed]
- Chemistry42. Available online: https://insilico.com/chemistry42 (accessed on 21 May 2024).
- Ivanenkov, Y.A.; Polykovskiy, D.; Bezrukov, D.; Zagribelnyy, B.; Aladinskiy, V.; Kamya, P.; Zhavoronkov, A. Chemistry42: An AI-driven platform for molecular design and optimization. J. Chem. Inf. Model. 2023, 63, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Miethke, M.; Pieroni, M.; Weber, T. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Wong, F.; Zheng, E.J.; Valeri, J.A. Discovery of a structural class of antibiotics with explainable deep learning. Nature 2024, 626, 177–185. [Google Scholar] [CrossRef]
- Heid, E.; Greenman, K.P.; Chung, Y.; Li, S.C.; Graff, D.E.; Vermeire, F.H.; Wu, H.; Green, W.H.; McGill, C.J. Chemprop: A Machine Learning Package for Chemical Property Prediction. J. Chem. Inf. Model. 2024, 64, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mahjabeen, F.; Saha, U.; Mostafa, M.N.; Siddique, F.; Ahsan, E.; Fathma, S.; Tasnim, A.; Rahman, T.; Faruq, R.; Sakibuzzaman, M.; et al. An Update on Treatment Options for Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: A Systematic Review. Cureus 2022, 14, e31486. [Google Scholar] [CrossRef]
- Shariati, A.; Dadashi, M.; Taati Moghadam, M.; van Belkum, A.; Yaslianifard, S.; Darban-Sarokhalil, D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12689. [Google Scholar] [PubMed]
- McNeil, J.C.; Sommer, L.M.; Vallejo, J.G.; Hulten, K.G.; Kaplan, S.L.; Flores, A.R. Reduced Ceftaroline Susceptibility among Invasive MRSA Infections in Children: A Clinical and Genomic Investigation. Antimicrob. Agents Chemother. 2022, 66, e00745-22. [Google Scholar] [CrossRef] [PubMed]
- AbdAlhafiz, A.I.; Elleboudy, N.S.; Aboshanab, K.M.; Aboulwafa, M.M.; Hassouna, N.A. Phenotypic and genotypic characterization of linezolid resistance and the effect of antibiotic combinations on methicillin-resistant Staphylococcus aureus clinical isolates. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase–negative staphylococci strains: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2020, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, S.G.; Ghosh, S.; Kavousi, P.; Orman, M.A. Proton Motive Force Inhibitors Are Detrimental to Methicillin-Resistant Staphylococcus aureus Strains. Microbiol. Spectr. 2022, 10, e02024-22. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef]
- RDKit: Open-Source Cheminformatics. Available online: https://www.rdkit.org (accessed on 29 May 2024).
- Groq. Available online: https://wow.groq.com (accessed on 25 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crouzet, A.; Lopez, N.; Riss Yaw, B.; Lepelletier, Y.; Demange, L. The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang? Molecules 2024, 29, 2716. https://doi.org/10.3390/molecules29122716
Crouzet A, Lopez N, Riss Yaw B, Lepelletier Y, Demange L. The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang? Molecules. 2024; 29(12):2716. https://doi.org/10.3390/molecules29122716
Chicago/Turabian StyleCrouzet, Aurore, Nicolas Lopez, Benjamin Riss Yaw, Yves Lepelletier, and Luc Demange. 2024. "The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang?" Molecules 29, no. 12: 2716. https://doi.org/10.3390/molecules29122716
APA StyleCrouzet, A., Lopez, N., Riss Yaw, B., Lepelletier, Y., & Demange, L. (2024). The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang? Molecules, 29(12), 2716. https://doi.org/10.3390/molecules29122716