Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking and DFT of CDs:CIL
2.2. MD Simulations of SBEβ-CD_mol1:CIL
2.3. Docking of CIL:PDE3
2.4. MD Simulations of CIL:PDE3
3. Materials and Methods
3.1. Docking and Quantum Chemical Calculations of CDs:CIL
3.2. Molecular Dynamics Simulation of SBEβ-CD_mol1:CIL Complex
3.3. Docking of CIL:PDE3
3.4. MD of CIL:PDE3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Rekharsky, M.V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875–1917. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, P.; Bhatia, M. Pharmaceutical Applications of Cyclodextrins and Their Derivatives. J. Incl. Phenom. Macrocycl. Chem. 2020, 98, 171–186. [Google Scholar] [CrossRef]
- Kou, X.; Su, D.; Pan, F.; Xu, X.; Meng, Q.; Ke, Q. Molecular Dynamics Simulation Techniques and Their Application to Aroma Compounds/Cyclodextrin Inclusion Complexes: A Review. Carbohydr. Polym. 2024, 324, 121524. [Google Scholar] [CrossRef] [PubMed]
- Harata, K. Structural Aspects of Stereodifferentiation in the Solid State. Chem. Rev. 1998, 98, 1803–1828. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Encyclopedia of Supramolecular Chemistry; Atwood, J.L., Steed, J.W., Eds.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-0-8247-5056-5. [Google Scholar]
- MacGillivray, L.R. Volume Introduction: “Supramolecular Engineering: Designing the Solid State”. In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; p. 1. [Google Scholar]
- Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Cyclodextrin. In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 269–316. [Google Scholar]
- Frański, R.; Gierczyk, B.; Schroeder, G. Fragmentation and Skeletal Rearrangements of 2-Arylylamino-5-Aryl-1,3,4- Oxadiazoles and Their Noncovalent Complexes with Cobalt Cation and Cyclodextrin Studied by Mass Spectrometry. J. Mass. Spectrom. 2006, 41, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, X.; Huang, T.; Yang, Y.; Tu, J.; Zou, J.; Yang, H.; Yang, R. Application of Sodium Sulfobutylether-β-Cyclodextrin Based on Encapsulation. Carbohydr. Polym. 2024, 333, 121985. [Google Scholar] [CrossRef]
- Yue, L.; Li, J.; Jin, W.; Zhao, M.; Xie, P.; Chi, S.; Lei, Z.; Zhu, H.; Zhao, Y. Host–Guest Interaction between 20(S)-Protopanaxatriol and Three Polyamine-Modified β-Cyclodextrins: Preparation, Characterization, Inclusion Modes, and Solubilization. J. Incl. Phenom. Macrocycl. Chem. 2020, 97, 29–42. [Google Scholar] [CrossRef]
- Masai, H. Precise Synthetic Strategies for [n] Rotaxanes. Yuki Gosei Kagaku Kyokaishi/J. Synth. Org. Chem. 2021, 79, 243–245. [Google Scholar] [CrossRef]
- Kwamen, C.; Niemeyer, J. Functional Rotaxanes in Catalysis. Chem.-Eur. J. 2021, 27, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Yoshigoe, Y.; Saito, S. Phenanthroline Based Rotaxanes: Recent Developments in Syntheses and Applications. RSC Adv. 2022, 12, 11318–11344. [Google Scholar] [CrossRef] [PubMed]
- Cacciapaglia, R.; Mandolini, L.; Salvio, R. Supramolecular Catalysis by Calixarenes. In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 459–478. [Google Scholar]
- Baldini, L.; Casnati, A.; Sansone, F. Biomacromolecule Recognition by Calixarene Macrocycles. In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 371–408. [Google Scholar]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, V.; Pandey, S.P.; Singh, P.K. Prospects of Charged Cyclodextrins in Biomedical Applications. Carbohydr. Polym. 2024, 323, 121348. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Attimarad, M.; Al-Dhubiab, B.E.; Wadhwa, J.; Harsha, S.; Ahmed, M. Enhanced Oral Bioavailability of Acyclovir by Inclusion Complex Using Hydroxypropyl-β-Cyclodextrin. Drug Deliv. 2014, 21, 540–547. [Google Scholar] [CrossRef] [PubMed]
- József Szejtli, E.; Bolla-Pusztai, P.; Szabó, T. Ferenczy Enhancement of Stability and Biological Effect of Cholecalciferol by β-Cyclodextrin Complexation. Pharmazie 1981, 35, 779–787. [Google Scholar]
- Yonezawa, Y.; Maruyama, S.; Takagi, K. Stability of Inclusion Complexes of Cyclodextrins with Guaiazulene. Agric. Biol. Chem. 1981, 45, 505–506. [Google Scholar] [CrossRef]
- Wenz, G. Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units. Angew. Chem. Int. Ed. Engl. 1994, 33, 803–822. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Gao, X.; Fu, J.; Hu, L. Application of Cyclodextrin in Food Industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 2627–2640. [Google Scholar] [CrossRef] [PubMed]
- Prochowicz, D.; Kornowicz, A.; Lewiński, J. Correction to Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chem. Rev. 2018, 118, 5264. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of Cyclodextrins in Food Science. A Review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Hǎdǎrugǎ, N.G. Ficaria verna Huds. Extracts and Their β-Cyclodextrin Supramolecular Systems. Chem. Cent. J. 2012, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Cyclodextrins, from Molecules to Applications. Environ. Chem. Lett. 2018, 16, 1361–1375. [Google Scholar] [CrossRef]
- Barbour, L. Experimental and Computational Methods in Supramolecular Chemistry; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Bonenfant, D.; Niquette, P.; Mimeault, M.; Furtos-Matei, A.; Hausler, R. UV-VIS and FTIR Spectroscopic Analyses of Inclusion Complexes of Nonylphenol and Nonylphenol Ethoxylate with β-Cyclodextrin. Water Res. 2009, 43, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, A.A.H.; Ahmed, F.; Mohammed, A.M.; Alsharidah, M.; Al-Subaiyel, A.; Samman, W.A.; Alhaddad, A.A.; Al-Mijalli, S.H.; Amin, M.A.; Barakat, H.; et al. Recent Advances in the Pharmaceutical and Biomedical Applications of Cyclodextrin-Capped Gold Nanoparticles. Int. J. Nanomed. 2023, 18, 3247–3281. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wong, S.Y.; Zhang, Y.; Sim, J.Y.; Lu, Y.; Yu, Y.; Li, D.; Li, X. Humidity-Responsive Antimicrobial Properties of EVOH Nanofibers Loaded with Cuminaldehyde/HβCD Inclusion Complexes and Its Application in Chicken Preservation. Food Hydrocoll. 2024, 150, 109749. [Google Scholar] [CrossRef]
- Markina, N.E.; Cialla-May, D.; Markin, A.V. Cyclodextrin-Assisted Surface-Enhanced Raman Spectroscopy: A Critical Review. Anal. Bioanal. Chem. 2022, 414, 923–942. [Google Scholar] [CrossRef]
- Astakhova, A.V.; Demina, N.B. Modern Drug Technologies: Synthesis, Characterization, and Use of Inclusion Complexes between Drugs and Cyclodextrins (A Review). Pharm. Chem. J. 2004, 38, 105–108. [Google Scholar] [CrossRef]
- Wenz, G.; Han, B.-H.; Müller, A. Cyclodextrin Rotaxanes and Polyrotaxanes. Chem. Rev. 2006, 106, 782–817. [Google Scholar] [CrossRef]
- Wawer, I.; Witkowski, S. Analysis of Solid State 13C NMR Spectra of Biologically Active Compounds. Curr. Org. Chem. 2001, 5, 987–999. [Google Scholar] [CrossRef]
- Bouchemal, K. New Challenges for Pharmaceutical Formulations and Drug Delivery Systems Characterization Using Isothermal Titration Calorimetry. Drug Discov. Today 2008, 13, 960–972. [Google Scholar] [CrossRef]
- Bouchemal, K.; Mazzaferro, S. How to Conduct and Interpret ITC Experiments Accurately for Cyclodextrin-Guest Interactions. Drug Discov. Today 2012, 17, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018, 23, 1204. [Google Scholar] [CrossRef]
- Rodriguez-Perez, A.I.; Rodriguez-Tenreiro, C.; Alvarez-Lorenzo, C.; Taboada, P.; Concheiro, A.; Torres-Labandeira, J.J. Sertaconazole/Hydroxypropyl-β-Cyclodextrin Complexation: Isothermal Titration Calorimetry and Solubility Approaches. J. Pharm. Sci. 2006, 95, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Haworth, I.S.; Zuo, Z.; Chow, M.S.S.; Chow, A.H.L. Physicochemical and Structural Characterization of Quercetin-β- Cyclodextrin Complexes. J. Pharm. Sci. 2005, 94, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Jin, Z.; Xu, X. Inclusion Complex of Astaxanthin with Hydroxypropyl-β-Cyclodextrin: UV, FTIR, 1H NMR and Molecular Modeling Studies. Carbohydr. Polym. 2012, 89, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Jullian, C.; Miranda, S.; Zapata-Torres, G.; Mendizábal, F.; Olea-Azar, C. Studies of Inclusion Complexes of Natural and Modified Cyclodextrin with (+)Catechin by NMR and Molecular Modeling. Bioorg. Med. Chem. 2007, 15, 3217–3224. [Google Scholar] [CrossRef]
- König, P.-M.; Roth, R.; Dietrich, S. Lock and Key Model System. Eur. Lett. 2008, 84, 68006. [Google Scholar] [CrossRef]
- Ogawa, Y.; Nonaka, Y.; Goto, T.; Ohnishi, E.; Hiramatsu, T.; Kii, I.; Yoshida, M.; Ikura, T.; Onogi, H.; Shibuya, H.; et al. Development of a Novel Selective Inhibitor of the Down Syndrome-Related Kinase Dyrk1A. Nat. Commun. 2010, 1, 86. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.; Zhao, J.; Liu, Y.; Zhu, X.; Liang, G. Physicochemical Characterisation of the Supramolecular Structure of Luteolin/Cyclodextrin Inclusion Complex. Food Chem. 2013, 141, 900–906. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Melita, H.; Mikhailidis, D.P.; Manolis, A.S. Update on Cilostazol: A Critical Review of Its Antithrombotic and Cardiovascular Actions and Its Clinical Applications. J. Clin. Pharmacol. 2022, 62, 320–358. [Google Scholar] [CrossRef]
- Bibi, M.; ud Din, F.; Anwar, Y.; Alkenani, N.A.; Zari, A.T.; Mukhtiar, M.; Abu Zeid, I.M.; Althubaiti, E.H.; Nazish, H.; Zeb, A.; et al. Cilostazol-Loaded Solid Lipid Nanoparticles: Bioavailability and Safety Evaluation in an Animal Model. J. Drug Deliv. Sci. Technol. 2022, 74, 103581. [Google Scholar] [CrossRef]
- Tawfik, M.K.; El-Kherbetawy, M.K.; Makary, S. Cardioprotective and Anti-Aggregatory Effects of Levosimendan on Isoproterenol-Induced Myocardial Injury in High-Fat-Fed Rats Involves Modulation of PI3K/Akt/MTOR Signaling Pathway and Inhibition of Apoptosis. J. Cardiovasc. Pharmacol. Ther. 2018, 23, 456–471. [Google Scholar] [CrossRef]
- da Motta, N.A.V.; de Brito, F.C.F. Cilostazol Exerts Antiplatelet and Anti-Inflammatory Effects through AMPK Activation and NF-KB Inhibition on Hypercholesterolemic Rats. Fundam. Clin. Pharmacol. 2016, 30, 327–337. [Google Scholar] [CrossRef]
- Chen, Y.; Pandiri, I.; Joe, Y.; Kim, H.J.; Kim, S.-K.; Park, J.; Ryu, J.; Cho, G.J.; Park, J.W.; Ryter, S.W.; et al. Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis. Oxid. Med. Cell Longev. 2016, 2016, 3949813. [Google Scholar] [CrossRef] [PubMed]
- Chattipakorn, S.C.; Thummasorn, S.; Sanit, J.; Chattipakorn, N. Phosphodiesterase-3 Inhibitor (Cilostazol) Attenuates Oxidative Stress-Induced Mitochondrial Dysfunction in the Heart. J. Geriatr. Cardiol. 2014, 11, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Motta, N.A.V.; Autran, L.J.; Brazão, S.C.; Lopes, R.D.O.; Scaramello, C.B.V.; Lima, G.F.; Brito, F.C.F.D. Could Cilostazol Be Beneficial in COVID-19 Treatment? Thinking about Phosphodiesterase-3 as a Therapeutic Target. Int. Immunopharmacol. 2021, 92, 107336. [Google Scholar] [CrossRef]
- Gawali, V.U.; Patil, P.B.; Chede, S.M.; Jagdale, S.C.; Kuchekar, B.S.; Chabukswar, A.R. Studies on Cilostazol and β-Cyclodextrin Inclusion Complexes. Int. J. Pharmtech Res. 2009, 1, 1073–1078. [Google Scholar]
- Aleem, O.; Kuchekar, B.; Pore, Y.; Late, S. Effect of β-Cyclodextrin and Hydroxypropyl β-Cyclodextrin Complexation on Physicochemical Properties and Antimicrobial Activity of Cefdinir. J. Pharm. Biomed. Anal. 2008, 47, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Brewster, M.E.; Loftsson, T. The Use of Chemically Modified Cyclodextrins in the Development of Formulations for Chemical Delivery Systems. Pharmazie 2002, 57, 94–101. [Google Scholar] [PubMed]
- Gholami, R.; Azizi, K.; Ganjali Koli, M. Unveiling the Dynamic and Thermodynamic Interactions of Hydrocortisone with β-Cyclodextrin and Its Methylated Derivatives through Insights from Molecular Dynamics Simulations. Sci. Rep. 2024, 14, 12495. [Google Scholar] [CrossRef] [PubMed]
- Sharapova, A.V.; Ol’khovich, M.V.; Blokhina, S.V. Integrative Approach for Improved Dofetilide Solubility Using β-Cyclodextrin and Two Its Substituted Derivatives: Solutions and Solid Dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134602. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Li, W.; Chang, D. DFT Study on the Effects of β-Cyclodextrin in Synthesis of 2-Phenylbenzimidazole via Benzaldehyde and o-Phenylenediamine. J. Mol. Model. 2016, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Pocrnić, M.; Hoelm, M.; Ignaczak, A.; Čikoš, A.; Budimir, A.; Tomišić, V.; Galić, N. Inclusion Complexes of Loratadine with β-Cyclodextrin and Its Derivatives in Solution. Integrated Spectroscopic, Thermodynamic and Computational Studies. J. Mol. Liq. 2024, 410, 125515. [Google Scholar] [CrossRef]
- Nazeer, U.; Rasool, N.; Mujahid, A.; Mansha, A.; Zubair, M.; Kosar, N.; Mahmood, T.; Raza Shah, A.; Shah, S.A.A.; Zakaria, Z.A.; et al. Selective Arylation of 2-Bromo-4-Chlorophenyl-2-Bromobutanoate via a Pd-Catalyzed Suzuki Cross-Coupling Reaction and Its Electronic and Non-Linear Optical (NLO) Properties via DFT Studies. Molecules 2020, 25, 3521. [Google Scholar] [CrossRef] [PubMed]
- Fouejio, D.; Tadjouteu Assatse, Y.; Yossa Kamsi, R.A.; Ejuh, G.W.; Ndjaka, J.M.B. Structural, Electronic and Nonlinear Optical Properties, Reactivity and Solubility of the Drug Dihydroartemisinin Functionalized on the Carbon Nanotube. Heliyon 2023, 9, e12663. [Google Scholar] [CrossRef] [PubMed]
- Bocian, S. Solvation Processes in Liquid Chromatography: The Importance and Measurements. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 731–738. [Google Scholar] [CrossRef]
- Alibakhshi, A.; Hartke, B. Improved Prediction of Solvation Free Energies by Machine-Learning Polarizable Continuum Solvation Model. Nat. Commun. 2021, 12, 3584. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Kothawade, R.V.; Markad, A.R.; Pardeshi, S.R.; Kulkarni, A.D.; Chaudhari, P.J.; Longhi, M.R.; Dhas, N.; Naik, J.B.; Surana, S.J.; et al. Sulfobutylether-β-Cyclodextrin: A Functional Biopolymer for Drug Delivery Applications. Carbohydr. Polym. 2023, 301, 120347. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Klar, B.; Hingerty, B.; Saenger, W. Topography of Cyclodextrin Inclusion Complexes. XII. Hydrogen Bonding in the Crystal Structure of α-Cyclodextrin Hexahydrate: The Use of a Multicounter Detector in Neutron Diffraction. Acta Crystallogr. B 1980, 36, 1154–1165. [Google Scholar] [CrossRef]
- Steiner, T.; Koellner, G. Crystalline. Beta.-Cyclodextrin Hydrate at Various Humidities: Fast, Continuous, and Reversible Dehydration Studied by X-ray Diffraction. J. Am. Chem. Soc. 1994, 116, 5122–5128. [Google Scholar] [CrossRef]
- Whittall, L.B.; Whittle, R.R.; Stowell, G.W. Polymorphic Forms of Cilostazol. Acta Crystallogr. C 2002, 58, o525–o527. [Google Scholar] [CrossRef] [PubMed]
- Froimowitz, M. HyperChem: A Software Package for Computational Chemistry and Molecular Modeling. Biotechniques 1993, 14, 1010–1013. [Google Scholar] [PubMed]
- Biovia, Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2016.
- Ali, S.; Shamim, S. Structure Elucidation of Benzhexol-β-Cyclodextrin Complex in Aqueous Medium by 1H NMR Spectroscopic and Computational Methods. J. Encapsul. Adsorpt. Sci. 2014, 4, 63–70. [Google Scholar] [CrossRef]
- Alvira, E. Theoretical Study of the β-Cyclodextrin Inclusion Complex Formation of Eugenol in Water. Molecules 2018, 23, 928. [Google Scholar] [CrossRef]
- Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar] [CrossRef]
- James, J.P. Stewart MOPAC2016; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016; Available online: http://openmopac.net/ (accessed on 14 June 2024).
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-row Atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements? J. Chem. Theory Comput. 2016, 12, 4303–4325. [Google Scholar] [CrossRef]
- Gharebaghi, A.; Magham, A.H.J.; Hokmabadi, L. The Methylene Blue and Phenol Red Photocatalytic Degradation Study by Cyclodextrin-ZnO Nanostructures. Struct. Chem. 2024, 35, 801–812. [Google Scholar] [CrossRef]
- Chekkal, F.; Naili, N.; Benaissa, A.; Zerizer, M.A.; Zouchoune, B.; Redjem, N. A Proposed Process for Trichlorfon and β-CyclodextrinInclusion Complexation by DFT Investigation. Struct. Chem. 2024, 1–11. [Google Scholar] [CrossRef]
- Triamchaisri, N.; Toochinda, P.; Lawtrakul, L. Structural Investigation of Beta-Cyclodextrin Complexes with Cannabidiol and Delta-9-Tetrahydrocannabinol in 1:1 and 2:1 Host-Guest Stoichiometry: Molecular Docking and Density Functional Calculations. Int. J. Mol. Sci. 2023, 24, 1525. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef]
- Luchini, G.; Alegre-Requena, J.V.; Funes-Ardoiz, I.; Paton, R.S. GoodVibes: Automated Thermochemistry for Heterogeneous Computational Chemistry Data. F1000Res 2020, 9, 291. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01 2016; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Bugnon, M.; Goullieux, M.; Röhrig, U.F.; Perez, M.A.S.; Daina, A.; Michielin, O.; Zoete, V. SwissParam 2023: A Modern Web-Based Tool for Efficient Small Molecule Parametrization. J. Chem. Inf. Model 2023, 63, 6469–6475. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Bjelkmar, P.; Larsson, P.; Cuendet, M.A.; Hess, B.; Lindahl, E. Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. J. Chem. Theory Comput. 2010, 6, 459–466. [Google Scholar] [CrossRef]
CDs:CIL | Binding Free Energy ΔG [kcal/mol] |
---|---|
α-CD:CIL | −4.24 |
β-CD:CIL | −5.49 |
HPβ-CD_mol1:CIL | −5.97 |
SBEβ-CD_mol1:CIL | −6.85 |
HPβ-CD_mol2:CIL | −5.92 |
SBEβ-CD_mol2:CIL | −6.08 |
Parameter | α-CD:CIL_K01 | β-CD:CIL_K01 | HPβ-CD_mol1:CIL_K02 | HPβ-CD_mol2:CIL_K02 | SBEβ-CD_mol1:CIL_K03 | SBEβ-CD_mol2:CIL_K03 |
---|---|---|---|---|---|---|
−44.84 | −62.93 | −56.61 | −61.41 | −56.79 | −51.45 | |
EdefCD | 7.09 | 17.36 | 11.93 | 5.61 | −4.80 | 11.35 |
EdefCIL | 0.62 | 1.74 | 6.06 | 4.01 | 4.03 | 4.53 |
Edef_tot | 7.71 | 19.10 | 18.00 | 9.62 | −0.78 | 15.88 |
−34.44 | −40.07 | −36.03 | −49.40 | −54.05 | −33.71 | |
−20.52 | −22.66 | −19.72 | −32.30 | −34.40 | −20.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoelm, M.; Chowdhury, N.; Biswas, S.; Bagchi, A.; Małecka, M. Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition. Molecules 2024, 29, 3824. https://doi.org/10.3390/molecules29163824
Hoelm M, Chowdhury N, Biswas S, Bagchi A, Małecka M. Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition. Molecules. 2024; 29(16):3824. https://doi.org/10.3390/molecules29163824
Chicago/Turabian StyleHoelm, Marta, Nilkanta Chowdhury, Sima Biswas, Angshuman Bagchi, and Magdalena Małecka. 2024. "Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition" Molecules 29, no. 16: 3824. https://doi.org/10.3390/molecules29163824
APA StyleHoelm, M., Chowdhury, N., Biswas, S., Bagchi, A., & Małecka, M. (2024). Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition. Molecules, 29(16), 3824. https://doi.org/10.3390/molecules29163824