Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Reagents and Equipment
3.2. Synthesis of 2-(methylthio)naphtho[2,3-d]thiazole-4,9-dione (2)
3.3. Synthesis of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3)
3.4. Synthesis of N-(4,9-dioxo-4,9-dihydronaphtho[2,3-d]thiazol-2-yl)benzamide (5a)
3.5. Synthesis of 2-morpholinonaphtho[2,3-d]thiazole-4,9-dione (5b)
3.6. Synthesis of 2-thiomorpholinonaphtho[2,3-d]thiazole-4,9-dione (5c)
3.7. Synthesis of 2-(piperidin-1-yl)naphtho[2,3-d]thiazole-4,9-dione (5d)
3.8. Synthesis of 2-(4-methylpiperazin-1-yl)naphtho[2,3-d]thiazole-4,9-dione (5e)
3.9. Synthesis of 2-(piperazin-1-yl)naphtho[2,3-d]thiazole-4,9-dione (PNT)
3.10. UV–Vis Absorption Measurements
3.11. Fluorescence Measurements
3.12. Antimicrobial Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, S.; Zhang, J. Biochemical activity architectures visualized-using genetically encoded fluorescent biosensors to map the spatial boundaries of signaling compartments. J. Acc. Chem. Res. 2021, 54, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Hameau, A.; Shi, X.; Mignani, S.; Majoral, J.P.; Caminade, A.M. Fluorescent phosphorus dendrimers: Towards material and biological applications. Chempluschem 2019, 84, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Revia, R.A.; Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, e190436. [Google Scholar] [CrossRef] [PubMed]
- Garland, M.; Yim, I.J.; Bogyo, M. A bright future for precision medicine: Advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 2016, 23, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.A.; Campbell, R.E.; Lin, J.Y.; Lin, M.Z.; Miyawaki, A.; Palmer, A.E.; Shu, X.; Zhang, J.; Roger, Y.; Tsien, R.Y. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 2019, 42, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2021, 224, 121828. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Chen, M.; Shi, G.; Wang, L.; Yin, H.; Mei, C. A novel fluorescent molecule based on 1,8-naphthalimide: Synthesis, spectral properties, and application in cell imaging. Res. Chem. Intermed. 2010, 36, 1021–1026. [Google Scholar] [CrossRef]
- Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T.D.; Lin, W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098–12150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.E.; Qi, Q.L.; Zhang, H. D–π–A–π–D type solvatochromic fluorescence probes based on triphenylamine: Synthesis, photophysical properties and application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 238, 118384. [Google Scholar] [CrossRef]
- Fandy, R.F. Synthesis of geterocyclic quinones containing bridgehead nitrogen atom from 2-aminonaphtho[2,3-d]thiazole-4,9-dione. Arch. Pharm. Res. 2000, 23, 446–449. [Google Scholar] [CrossRef]
- Acuña, J.; Piermattey, J.; Piermattey, J.; Caro, D.; Bannwitz, S.; Barrios, L.; López, K.; Ocampo, Y.; Vivas-Reyes, R.; Aristizábal, F.; et al. Synthesis, anti-proliferative activity evaluation and 3D-QSAR study of naphthoquinone derivatives as potential anti-colorectal cancer agents. Molecules 2018, 23, 186. [Google Scholar] [CrossRef] [PubMed]
- Dzieduszycka, M.; Stefańska, B.; Tarasiuk, J.; Martelli, S.; Bontemps-Gracz, M.; Borowski, E. Synthesis, antileukemic evaluation and peroxidating ability of heterosubstituted anthracene-9,10-dione analogues: 5,8-[(aminoalkyl)amino]naphtho[2,3-d]thiazole-4,9-diones and 5,8-[(aminoalkyl)amino]naphtho[2,3-c] [1,2,5]thiadiazole-4,9-diones. Eur. J. Med. Chem. 1994, 29, 561–567. [Google Scholar] [CrossRef]
- Nakamori, T.; Sato, Y.; Kasai, T. Synthesis of 2, 3-dihydro-2-thioxonaphtho[2,3-d]thiazole-4, 9-dione derivatives. Nippon Kagaku Kaishi 1982, 1982, 98–104. [Google Scholar] [CrossRef]
- Shinkai, Y.; Iwamoto, N.; Miura, T.; Ishii, T.; Cho, A.K.; Kumagai, Y. Redox cycling of 1,2-naphthoquinone by thioredoxin1 through Cys32 and Cys35 causes inhibition of its catalytic activity and activation of ASK1/p38 signaling, Chem. Res. Toxicol. 2012, 25, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva-Jr, F.P. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int. 2019, 19, 207. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.S.; Yim, N.H.; Lee, S.H.; Choi, S.J.; Hur, K.S.; Hoe, K.L.; Kim, D.U.; Goehle, S.; Kim, H.B.; Song, K.B.; et al. Identification of small molecules inducing apoptosis by cell-based assay using fission yeast deletion mutants. Investig. New Drugs 2008, 26, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Yanık, H.; Ayan, S.; Akdemir, A.; Erdoğan, Ö.; Üstündağ, C.B.; Çevik, Ö.; Yılmaz, Ö. Synthesis, cytotoxic activities and molecular modeling studies of some 2-aminonaphtho[2,3-d][1,3]thiazole-4,9-dione derivatives. Org. Commun. 2020, 13, 184–193. [Google Scholar] [CrossRef]
- Yu, Z.; Su, J.; Huang, C.; Wei, J.; Han, L.; Ye, Q.; Li, Y. Base-promoted oxidative sulfuration/cyclization to construct naphtho[2,3-d]thiazole through three-component reaction using S8 as the sulfur source. Asian J. Org. Chem. 2022, 11, e202200288. [Google Scholar] [CrossRef]
- Nural, Y.; Karasu, E.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Efeoğlu, Ç.; Şahin, E.; Seferoğlu, Z. Synthesis of novel acylthioureas bearing naphthoquinone moiety as dual sensor for high-performance naked-eye colorimetric and fluorescence detection of CN− and F− ions and its application in water and food samples. Dyes Pigments 2022, 198, 110006. [Google Scholar] [CrossRef]
- Devi, M.; Kumar, P.; Singh, R.; Narayan, L.; Kumar, A.; Sindhu, J.; Lal, S.; Hussain, K.; Singh, D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J. Mol. Struct. 2022, 1269, 133786. [Google Scholar] [CrossRef]
- Naimhwaka, J.; Uahengo, V. A naphthoquinone based colorimetric probe for real-time naked eye detection of biologically important anions including cyanide ions in tap water: Experimental and theoretical studies. RSC Adv. 2019, 9, 37926–37938. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Hayashi, S.; Nakasaka, S.; Hatanaka, Y.; Nagao, T.; Tanaka, S.; Yoshii, M.; Hara, F.; Hagimori, M.; Yoshida, M. Antimicrobial activity of 2-(piperazin-1-yl)naphthothiazole-4,9-dione against Staphylococcus strains. Molecules 2024, 29, 1277. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Kuroda, H.; Araki, K.; Nakajima, M. Antibacterial or antifungal agent containing naphtho[2,3-d]thiazole-4,9-dione derivative for humans and animals. JP11021239A, 26 January 1999. [Google Scholar]
- Hassan, A.; Mohamed, N.; Makhlouf, M.; Bräse, S.; Nieger, M.; Hopf, H. (Hex-2-en-ylidene)-N-substituted hydrazinecarbothioamides and 2,3-dichloro-1,4-naphthoquinone: Nucleophilic substitution reactions and synthesis of naphtho[2,3-f][1,3,4]thiadiazepines and naphtho[2,3-d]thiazoles. Synthesis 2016, 48, 3134–3140. [Google Scholar] [CrossRef]
- Lippert, E. Dipolmoment und elektronenstruktur von angeregten molekulen. Z. Naturforsch A 1955, 10, 541e5. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent effects upon fuorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Jpn. 1955, 29, 465–470. [Google Scholar] [CrossRef]
- Hagimori, M.; Mizuyama, N.; Yokota, K.; Nishimura, Y.; Suzuta, M.; Tai, C.K.; Wang, B.C.; Wang, S.L.; Shih, T.L.; Wu, K.D.; et al. Synthesis of 6-(4-diethylamino)phenyl-2-oxo-2H-pyran-3-carbonitorile derivatives and their fluorescence in solid state and in solutions. Dyes Pigments 2012, 92, 1069–1074. [Google Scholar] [CrossRef]
- Li, K.; Ren, T.B.; Huan, S.; Yuan, L.; Zhang, X.B. Progress and perspective of solid-state organic fluorophores for biomedical applications. J. Am. Chem. Soc. 2021, 143, 21143–21160. [Google Scholar] [CrossRef] [PubMed]
- Anthony, S.P. Organic solid-state fluorescence: Strategies for generating switchable and tunable fluorescent materials. ChemPlusChem 2012, 77, 518–531. [Google Scholar] [CrossRef]
- Ooyama, Y.; Harima, Y. Dramatic effects of the substituents on the solid-state fluorescence properties of structural isomers of novel benzofuro[2,3-c]oxazolocarbazole-type fluorophores. Chem. Lett. 2006, 35, 902–903. [Google Scholar] [CrossRef]
- Hagimori, M.; Nishimura, Y.; Mizuyama, N.; Shigemitsu, Y. Synthesis, photophysical evaluation, and computational study of 2-methoxy and 2-morpholino pyridine compounds as highly emissive fluorophores in solution and the solid state. Dyes Pigments 2019, 171, 107705. [Google Scholar] [CrossRef]
- Hagimori, M.; Mizuyama, N.; Nishimura, Y.; Hara, F.; Tanaka, K.; Tominaga, Y. Stereoselective one-pot synthesis of multi-substituted (2Z,4E)-2,4-dienamides from ketene dithioacetal and their solid-state fuorescence. Res. Chem. Intermed. 2021, 47, 4525–4536. [Google Scholar] [CrossRef]
- Suganuma, H. (Alkanesulfonyl)naphtho[2,3-d]thiazole-4,9-dione derivatives as agrochemical bactericides. JP62026278A, 4 February 1987. [Google Scholar]
- Yoshida, K.; Nakajima, T.; Tsuda, M.; Suganuma, H. Preparation of naphtho[2,3-d]thiazole-4,9-diones as agrochemical fungicides. JP62185080A, 13 August 1987. [Google Scholar]
- Kosecka-Strojek, M.; Buda, A.; Międzobrodzki, J. Pet-To-Man Travelling Staphylococci: A World in Progress; V. Savini, V., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 11–24. [Google Scholar]
- Cui, J.; Zhang, H.; Mo, Z.; Yu, M.; Liang, Z. Cell wall thickness and the molecular mechanism of heterogeneous vancomycin-intermediate Staphylococcus aureus. Lett. Appl. Microbiol. 2021, 72, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [PubMed]
Absorption Maximum (nm) (log ε) | ||||||
---|---|---|---|---|---|---|
Solvent | 5a | 5b | 5c | 5d | 5e | PNT |
benzene | 396 (3.36) | 460 (3.63) | 461 (3.48) | 471 (3.63) | 464 (3.56) | 468 (3.27) |
chloroform | 392 (3.32) | 463 (3.62) | 464 (3.49) | 480 (3.62) | 468 (3.55) | 464 (3.25) |
acetone | 392 (3.38) | 462 (3.62) | 464 (3.50) | 473 (3.63) | 466 (3.58) | 470 (3.27) |
ethanol | 392 (2.24) | 463 (3.59) | 464 (3.35) | 476 (3.60) | 465 (3.54) | 473 (3.27) |
acetonitrile | 396 (3.38) | 464 (3.62) | 467 (3.49) | 477 (3.64) | 468 (3.58) | 470 (3.26) |
DMSO | 396 (3.40) | 474 (3.63) | 476 (3.53) | 484 (3.63) | 477 (3.57) | 483 (3.25) |
Emission Maximum (nm) (Φ a), SS b (nm) | ||||||
---|---|---|---|---|---|---|
Solvent | 5a | 5b | 5c | 5d | 5e | PNT |
benzene | 436 (0.10), | 580 (0.07), | 575 (0.12), | 584 (0.05), | 584 (<0.01), | 575 (<0.01), |
40 | 120 | 114 | 113 | 116 | 107 | |
chloroform | 436 (0.17), | 584 (0.08), | 582 (0.13), | 597 (0.04), | 597 (<0.01), | 576 (0.03), |
44 | 121 | 118 | 117 | 133 | 112 | |
acetone | 436 (0.01), | 599 (0.02), | 596 (0.03), | 605 (0.01), | 605 (<0.01), | 576 (<0.01), |
44 | 137 | 132 | 132 | 135 | 106 | |
ethanol | 520 (0.01), | 600 (0.01), | 602 (0.02), | 604 (0.01), | 604 (<0.01), | 573 (<0.01), |
128 | 137 | 138 | 128 | 131 | 100 | |
acetonitrile | 436 (<0.01), | 605 (0.01), | 602 (0.01), | 614 (<0.01), | 614 (<0.01), | 577 (<0.01), |
40 | 141 | 135 | 137 | 144 | 107 | |
DMSO | 532 (0.03), | 616 (<0.01), | 611 (0.01), | 622 (<0.01), | 622 (<0.01), | 577 (<0.01), |
176 | 142 | 135 | 138 | 139 | 94 |
Compounds | Exmax (nm) | Emmax (nm) | SS a | Φ b |
---|---|---|---|---|
5a | 427 | 564 | 137 | 0.01 |
5b | 375 | 582 | 207 | 0.03 |
5c | 400 | 579 | 179 | 0.01 |
5d | 518 | 596 | 78 | 0.01 |
5e | 521 | 577 | 56 | 0.01 |
PNT | 526 | 628 | 102 | 0.01 |
Compounds | MIC (μg/mL) | ||
---|---|---|---|
S. aureus | MRSA | S. epidermidis | |
5a | 119.7 ± 0.0 | 119.7 ± 0.0 | 119.7 ± 0.0 |
5b | 133.3 ± 0.0 | 133.0 ± 0.0 | 133.3 ± 0.0 |
5c | 15.8 ± 0.0 | 31.6 ± 0.0 | 15.8 ± 0.0 |
5d | 134.2 ± 0.0 | 134.2 ± 0.0 | 134.2 ± 0.0 |
5e | 8.0 ± 0.0 | 31.9 ± 0.0 | 16.0 ± 0.0 |
PNT [22] | 2.5 ± 0.0 | 6.7 ± 2.9 | 2.5 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagimori, M.; Hara, F.; Mizuyama, N.; Takada, S.; Hayashi, S.; Haraguchi, T.; Hatanaka, Y.; Nagao, T.; Tanaka, S.; Yoshii, M.; et al. Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains. Molecules 2024, 29, 2777. https://doi.org/10.3390/molecules29122777
Hagimori M, Hara F, Mizuyama N, Takada S, Hayashi S, Haraguchi T, Hatanaka Y, Nagao T, Tanaka S, Yoshii M, et al. Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains. Molecules. 2024; 29(12):2777. https://doi.org/10.3390/molecules29122777
Chicago/Turabian StyleHagimori, Masayori, Fumiko Hara, Naoko Mizuyama, Shinya Takada, Saki Hayashi, Tamami Haraguchi, Yoshiro Hatanaka, Toshihiro Nagao, Shigemitsu Tanaka, Miki Yoshii, and et al. 2024. "Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains" Molecules 29, no. 12: 2777. https://doi.org/10.3390/molecules29122777
APA StyleHagimori, M., Hara, F., Mizuyama, N., Takada, S., Hayashi, S., Haraguchi, T., Hatanaka, Y., Nagao, T., Tanaka, S., Yoshii, M., & Yoshida, M. (2024). Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains. Molecules, 29(12), 2777. https://doi.org/10.3390/molecules29122777